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AN EXAMINATION OF PERPENDICULAR INTERSECTIONS OF
BFRS AND MFRS IN E3
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Abstract. We already have defined and found the parametric equations of Frenet
ruled surfaces which are called Bertrandian Frenet Ruled Surfaces (BFRS) and
Mannheim Frenet Ruled Surfaces (MFRS) of a curve α, in terms of the Frenet
apparatus. In this paper, we find a matrix which gives us all sixteen positions of
normal vector fields of eight BFRS and MFRS in terms of the Frenet apparatus.
Further using the orthogonality conditions of the eight normal vector fields, we give
perpendicular intersection curves of the eight BFRS and MFRS.
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1. Introduction

The surface-surface intersection (SSI) problems can be cast as three types: parame-
tric-parametric, implicit-implicit, parametric-implicit. The SSI is called transversal
if the normal vectors of the surfaces are linearly independent or The SSI is called
tangential if the normal vectors of the surfaces are linearly dependent at the in-
tersecting points. In transversal intersection problems, the tangent vector of the
intersection curve can be found easily by the vector product of the normal vectors
of the surfaces. Because of this, there are many studies related to the transversal in-
tersection problems in the literature on differential geometry. There also are some
studies about tangential intersection curve and its properties. Some of these studies
are mentioned below. Wu, Alessio and Costa [16], using only the normal vectors of
two regular surfaces, present an algorithm to compute the local geometric proper-
ties of the transversal intersection curve. Tangential intersection of two surfaces are
examined in [1]. We have already try to derive a surface based on the other surface
by using the similar method to derive curves based on the other curves which is
very interesting subject in geometry. The involute-evolute curves, Bertrand curves
are such kind of curves. We produce a new ruled surface based on the other ruled
surface which are called involute D̃-scroll that were examined in [15]. In this paper
we consider the following four special ruled surfaces associated to a space curve
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α with κ 6= 0. They are called Frenet ruled surface, because their generators are
the Frenet vector fields of the curve. The quantities {T,N,B,D, κ, τ} present the
Frenet-Serret apparatus of the curve α. Here

D̃(s) =
τ(s)

κ(s)
T (s) +B (s) (1)

is the modified Darboux vector field of α [6]. A ruled surface can always be de-
scribed (at least locally) as the set of points swept by a moving straight line. Frenet
ruled surface is one which can be generated by the motion of a Frenet vector of any
curve in E3. To illustrate the current situation, we bring here the famous example
of Graves (see [3]), the so called the B-scroll. Here tangent, normal, binormal and
Darboux ruled surfaces of any curve are named Frenet Ruled Surfaces (FRS) of
the curve α. Some results concerning FRS according to their normal vector fields
can be found in [7]. They have the following equations

Definition 1. In the Euclidean three-space, let α(s) be the arclengthed curve. The
equations

ϕT (s, u1) = α (s) + u1T (s)

ϕN (s, u2) = α (s) + u2N (s)
(2)

ϕB (s, u3) = α (s) + u3B (s)

ϕD̃ (s, u4) = α (s) + u4D̃(s)

are the parametrization of tangent ruled surface, normal ruled surface, binormal
ruled surface, and Darboux ruled surface.

Theorem 2. The normal vector fields of Frenet ruled surfaces along the curve α,
can be expressed by the following matrix

[η] =


η1
η2
η3
η4

 =


0 0 −1
a 0 b
c d 0
0 −1 0

 ·
 T
N
B

 (3)

where
a =

−u2τ√
(u2τ)

2 + (1− u2κ)2
, c =

−u3τ√
(u3τ)

2 + 1

b =
1− u2κ√

(u2τ)
2 + (1− u2κ)2

, d =
−1√

(u3τ)
2 + 1

·
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1.1. Bertrandian Frenet Ruled Surfaces (BFRS)

Let α(s) and α1(s1) be two curves which are parametrized by arc-length parame-
ters s and s1, respectively. Furthermore, let the sets {T,N,B} and {T1, N1, B1}
denote the Frenet frames of α and α1, respectively. Two curves {α, α1} are called
Bertrand pair curves if they have common principal normal lines, i.e., N = N1

[4,10]. Then, {N(s) , N1(s)} are linearly dependent, and thus we have 〈T1, N〉=0.
Sometimes α1 is called Bertrand mate of the curve α. If the curve α1 is Bertrand
mate of α, then we may write

α1 (s) = α (s) + λN (s) .

In the Euclidean three-space E3, if the curve α1 is Bertrand mate of α, then we
have 〈T1 (s) , T (s)〉 = cosµ = constant. Bertrand curves have the following
fundamental properties which are given with more details in [5], and [14]. Also
α(s) is a Bertrand curve if and only if there exist nonzero real numbers λ and β
such that λκ + βτ = 1 for any s ∈ I . This is called offset property of Bertrand
curves. The converse assertion is also true and

λ

β
=

1

βκ
− τ

κ
·

The following theorem says that we can write the Frenet apparatus of the Bertrand
mate α1 based on the Frenet apparatus of the curve α (see [14]).

Theorem 3. The Frenet vectors of the Bertrand mate α1 can be expressed via those
of the curve α as

T1 =
βT + λB√
λ2 + β2

, N1 = N, B1 =
−λT + βB√
λ2 + β2

, D̃1 =
κ
√
λ2 + β2

(βκ− λτ)
D̃.

Also, the first and the second curvatures of the Bertrand mate α1 are given by

κ1 =
βκ− λτ

(λ2 + β2) τ
, τ1 =

1

(λ2 + β2) τ
(4)

where ττ1 =
1

(λ2 + β2)
is a non-negative constant. Due to this theorem we have

κ1 + γτ1 = 0.

We produce the FRS of the Bertrad mate α1 of the curve α. Further we write their
parametric equations in terms of the Frenet apparatus of α. Hence they are called
collectively Bertrandian Frenet Ruled Surfaces (BFRS) of the curve α.
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Definition 4. In the Euclidean three-space, let α(s) be the arclengthed curve. The
equations

ϕT1 (s, u1) = α+ λN + u1
βT + λB√
λ2 + β2

ϕN1 (s, u2) = α+ (λ+ u2)N

ϕB1 (s, u3) = α+ λN + u3

(
−λT + βB√
λ2 + β2

)
(5)

ϕD̃1
(s, u4) = α+ λN + u4

κ
√
λ2 + β2

(βκ− λτ)
D̃

are the parametrization of the ruled surface which are called Bertrandian Tangent
Ruled Surface (BTRS), Bertrandian Normal Ruled Surface (BNRS), Bertrandian
Binormal Ruled Surface (BBRS), Bertrandian Darboux Ruled Surface (BDRS),
respectively.

Theorem 5. The normal vector fields [σ] of BFRS along the Bertran mate α1,
which is given by the equation [σ] = [A1] · [V1] can be expressed by the following
matrix [9]

[σ] =


σ1
σ2
σ3
σ4

 =


0 0 −1
a1 0 b1
c1 d1 0
0 −1 0

 ·
 T1
N1

B1

 (6)

where

a1 =
−u2τ1√

(u2τ1)
2 + (1− u2κ1)2

, c1 =
−u3τ1√

(u3τ1)
2 + 1

b1 =
1− u2κ1√

(u2τ1)
2 + (1− u2κ1)2

, d1 =
−1√

(u3τ1)
2 + 1

·

1.2. Mannheim Frenet Ruled Surfaces (MFRS)

Mannheim curve was firstly defined by Mannheim in 1878. A curve is called a
Mannheim curve if and only if the expression κ/

(
κ2 + τ2

)
is a nonzero constant,

where κ is the curvature and τ is the torsion. Mannheim curve was redefined. If
the principal normal vector of first curve and binormal vector of second curve are
linearly dependent, then the first curve is called Mannheim curve, and the second
curve is called Mannheim partner curve by Liu and Wang [11]. Let α2 : I → E3

be some differentiable curve of class C2. Let T2 (s2) , N2 (s2) , B2 (s2) be the



An Examination of Perpendicular Intersections of BFRS and MFRS in E3 37

Frenet frame of the curve α2. If the principal normal vector N of the curve α
is linearly dependent with the binormal vector B2 of the curve α2, then the pair
{α, α2} is said to be Mannheim pair, α is called a Mannheim curve, α2 is called
Mannheim partner curve of α where (T, T2) = cos θ and besides the equality
κ/
(
κ2 + τ2

)
= constant is known as the offset property. In [13] Mannheim

offsets of ruled surfaces are defined and characterized. Since N and B are linearly
dependent their equation can be rewritten for some function λ as

α2 (s) = α (s)− λ2N (s) (7)

where λ2 = −κ/
(
κ2 + τ2

)
. Frenet-Serret apparatus of Mannheim partner curve

α2, based on the Frenet-Serret vectors of Mannheim curve α are

T2 = cos θ T − sin θ B, N2 = sin θ T + cos θ B, B2 = N
(8)

D̃2(s) =
κ

λ2τ

cos2 θ

θ̇
T +N − κ

λ2τ

cos θ · sin θ
θ̇

B

where D̃2 is the modified Darboux vector of Mannheim partner α2 of a Mannheim
curve α, based on the Frenet apparatus of Mannheim curve α. The curvature and
the torsion satisfy the following equalities

κ2 = −
dθ

ds1
=

θ̇

cos θ
, τ2 =

κ

λ2τ
(9)

and we have used dot to denote the derivative with respect to the arc length pa-

rameter of the curve α. Also
ds

ds2
=

1

cos θ
, where |λ2| is the distance between the

curves α and α1. For more details see [12]. Also we can write
ds

ds2
=

1√
1 + λ2τ

·

One can give also the tangent, normal, binormal and the Darboux Frenet ruled
surfaces of the Mannheim partner α2 of curve α. Further we write their parametric
equations in terms of the Frenet apparatus of the Mannheim curve α and they are
called hereafter MFRS. For more details see [8].

Definition 6. In the Euclidean three-space, let α(s) be the arclengthed curve. The
equations

ϕT2 (s, w1) = α+ w1 cos θT − λN − w1 sin θ B

ϕN2 (s, w2) = α+ w2 sin θ T − λN + w2 cos θ B (10)

ϕB2 (s, w3) = α+ w3N − λN

lϕD̃2
(s, w4) = α+ w4

κ cos2 θ

λτ θ̇
T + (w4 − λ)N − w4

κ cos2 θ

λτ θ̇
B
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are the parametrization of the ruled surfaces MTRS, MNRS, MBRS, and MDRS.
For more details see [8].

Theorem 7. The normal vector fields [ψ] of MFRS along the Mannheim partner
curve α2 can be expressed by the following matrix

[ψ] =


ψ1

ψ2

ψ3

ψ4

 =


0 0 −1
a2 0 b2
c2 d2 0
0 −1 0

 ·
 T2
N2

B2

 (11)

where

a2 =
−w2τ2√

(w2τ2)
2 + (1− w2κ2)

2
, c2 =

−w3τ2√
(w3τ2)

2 + 1

b2 =
1− w2κ2√

(w2τ2)
2 + (1− w2κ2)

2
, d2 =

−1√
(w3τ2)

2 + 1
·

For details see [8].

2. Perpendicular BFRS and MFRS

In this section, using a matrix the sixteen positions of normal vector fields of eight
BFRS and MFRS are examined. Further some interesting results are given, with
simple matrices product and equality. The product matrix of unit normal vector
fields σ1, σ2, σ3, σ4 and ψ1, ψ2, ψ3, ψ4 of BFRS and MFRS, respectively, along
the curve α is

[σ] · [ψ]t =


〈σ1, ψ1〉 〈σ1, ψ2〉 〈σ1, ψ3〉 〈σ1, ψ4〉
〈σ2, ψ1〉 〈σ2, ψ2〉 〈σ2, ψ3〉 〈σ2, ψ4〉
〈σ3, ψ1〉 〈σ3, ψ2〉 〈σ3, ψ3〉 〈σ3, ψ4〉
〈σ4, ψ1〉 〈σ4, ψ2〉 〈σ4, ψ3〉 〈σ4, ψ4〉

 . (12)

Proof: It is trivial from product of the matrices. �

Theorem 8. The product of Frenet vector fields of the Bertrand mate α1 and
Mannheimm partner α2 has the following matrix form T1

N1

B1

·[ T2 N2 B2

]
=

1

m
·

 β cos θ − λ sin θ λ cos θ + β sin θ 0
0 0 m

−λ cos θ − β sin θ β cos θ − λ sin θ 0

 (13)

where m =
√
κ2 + τ2 6= 0.



An Examination of Perpendicular Intersections of BFRS and MFRS in E3 39

Proof: Since

[V1] · [V2]t =

 T1
N1

B1

 · [ T2 N2 B2

]

=
1√

λ2 + β2
·

 β cos θ − λ sin θ λ cos θ + β sin θ 0

0 0
√
λ2 + β2

−λ cos θ − β sin θ β cos θ − λ sin θ 0


we have the proof. �

Theorem 9. The product matrixm [σ] [ψ]t of the unit normal vector fields of BFRS
and MFRS, along the curve α is



0 a2 (λcθ + βsθ)
c2 (λcθ + βsθ)

+d2 (−βcθ + λsθ)
βcθ − λsθ

0 a2

[
a1 (βcθ − λsθ)
−b1 (λcθ + βsθ)

] c2

[
a1 (βcθ − λsθ)
−b1 (λcθ + βsθ)

]
+d2

[
a1 (λcθ + βsθ)
+b1 (βcθ − λsθ)

][−a1 (λcθ + βsθ)
−b1 (βcθ − λsθ)

]

−md1 a2c1 (βcθ − λsθ) c1

[
c2 (βcθ − λsθ)
+d2 (λcθ + βsθ)

]
−c1 (λcθ + βsθ)

m −mb2 0 0



(14)

where for brevity we have introduced cθ ≡ cos θ, sθ ≡ sin θ and m =
√
κ2 + τ2.

Proof: Let [σ] = [A1] · [V1] and [ψ] = [A2] · [V2]

[σ] · [ψ]t = [A1] · [V1] · ([A2] · [V2])t = [A1] ·
(
[V1] · [V2]t

)
· [A2]

t

and using (13) we have

[σ] · [ψ]t = 1

m
[A1] ·

 β cos θ − λ sin θ λ cos θ + β sin θ 0
0 0 m

− (λ cos θ + β sin θ) β cos θ − λ sin θ 0

 · [A2]
t .

Hence
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[σ] · [ψ]t = 1

m


0 0 −1
A1 0 b1
c1 d1 0
0 −1 0

 ·
 βcθ − λsθ λcθ + βsθ 0

0 0 m
− (λcθ + βsθ) βcθ − λsθ 0

 · [A2]
t

=
1

m



(λcθ + βsθ) (λsθ − βcθ) 0

A1 (βcθ − λsθ)
−b1 (λcθ + βsθ)

A1 (λcθ + βsθ)
+b1 (βcθ − λsθ)

0

c1 (βcθ − λsθ) c1 (λcθ + βsθ) md1

0 0 −m


·

 0 a2 c2 0
0 0 d2 −1
−1 b2 0 0



and this product give us the result. �

In Euclidean three-space, the position of two surface, can be examined by the
position of their unit normal vector fields σ1, σ2, σ3, σ4 and ψ1, ψ2, ψ3, ψ4. We can
examine the sixteen positions of eight surfaces, basically, according to the position
of their unit normal vector fields in a matrix. Since the equality of the matrices
(12) and (14), we have sixteen interesting results according to the normal vector
fields given in following theorems.

Theorem 10. There are four pairs of Frenet ruled surface which are perpendicu-
lar, these are BTRS, MTRS, of the curve α and BNRS, MTRS, BDRS, MB.

Theorem 11. There are four pairs perpendicular surfaces which are BTRS, MTRS,
BNRS, MTRS, BDRS, MBRS and BDRS, MDRS.

Proof: According to equality of the matrices we can say that

〈σ1, ψ1〉 = 〈σ2, ψ1〉 = 〈σ4, ψ3〉 = 〈σ4, ψ4〉 = 0 (15)

and therefore their normal vector fields are perpendicular to each other. �

Theorem 12. Bertrand Tangent Ruled Surface and Mannheim Normal Ruled Sur-
face of the curve α have perpendicular normal vector fields, since w2τ2 6= 0,

tanθ = −λ
β
·
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Proof: Since 〈σ1, ψ2〉 = a2 (λ cos θ + β sin θ) and using the orthogonality con-
dition

tanθ = −λ
β

with w2τ2 6= 0 we have the proof. �

Theorem 13. Bertrand Tangent Ruled Surface and Mannheim Binormal Ruled
Surface of curve α have perpendicular normal vector fields, if

tanθ =
λ2τβ − w3κλ

w3κβ + λ2τλ
· (16)

Proof: Since 〈σ1, ψ3〉 = c2 (λ cos θ + β sin θ)+d2 (−β cos θ + λ sin θ) and under
the orthogonality condition

c2 (λ cos θ + β sin θ) + d2 (−β cos θ + λ sin θ) = 0

we have
tanθ =

β − w3τ2λ

λ+ w3τ2β
·

This completes the proof. �

Theorem 14. Bertrand Tangent Ruled Surface and Mannheim Darboux Ruled

Surface of curve have perpendicular normal vector fields, if tanθ =
β

λ
·

Proof: Since 〈σ1, ψ4〉 = β cos θ − λ sin θ and under the orthogonality condition
λ sin θ − β cos θ = 0, we get the proof. �

Theorem 15. BNRS and MNRS of Bertrand curve α have perpendicular normal
vector fields along under the condition

tanθ =
u2τ1β + (1− u2κ1)λ
u2τ1λ− (1− u2κ1)β

· (17)

Proof: Since 〈σ2, ψ2〉 = a2 [A1 (β cos θ − λ sin θ)− b1 (λ cos θ + β sin θ)] and

A1 (β cos θ − λ sin θ)− b1 (λ cos θ + β sin θ) = 0

and under the orthogonality condition we get

tanθ =
A1β − b1λ
A1λ+ b1β

=
u2τ1β + (1− u2κ1)λ
u2τ1λ− (1− u2κ1)β

and therefore the proof. �
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Theorem 16. Bertrand Normal Ruled Surface and Mannheim Binormal Ruled
Surface have perpendicular normal vector fields for the value

β cos θ − λ sin θ
λ cos θ + β sin θ

=
b1c2 −A1

A1c2 − b1
(18)

or

tanθ =
w3τ2 ((−1 + u2κ1)λ− u2τ1β)− (u2τ1λ− (1− u2κ1)β)

√
(w3τ2)

2
+ 1

w3τ2 (−u2τ1λ+ (1− u2κ1)β) + ((1− u2κ1)λ+ u2τ1β)

√
(w3τ2)

2
+ 1

.

Proof: Since

〈σ2, ψ3〉 = c2 [A1 (β cos θ − λ sin θ)− b1 (λ cos θ + β sin θ)]

+d2 [A1 (λ cos θ + β sin θ) + b1 (β cos θ − λ sin θ)]

and under the orthogonality condition(
A1c2β cos θ − λA1c2 sin θ

)
− b1c2

(
λ cos θ + β sin θ

)
−A1

(
λ cos θ + β sin θ

)
− b1

(
β cos θ − λ sin θ

)
= 0

hence

tanθ =
(A1c2 − b1)β − (b1c2 +A1)λ

(A1c2 − b1)λ+ (b1c2 +A1)β

=
w3τ2 ((−1 + u2κ1)λ− u2τ1β)− (u2τ1λ− (1− u2κ1)β)

√
(w3τ2)

2
+ 1

w3τ2 (−u2τ1λ+ (1− u2κ1)β) + ((1− u2κ1)λ+ u2τ1β)

√
(w3τ2)

2
+ 1

and this completes the proof. �

Theorem 17. Bertrand Normal Ruled Surface and Mannheim Darboux Ruled
Surface have perpendicular normal vector fields if

tanθ =
(1− u2κ1)β − u2τ1λ
u2τ1β + (1− u2κ1)λ

· (19)

Proof: Since 〈σ2, ψ4〉 = −A1 (λ cos θ + β sin θ)− b1 (β cos θ − λ sin θ) and
under the orthogonality condition

λA1 cos θ +A1β sin θ + (b1β cos θ − b1λ sin θ) = 0

we have
tanθ =

λA1 + b1β

b1λ−A1β
·

�
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Theorem 18. BBRS and MTRS of the curve α have not perpendicular normal
vector fields except when w3 = 0 or τ2 = 0.

Proof: Since 〈σ3, ψ1〉 = −md1 and under the orthogonality condition it follows
that w3τ2 6= 0 it is trivial. �

Theorem 19. Bertrand Binormal Ruled Surface and Mannheim Normal Ruled

Surface of curve α have perpendicular normal vector fields if tanθ =
β

λ
·

Proof: Since 〈σ3, ψ2〉 = a2c1 (β cos θ − λ sin θ) and w2τ2 6= 0 under the
orthogonality condition β cos θ − λ sin θ = 0. �

Theorem 20. Bertrand Binormal Ruled Surface and Mannheim Binormal Ruled
Surface have perpendicular normal vector fields when

tanθ =
w3τ2β + λ

√
(w3τ2)

2 + 1

w3τ2λ− β
√

(w3τ2)
2 + 1

. (20)

Proof: Since 〈σ3, ψ3〉 = c2c1 (β cos θ − λ sin θ) + d2c1 (λ cos θ + β sin θ) and
u3τ1 6= 0, under the orthogonality condition

c2c1 (β cos θ − λ sin θ) + d2c1 (λ cos θ + β sin θ) = 0

we have
tanθ =

c2β − λ
c2λ+ β

and this completes the proof. �

Theorem 21. Bertrand Binormal Ruled Surface and Mannheim Darboux Ruled

Surface of curve α have perpendicular normal vector fields if tanθ = −λ
β
·

Proof: Since 〈σ3, ψ4〉 = −c1 (λ cos θ + β sin θ) and d1 6= 0, under the condition
that we have λ cos θ + β sin θ = 0 the statement follows. �

Theorem 22. Bertrand Darboux Ruled Surface and Mannheim Normal Ruled
Surface of Bertrand curve α have not perpendicular normal vector fields.

Proof: Since 〈σ4, ψ1〉 = m =
√
κ2 + τ2 6= 0 and under the orthogonality condi-

tion m is always 6= 0. �
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Theorem 23. Bertrand Darboux Ruled Surface and Mannheim Binormal Ruled
Surface of curve α have not perpendicular normal vector fields.

Proof: Since 〈σ4, ψ2〉 = −mb2 and under the orthogonality condition 0. Hence
m =

√
κ2 + τ2 6= 0. �

Corollary 24. The perpendicular conditions and curves of the eight Frenet ruled
surfaces are given in the Table 1.

Table 1. The perpendicular intersection conditions and curves of the eight
Frenet ruled surfaces.

〈 , 〉 ψ1 ψ2 ψ3 ψ4

tanθ

σ1 0 −λ
β

w3κλ−βλ2τ
−w3κβ−λλ2τ

β
λ

σ2 0 (1−u2κ1)λ+u2τ1β
u2τ1λ−(1−u2κ1)β

−(b1c2+A1)λ+(A1c2−b1)β
(A1c2−b1)λ+(b1c2+A1)β

−u2τ1λ+(1−u2κ1)β
(1−u2κ1)λ+u2τ1β

σ3 6= 0 β
λ

−u3κβ−λλ2τ
−u3κλ+βλ2τ −λ

β

σ4 6= 0 6= 0 0 0
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