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Abstract. We calculate the Chern numbers of SU(2)-homogeneous Einstein-
Maxwell gravitational instantons with boundary at infinity. By restating these num-
bers as Chern-Simons invariants on the boundary apparent conflicting results emerge.
We resolve this issue examining the topological stability of the self-gravitating
Abelian fields. No quantization carrying physical meaning is found when the back-
ground is a Taub-NUT space. However the magnetic charge of dyons on Taub-Bolt
spaces is found to be of topological quantum nature. In this framework electric
charge is quantized by a consistency condition.
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1. Introduction

The study of gravitational instantons in Euclidean Einstein gravity was initiated in
the 70’s [6,16,17,24,25,31] to apply the path-integral approach in the hope to con-
struct a theory of quantum gravity. This expectation was based upon the success
reached by this approach in the application of quantum field theory to Yang-Mills
theories. Indeed, the instanton solutions of classical Euclidean Yang-Mills field
equations, with self-dual field strength, allow one to interpret the physical vac-
uum state as a superposition of an infinite number of vacuum states. This leads
to an alternative non-perturbative quantization of Yang-Mills theories by using the
path-integral approach. The idea of applying similar analysis to Euclidean Einstein
gravity found several conceptual and technical difficulties [11], which are currently
under investigation to formulate a consistent theory of quantum gravity. Neverthe-
less, gravitational instantons became a topic of intensive research, and together
with monopoles and solitons constitute the area of theoretical physics which today
is known as topological defects.

A different approach was recently proposed in which concepts of topological quan-
tization are applied to find quantum information from classical fields, including
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gravitational configurations [50]. In this case, the underlying classical structure is
different. To any classical configuration, which includes gauge fields, gravitational
fields and mechanical systems, one associates a principal fiber bundle where the
base space should contain all the information of the classical configuration and the
standard fiber corresponds to its physical symmetries. In the case of gravity, for
instance, the base space is the spacetime and the standard fiber is the Lorentz group
SO(3, 1) so that the bundle is 10-dimensional. The main goal of topological quan-
tization is to show that the topological and geometric properties of the principal
fiber bundle can be used to obtain quantum information about the corresponding
classical configuration. This goal has been reached only partially [2, 3, 45–47]. In
particular, the topological numbers of the bundle are used to construct a topologi-
cal spectrum whose physical information is directly related to the information con-
tained in the spectrum obtained in canonical quantization. Topological invariants
are therefore an important tool of topological quantization and this is one of the
reasons why we are interested in analyzing the properties of topological defects.

Recently, the classic subject of topological defects [5, 15, 35, 51, 62] has been ap-
plied to condensed matter, i.e., topological insulators – for a review on the sub-
ject see, for example [38]. The main rôle is played by topological quantum num-
bers such as Chern invariants. The subject includes other aspects of topology as
well. These subjects are related physically to topologically protected states, time-
reversal symmetry, topological phases of matter and topological phase transitions
(for a a selection of recent references see [21–23, 30, 37, 39–41, 44] and earlier
works in [4, 7, 8, 54, 59]). The importance of this research was notoriously rec-
ognized in the 2016 Nobel prize which was awarded to D. Thouless, F. Haldane
and J. Kosterlitz “for theoretical discoveries of topological phase transitions and
topological phases of matter”.

Phase transitions which include a change in topology have been studied in grav-
itation as well. Research in this direction usually entails using gravitational in-
stantons – the gravitational analogs of Yang-Mills pseudo-particles [31]. These
solutions have positive definite metric. Euclidean metrics may be hard to be in-
terpreted physically, but are a useful tool for calculating the free energy of the
corresponding Lorentzian system. For example, in the presence of a negative cos-
mological constant, radiation over the AdS space and the AdS-Schwarzschild black
hole are phases of the same thermodynamic system. The partition function may be
estimated using their Wick rotated counterparts. Topology changes during these
phase transitions. Thermodynamics [32] and Ricci flow with surgery [33] are used
to grasp these changes. These transitions have been studied for Taub-NUT and
Taub-Bolt spacetimes as well [34, 36].
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It is very well known [17, 26] that a self-dual Maxwell field naturally lives on the
Taub-NUT instanton. This field is dyonic. It is a renowned [31] result that the
Taub-NUT instanton is topologically trivial. One usually expects that the Chern
number of such spaces vanish. However, this is not the case for Taub-Bolt. In this
work, we study dyonic Maxwell fields over Taub-Bolt which are not self-dual. We
focus on electromagnetic charge, as a topological quantum number, on a Taub-Bolt
space – which is a four-dimensional gravitational instanton.

Topological quantum numbers originate with the Dirac monopole which has mag-
netic charge p and gauge potential

A = p cos θdφ . (1)

Since we are mainly concerned with gravitation in this paper, we review its unique
self-gravitating equivalent, i.e., the magnetic Reissner-Nordström spacetime. The
gauge potential is still given by equation (1), but is defined over the space R2×S2,
the topology of the Reissner-Nordström black hole. In spherical coordinates, A
is singular at θ = 0 and θ = 2π. To resolve this issue, we consider two gauge
potentials equivalent to equation (1) each defined on complementary open covers
of the spheres coordinated by (θ, φ).

A± = p(±1 + cos θ)dφ . (2)

Notice that A+ − A− = 2pdφ. Consistency of the U(1)−bundle where A is
determined requires

2p = integer (3)

meaning that the magnetic charge is quantized. Moreover, the topology of the
bundle space is then S3/Zn whenever p = n/2 hence p is called a topological
charge.

Alternatively, we can look at the Chern invariants of the configuration. Since our
base manifold is four dimensional, there are two relevant Chern classes to consider,
i.e., the two-form [16]

c1 = −
1

2π
trF (4)

and the four-form
c2 =

1

8π2
(trF ∧ F − trF ∧ trF ) . (5)

This last cohomology class vanishes for U(1)−bundles, the gauge group of elec-
tromagnetism, so we consider only the two-form c1. This Chern class corresponds
to the field strength, defined by F = dA. The sphere representing the event hori-
zon and all 2D submanifolds that can be deformed into it form a special homology
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class. This leads to an integral formula∫
S2

c1 = 2p. (6)

Since the Chern class is an integer, we obtain, once again, equation (3).

Another question is what happens if the geometry and field are that of electric
Reissner-Nordström. This question has been tackled in [50]. Moreover, the gener-
alization to include rotation has been considered as well. Indeed, the Schwarzschild
spacetime may be generalized to Kerr-Newman, but independently may be gener-
alized to spaces with a NUT parameter. Specifically, we consider charged versions
of Taub-NUT spaces.

This work is organized as follows. In Section 2, we review the main properties of
the gravitational instantons that are generated by applying a Wick rotation to the
Taub-NUT spacetime with electric and magnetic charge. In Section 3, we calculate
explicitly the topological quantum numbers of dyonic fields on the Euclidean Taub-
NUT and Taub-Bolt backgrounds. Finally, in Section 4, we conclude with some
remarks about possible future applications of our results.

2. Nuts, Bolts and Dyons

Some gravitational instantons may be obtained through Wick rotating a Lorentzian
metric, this is the case of the Taub-NUT and Taub-Bolt1 instantons. The Lorentzian
Taub-NUT spacetime [48, 58] is defined over the space S3 × R, and its metric is
given by

ds2 = −V (r)(dt+ 2L cos θdφ)2 +
dr2

V (r)
+ (r2 + L2)(dθ2 + sin2 θdφ2) (7)

with

V (r) =
r2 − 2Mr − L2

r2 + L2
· (8)

The underlying topology with periodic time t ∼ t + 8πL is chosen to avoid the
physical presence of Misner strings [43]. The physical parameters are the (ordi-
nary) gravitoelectric mass M and the NUT charge L also called the gravitomag-
netic mass. The Taub-NUT metric represents a gravitational dyon, and is asymptot-
ically locally flat (ALF). Indeed, its curvature in the SO(3,C)−representation [57],

1Taub-Bolt is the counter part of Taub-NUT which has a surface analog to an event horizon. See
Section 2.
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with a local orthonormal metric, can be expressed as [53]

R =
M + iL

(r + iL)3

 −1 −1
2

 (9)

which is clearly locally flat, although the global topology at infinity can differ from
that of the ordinary Euclidean space.

Taub-NUT metrics belong to the Bianchi IX class, i.e., spacetimes with an SU(2)
homogeneity group. Bianchi IX metrics have a portrayal as a sequence of squashed
three-spheres. Taub-NUT is a very symmetric case as its isometry group is SU(2)×
U(1), where the U(1) subgroup on the right is a cyclic symmetry between two of
the invariant directions of the spatial three-spheres. For this reason Taub-NUT is
called a biaxial Bianchi IX spacetime. So the sequence portraying the NUT space
has squashed circles Hopf fibered over round two-spheres. This singles out one
direction, the one in which circles are fibered over spheres.

A generalization of the Taub-NUT metric that includes Maxwell fields was found
in [9]. The line element is still written as in equation (7), but the function V (r)
instead takes the form

V (r) =
r2 − 2Mr − L2 +Q2 + p2

r2 + L2
· (10)

The construction of this metric takes advantage of the biaxial symmetry described
above. The gauge potential is

A =

(
Qr

r2 + L2
+

p

2L

r2 − L2

r2 + L2

)
(dt+ 2L cos θdφ) . (11)

In theL→ 0 limit, we recover the dyonic Reissner-Nordström spacetime. Through
a simple gauge transformation A → A − p/2L dt we have the more convenient
expression

A = p cos θdφ+

(
Qr − pL
r2 + L2

)
(dt+ 2L cos θdφ) . (12)

As before, the gauge potential is singular whenever sin θ = 0 as apparently the
magnetic part of the field vanishes. We resolve this in the classical manner defining

A± = p(±1 + cos θ)dφ+

(
Qr − pL
r2 + L2

)
(dt+ 2L cos θdφ) (13)

concluding that the value 2p is an integer. However, the spacetime topology pre-
vents this magnetic charge to be a topological quantum number.
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To obtain the gravitational instantons related to this spacetime, we make a Wick
rotation t 7→ iτ on the neutral Taub-NUT spacetime. Later on, we consider the
charged version. However, as is readily seen, the metric is only a real Riemannian
metric if we also apply the transformation L 7→ iN . So two geometrically distinct
gravitational instantons arise. Additionally, conical singularities emerge unless we
impose certain restrictions which are detailed in the sequel. The two Euclidean
metrics have the form

ds2 = V (r)(dτ + 2N cos θdφ)2 +
dr2

V (r)
+ (r2 −N2)(dθ2 + sin2 θdφ2) . (14)

The S3 submanifold degenerates at r = r+ where V is nil – the nature of this
degeneration distinguishes the instanton pair. Historically, the first case found was
the self-dual Taub-NUT instanton [31], so called because its curvature form is self-
dual. We henceforth refer to this instanton systematically as Taub-NUT. In what
follows Lorentzian spaces are no longer considered so no ambiguity arises. The
second case is called Taub-Bolt [27] and was first written down in [49]. The Taub-
Bolt and Taub-NUT manifolds have different allowed ranges for M , N and r – the
appropriate conditions have been worked out in [12].

For Taub-NUT, the three-sphere degenerates into a point, called a nut, and V re-
duces to

VN =
r −N
r +N

· (15)

In this coordinate system there is a coordinate singularity at r = N (called a nut).
The global structure is that of the space R4. So the Euler number and Hirzebruch
signature of Taub-NUT are χ = 1 and σ = 0, respectively.

In the Taub-Bolt case, the three-sphere degenerates into a two-sphere, via the Hopf
fibration, which is called a bolt. In this case, V = VB which is

VB =
(r −N/2)(r − 2N)

r2 −N2
· (16)

As in the NUT case, the bolt (which is at r = 2N ) is a regular set, but in this
coordinate system there is a coordinate singularity. Here r = N/2 is not contained
within the range of r. Moreover, the minimum value of r, r+, is always greater
than N , a property which is also valid in the generalizations of Taub-Bolt we treat
later on. The natural topology is that of the space CP2\{∗}, which has χ = 2 and
σ = 1.

Both Taub-NUT and Taub-Bolt are limits of compact manifolds with an S3 bound-
ary. The limit involves taking the boundary to infinity. The bolt in the latter case
is a minimal surface very similar to a black hole horizon. Moreover, the space
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CP2\{∗} has the homotopy type of S2 which happens in some black holes as well,
e.g., Schwarzschild. The Taub-Bolt space has the topology of a cone Hopf fibered
over S2 with the tip of the cone lying on the bolt. Since the cone is retractable, it is
straightforward to see that the Taub-Bolt space indeed has the homotopy type of a
sphere. Physically, one can think of Taub-Bolt as an excitation of Taub-NUT, just
as we can do for Schwarzschild and flat space [27].

As expected, these vacuum solutions may be generalized to gravitational instan-
tons of Euclidean Einstein-Maxwell theory by Wick rotating the dyon potential in
equation (11). To obtain a real gauge potential, we must take Q 7→ iq. Notice that
the quantities L and Q are related to timelike directions in the Lorentzian config-
uration so Wick rotations affect them. This happens for the angular momentum
in rotating configurations as well. Since the parameter p is magnetic, it remains
unaffected.

The line element remains with the same structure, but the metric function V instead
takes the form

Vd =
r2 − 2Mr +N2 + p2 − q2

r2 −N2
(17)

and the dyon potential is

A = h(r)(dτ + 2N cos θdφ) (18)

where

h(r) =
qr

r2 −N2
+

p

2N

r2 +N2

r2 −N2
· (19)

For these dyonic configurations, consistency again restricts the ranges of the phys-
ical parameters, including the electric charge. Given that we require Vd(r+) = 0
and h(r+) = 0, then mass and electric charge must comply with

M =
r2+ +N2 + p2 − q2

2r+
(20)

and

q = −p
r2+ +N2

2Nr+
· (21)

Since the NUT and Bolt geometry have the same asymptote, the charge and poten-
tial at infinity are equal for both cases. The asymptotic charge and potential are q
and p/2N , respectively.

Taub-NUT and Taub-Bolt configurations have been also studied in generalized the-
ories of gravity [13, 14].
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3. Topological Quantum Numbers

Topological quantum numbers are at the heart of the study of topological defects.
They represent the quantized conductance in the quantum Hall effect [59]. They
describe the number of levels in molecular spectra [19, 20]. They are the numbers
characterizing monopole and instanton solutions [5, 15, 35, 51, 62]. In Skyrmions
they represent the baryon number [55]. In Z2 topological insulators they distin-
guish between an ordinary insulator state and a quantum Hall state [37].

As a first example, let us consider again the magnetic Reissner-Nordström config-
uration. The background is a 4D manifold M and has a special 2D submanifold,
the two-sphere representing the event horizon2. The quantity

C1 = c1[S2] = 2p = n (22)

is an integer but, it is not a Chern number forM . Chern numbers are obtained from
maximally dimensional forms in the Chern classes.

For an arbitrary unitary group bundle over a four-dimensional manifold M , the
Chern numbers are defined by [16]

C2
1 = c1 ∧ c1[M ] , C2 = c2[M ] (23)

where
c1 = −

1

2π
trF , c2 =

1

8π2
(trF ∧ F − trF ∧ trF ) . (24)

Since SU(2) has traceless field strength, then the number C2
1 is zero and C2 sim-

plifies to the usual expression. While for U(1) the inverse happens, i.e., C2 = 0
and

C2
1 =

1

4π2

∫
M

F ∧ F . (25)

So we readily see that for magnetic Reissner-Nordström C2
1 = 0. For this con-

figuration all Chern numbers vanish, this points to a triviality. It does so in the
following sense. The configuration is basically the Dirac monopole multiplied
trivially with the space R2. The fact that the construction is trivial is reflected in
the vanishing of the topological numbers.

The manifolds underlying Taub-NUT/Bolt both have a three-dimensional bound-
ary, S3∞ say. Consequently, the Chern-number may also be calculated through the
Chern-Simons three-form integrated on this boundary, i.e.,

c1 ∧ c1[M ] = cs[∂M ] =
1

4π2

∫
S3∞

A ∧ dA (26)

2There are infinitely many equivalent special submanifolds, for example the two-sphere at infinity
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where we have simplified the Chern-Simons form for the Abelian case.

Before continuing to the next section let us consider a Reissner-Nordström instan-
ton with electric charge q and magnetic charge p. Imposing self-duality on the field
yields [52]

F =
p

r2
(
dr ∧ dτ − r2 sin θdθ ∧ dφ

)
. (27)

This field has been studied in [18] and from there we know that the configuration
is characterized by

C1 = n and C2
1 = 2n2 (28)

where n is an integer and 2p = n. Note that self-duality also affects the back-
ground geometry. Since the metric parameters comply with p2 = q2 then the
background is in fact Schwarzschild. This is a trivial solution to the Euclidean
Einstein-Maxwell equations. Since the energy-momentum tensor vanishes and so
the background is a solution to the vacuum equations.

Recall that the Schwarzschild instanton is asymptotically flat. Moreover, if we
consider the same field as described above over a globally flat space, it is still a
solution to the Euclidean Einstein-Maxwell equations albeit a trivial one. This pair
of configurations has the same asymptotic boundary and the same field content.
The integrals involved in the calculation of Chern numbers yield identical results.
The key difference is the cohomology of each background. While it is trivial for
flat space it is not for the Schwarzschild instanton. In fact, the second cohomology
group of the Schwarzschild space is infinite cyclic i.e., Z. This means that 2p = n
only for the Schwarzschild background.

3.1. Dyonic Taub-Bolt Spaces

In this section, we compare dyonic and self-dual fields over Taub-NUT and Taub-
Bolt spaces. To this end, we first review some known results for the Taub-NUT
space [52] some of which carry over to the Taub-Bolt space. Firstly, recall that the
biaxial symmetry present in the Taub spaces is U(1). The Killing form associated
to this symmetry, ξ say, may be used to define a U(1) two-form F = λdξ, where
λ is related to the electromagnetic charges. In turn, F has the (anti) self-dual
components

F± =
λ(M ±N)

(r ±N)2
(
dr ∧ (dτ + 2N cos θdφ)∓ (r2 −N2) sin θdθ ∧ dφ

)
. (29)

This should be compared with the dyon field whose (anti) self-dual components
are obtained from the above expression by changing

λ(M ±N)→ 1/2(±p− q). (30)
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When M = N , the famous self-dual field strength (on Taub-NUT) is recovered
[17, 18, 26, 52]

F =
p

(r +N)2
(
dr ∧ (dτ + 2N cos θdφ)− (r2 −N2) sin θdθ ∧ dφ

)
. (31)

Since the particular case M = −N is not physical, no anti self-dual field is pos-
sible over the Taub-NUT space. Additionally, note that both (anti) self-dual fields
comply with p2 − q2 = 0. This means that the dyon over a Taub-NUT space does
not modify the background. This is a particular distinction between (anti) self-dual
fields over Riemannian and Lorentzian backgrounds, as pointed out in [1]. The
energy-momentum tensor vanishes for fields with this symmetry and so vacuum
solutions may be endowed with them without further changes. This is to say, they
are trivial solutions to the Euclidean Einstein-Maxwell equations.

For the dyon over the Taub-Bolt space this is not so. The dyon field is not (anti)
self-dual and so the charged Taub-Bolt geometry is different from its neutral coun-
terpart. As mentioned above, consistency requires Vd(r+) = 0 and h(r+) = 0. In
this case, r+ = rb, the only physical solution (rb > N) which satisfies the cubic
equation

r3+ − 2N(1 + ν2)r2+ + 2ν2N3 = 0 (32)

where ν is short hand for p/2N .

We recall that the asymptotic behavior of Taub-NUT and Taub-Bolt spaces is iden-
tical. For example, the total magnetic flux3 is

Φ =
1

2π

∫
S2∞

F = −2p. (33)

However, the cohomology of Taub-NUT is trivial and so we may not conclude
that this flux is quantized in general. This means that all continuous values of
p are admissible and since F is self-dual, it corresponds to a continuous family
of instantons with finite action [18]. The situation is completely different in the
case of the Taub-Bolt space since its second cohomology group is infinite cyclic,
H2(CP2\{∗}) = Z.

The Chern number is calculated as

1

4π2

∫
F ∧ F = 4p2 (34)

where the domain of the integral is not indicated because the result is the same
for Taub-NUT (R4) and Taub-Bolt (CP2\{∗}). This is due to the fact that both

3For comparison with Chern invariants we normalize the flux with a 1/2π factor.
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dyons vanish at the source (i.e., nut or bolt, depending on the case) and both have
the same value at infinity. An alternative way to see this is to use the fact that
both spaces have the same asymptotic boundary and, therefore, the Chern-Simons
invariant in both cases is

1

4π2

∫
S3∞

A ∧ dA = 4p2. (35)

Nevertheless, this number is an integer only for the Taub-Bolt space. In fact, this
invariant classifies the different possible gauge potentials – different according to
their magnetic charge. This may be paraphrased to saying that the magnetic charge
is a topological quantum number for Taub-Bolt. For Taub-NUT, however, the con-
tinuous family of fields are referred to as non-topological [18], since the above
quantities are non-zero but are not predictable from the background topology.

As a final remark we mention that for U(1) bundles, S2 backgrounds are of interest
– as we know from the Dirac monopole. Since bundle theory is homotopy invari-
ant4, the same applies for manifolds of higher dimension but with the homotopy
type of a two-sphere, e.g., the Taub-Bolt space. Integral cohomology can be forced
over the NUT space [52] however, it emerges naturally on the Bolt scenario. Chern
classes have already been studied for (anti)self-dual fields over rotating Taub-Bolt
spaces [1]. However, to the best of our knowledge the topological quantum num-
bers of Taub-Bolt dyons (which are not self-dual) have not been studied in the
literature before.

4. Conclusions

In this work, we have analyzed the gravitational instantons that arise from the
Taub-NUT spacetime with electric and magnetic charges. In particular, we inves-
tigated the topological properties of dyons and (anti) self-dual fields on Euclidean
backgrounds corresponding to Taub-NUT and Taub-Bolt spaces. We conclude that
instantons with a bolt carry topological quantum numbers. Their cohomology is
integral and there are countably infinite distinct U(1)-bundles over them. We have
shown that the Chern numbers of Taub-Bolt dyons are closely related to the in-
variants of the famous Taub-NUT self-dual field. In terms of physical parameters
they are the same. The essential difference is that the former are quantized due to
topological reasons.

Taub-NUT configurations are usually considered as the gravitational analog of
Dirac’s magnetic monopole. Our results show that strictly speaking this is not true.

4This is a corollary of Steenrod’s classification theorem [56].
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Indeed, Dirac’s monopole is treated as a quantum system as a result of the underly-
ing space topology. We have shown that in gravity this role is played by Taub-Bolt
configurations, only. We believe that this result might be important for the quan-
tization of gravity by using the path-integral approach. In our opinion, Taub-Bolt
instantons should be used to construct the physical vacuum state of gravity. The
consequences of this alternative approach are difficult to predict in advance. We
expect to handle this problem in a future investigation.

The study of topological defects is also important in the context of topological
quantization in which, however, the underlying geometry should be Lorentzian.
The results obtained in this work could serve as a guide for investigating Lorentzian
Taub configurations, which are of particular importance when interpreted as ani-
sotropic cosmological models. The information obtained from the analysis of the
topological invariants of such Lorentzian configurations would imply the first step
towards the construction of an alternative theory called topological quantum cos-
mology. This issue will be investigated in future works.

Introducing a cosmological constant to the dyonic instantons does not alter their
topology. In fact, our results remain the same if the ALF configurations we have
studied are generalized to be asymptotically locally AdS4. Through the AdS/CFT
correspondence [28,42,60,61] dyonic AdS4 black holes have already been investi-
gated and related to magnetohydrodynamics [10] and Hall conductivity [29]. This
points to further exploring the dyonic Taub-NUT/Bolt system.
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