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Abstract. In this paper we consider some Lie groups in complexified Clifford
algebras. Using relations between operations of conjugation in Clifford algebras
and matrix operations we prove isomorphisms between these groups and classical
matrix groups (symplectic, orthogonal, linear, unitary) in the cases of arbitrary di-
mension and arbitrary signature. Also we obtain isomorphisms of corresponding
Lie algebras which are direct sums of subspaces of quaternion types. Spin group is
a subgroup of all considered groups and it coincides with one of them in the cases
n ≤ 5. We present classical matrix Lie groups that contain spin group in the case
of arbitrary dimension.
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1. Introduction

In this paper we prove isomorphisms between five Lie groups in complexified Clif-
ford algebra and classical matrix groups in the case of arbitrary dimension and
arbitrary signature. Also we obtain isomorphisms of corresponding Lie algebras.
We further develop results of the paper [20]. In [20] you can find statements only
in the cases of fixed signatures when the corresponding real Clifford algebra has
faithful and irreducible representations over R and R⊕R. In the present paper we
prove isomorphisms in all remaining cases, when real Clifford algebra has faithful
and irreducible representations over C, H, and H⊕H.

Lie groups which are considered in this paper can be useful in different questions of
field theory. Note that the following three groups G2i1

p,q , G23
p,q, G2

p,q are subgroups
of pseudo-unitary group (see [21], [27], [14]). In [13] new symmetry of Dirac
equation [8], [9] with respect to the pseudo-unitary group was considered. Spin
group Spin+(p, q) is a subgroup of all five considered Lie groups. Moreover, group
Spin+(p, q) coincides with group G2

p,q in the cases of dimensions n ≤ 5. We
discuss it in details in Section 6. Salingaros vee group (it consists of ± basis
elements of real Clifford algebra) [17], [18], [19], [11], [2], [3] is a subgroup of
spin group and, so, also of five considered groups.

We mention a series of articles [1], [2], [3], where many interesting facts about
so-called transposition anti-involution are discussed. We consider such conjuga-
tion in real and complexified Clifford algebras and call it Hermitian conjugation
in [15]. In [15] we were interested, mostly, in some particular problems related to
applications in field theory. In [1], [2], [3] one can find more detailed description
of corresponding algebraic structures. Note that operation of Hermitian conjuga-
tion of Clifford algebra elements is well-known, especially, in particular cases.
For example, Dirac [8], [9] uses it in the case of signature (p, q) = (1, 3) in the
theory of Dirac equation for electron. We should note that information about Her-
mitian conjugation in Section 2 of the present paper is related to results of the
paper [2]. In particular, one finds information about connection between Hermi-
tian conjugation (or so-called transposition anti-involution) and matrix operations
of corresponding matrix representations: in [2] for representations based on the
fixed idempotent and the basis of corresponding left ideal, in the present paper
(see formulas (4)-(7)) for fixed matrix representations, in [15] for complexified
Clifford algebras and their representations based on the fixed idempotent and the
basis of corresponding left ideal. In [2], [3] some interesting facts about group
Gεp,q = {U ∈ C`p,q ; U †U = e} in real Clifford algebras were considered. In [15]
we consider analogue of this group {U ∈ C ⊗ C`p,q ; U †U = e} (so-called uni-
tary group) in complexified Clifford algebras. The group Gεp,q is subgroup of this
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group. Note, that group Gεp,q coincides in particular cases with some of groups
which are considered in the present paper: with the group G23

p,q in the case of sig-
nature (n, 0), with the group G12

p,q in the case of signature (0, n). Note, that some
of groups which are considered in the present paper are related to automorphism
groups of the scalar products on the spinor spaces (see [16], [12], [3]), but we do
not use this fact in the present paper. In [12] one finds isomorphisms between
groups G12

p,q, G23
p,q and classical matrix Lie groups. In the present paper we also ob-

tain these isomorphisms and also isomorphisms for groups G2i1
p,q , G2i3

p,q , G2
p,q using

other techniques based on relations between operations of conjugations in Clif-
ford algebras and corresponding matrix operations. In particular, we generalized
the notion of additional signature [25] to the case of real Clifford algebras. We
also study the corresponding Lie algebras with the use of techniques of quaternion
types [22], [23], [24] in Clifford algebras.

Let us consider the real Clifford algebra C`p,q and complexified Clifford algebra
C⊗C`p,q, p+q = n, n ≥ 1 [6]. The construction of real and complexified Clifford
algebras is discussed in details in [12], [5], [10].

Let us remind the basic notation. Let e be the identity element and let ea, a =
1, . . . , n be generators1 of the Clifford algebra C`p,q, eaeb + ebea = 2ηabe, where
η = ||ηab|| is the diagonal matrix with +1 appearing p times on the diagonal and
−1 appearing q times on the diagonal. Elements ea1...ak = ea1 · · · eak , a1 < · · · <
ak, k = 1, . . . , n, together with the identity element e, form a basis of Clifford
algebra. Any Clifford algebra element U ∈ C`p,q can be written in the form2

U = ue+ uae
a +

∑
a1<a2

ua1a2e
a1a2 + · · ·+ u1...ne

1...n (1)

where u, ua, ua1a2 , . . . , u1...n are real numbers. For arbitrary element U ∈
C ⊗ C`p,q of complexified Clifford algebra we use the same notation (1), where
u, ua, ua1a2 , . . . , u1...n are complex numbers.

We denote by C`kp,q the vector spaces that span over the basis elements ea1...ak .
Elements ofC`kp,q are said to be elements of grade k. We haveC`p,q =

⊕n
k=0C`

k
p,q.

Clifford algebra is a Z2-graded algebra and it is represented as the direct sum of
even and odd subspaces:

C`p,q = C`(0)p,q ⊕ C`(1)p,q , C`(i)p,qC`
(j)
p,q ⊆ C`(i+j)mod2

p,q

where C`(i)p,q =
⊕

k≡imod2

C`kp,q, i, j = 0, 1.

1Note that ea is not exponent. We use notation with upper indices [4].
2We use Einstein’s summation convention: there is a sum over index a.
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Let us consider the Clifford algebra C`p,q as the vector space and represent it in
the form of the direct sum of four subspaces of quaternion types 0, 1, 2 and 3
(see [22], [23], [24])

C`p,q = 0⊕ 1⊕ 2⊕ 3, where s =
⊕

k≡smod4

C`kp,q, s = 0, 1, 2, 3.

We represent complexified Clifford algebra C⊗C`p,q in the form of the direct sum
of eight subspaces: C⊗ C`p,q = 0⊕ 1⊕ 2⊕ 3⊕ i0⊕ i1⊕ i2⊕ i3.
In [20] we have discussed a recurrent method of construction of matrix represen-
tation of real Clifford algebra in the cases of signatures p − q ≡ 0, 1, 2 mod 8.
In Section 2 of the present paper we generalize this method to the case of arbitrary
signature.

In Section 3 of the present paper we give some information about Hermitian con-
jugation in real and complexified Clifford algebras (see also [15] and [2] for the
case of real Clifford algebras). In [25] we have introduced the notion of additional
signature (k, l) of complexified Clifford algebra. In Section 4 of the present paper
we generalize this notion to the case of real Clifford algebras.

In Section 5 we prove isomorphisms between five Lie groups in Clifford alge-
bra and classical matrix Lie groups (some of these isomorphisms are known, see
above). We study corresponding Lie algebras. In Section 6 of the present paper
we discuss connection between groups Spin+(p, q) and G2

p,q. In Section 7 we
summarize results of [20] and that of the present paper.

2. Recurrent Method of Construction of Matrix Representations of Real
Clifford Algebras in the Case of Arbitrary Signature

In [20] we have discussed a recurrent method of construction of matrix representa-
tion only in the cases of signatures p− q ≡ 0, 1, 2 mod 8 (the case of faithful and
irreducible representations over R and R⊕ R). Now we generalize this method to
the case of arbitrary signature. Clifford algebra has faithful and irreducible repre-
sentations over R, R⊕ R, C, H, H⊕H in different cases. However, items 1-4 are
the same as in [20].

We have the following well-known isomorphisms C`p,q ' Lp,q, where we denote
by Lp,q the following matrix algebras
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Lp,q =



Mat(2
n
2 ,R), if p− q ≡ 0; 2 mod 8

Mat(2
n−1
2 ,R)⊕Mat(2

n−1
2 ,R), if p− q ≡ 1 mod 8

Mat(2
n−1
2 ,C), if p− q ≡ 3; 7 mod 8

Mat(2
n−2
2 ,H), if p− q ≡ 4; 6 mod 8

Mat(2
n−3
2 ,H)⊕Mat(2

n−3
2 ,H), if p− q ≡ 5 mod 8.

We want to construct faithful and irreducible matrix representation β : C`p,q →
Lp,q of all real Clifford algebras with some additional properties related to sym-
metry and skew-symmetry of corresponding matrices (we discuss it in the next
section). In some particular cases we construct β in the following way

• In the case C`0,0: e→ 1.

• In the case C`0,1: e→ 1, e1 → i.

• In the case C`1,0: e→ 1 = diag(1, 1), e1 → diag(1,−1).

• In the case C`0,2: e→ 1, e1 → i, e2 → j.

• In the case C`0,3: e→ 1 = diag(1, 1), e1 → diag(i,−i), e2 → diag(j,−j),
e3 → diag(k,−k).

For basis element ea1...ak we use the matrix that equals the product of matrices
corresponding to generators ea1 , . . . , eak . For identity element e, we always use
identity matrix 1 of corresponding size.

Suppose that we have a faithful and irreducible matrix representation β : C`p,q →
Lp,q

ea → βa, a = 1, . . . , n (2)

where βa = β(ea), a = 1, 2, . . . , n. Now we want to construct the matrix represen-
tations of other Clifford algebras C`p+1,q+1, C`q+1,p−1, C`p−4,q+4 with generators
ea (a = 1, 2, . . . , n + 2 in the first case and a = 1, 2, . . . , n in the last two cases)
with the use of matrices βa. Using the following items 1-4 and Cartan periodic-
ity of real Clifford algebras we obtain matrix representations of all real Clifford
algebras. We call it recurrent method of construction of matrix representations3.

3Another method of construction of matrix representations is based on the idempotent and basis
of corresponding left ideal (see, for example, [1], [2], [3], [15]).
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1. Let us consider C`p+1,q+1. If p − q 6≡ 1 mod 4, then for p generators with
squares +1 and q generators with squares −1 we have

ea →
(
βa 0
0 −βa

)
, a = 1, 2, . . . , p, p+ 2, p+ 3, . . . , p+ q + 1.

And for two remaining generators we have

ep+1 →
(

0 1
1 0

)
, ep+q+2 →

(
0 −1
1 0

)
.

2. If p − q ≡ 1 mod 4, then matrices (2) are block-diagonal and we have
the following matrix representation of C`p+1,q+1. For p + q generators ea, a =
1, 2, . . . , p, p + 2, p + 3, . . . , p + q + 1 we have the same as in the previous item
and for remaining two generators we have

ep+1 →
(
β1 . . . βnΩ 0

0 −β1 . . . βnΩ

)
, ep+q+2 →

(
Ω 0
0 −Ω

)
where

Ω =

(
0 −1
1 0

)
.

3. We construct matrix representation of C`q+1,p−1 using

e1 → β1, ei → βiβ1, i = 2, . . . , n.

4. We construct matrix representation of C`p−4,q+4 using

ei → βiβ1β2β3β4, i = 1, 2, 3, 4, ej → βj , j = 5, . . . , n.

In [20] we gave some examples in the cases p − q ≡ 0, 1, 2 mod 8. Now let us
give some examples in the cases of other signatures

C`1,2

e1 →
(

0 1
1 0

)
, e2 →

(
i 0
0 −i

)
, e3 →

(
0 −1
1 0

)
.

C`1,3

e1 →
(

0 1
1 0

)
, e2 →

(
i 0
0 −i

)
, e3 →

(
j 0
0 −j

)
, e4 →

(
0 −1
1 0

)
.
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C`4,0

e1 →
(

0 1
1 0

)
, e2 →

(
0 i
−i 0

)
, e3 →

(
0 j
−j 0

)
, e4 →

(
−1 0

0 1

)
.

C`0,4

e1 →
(

k 0
0 −k

)
, e2 →

(
−j 0

0 −j

)
, e3 →

(
i 0
0 i

)
, e4 →

(
0 k
k 0

)
.

3. Relation Between Operations of Conjugation in Clifford Algebra and
Matrix Operations

Consider the following well-known involutions in realC`p,q and complexified Clif-
ford algebra C⊗ C`p,q

Û = U |ea→−ea , Ũ = U |ea1...ar→ear ...ea1

where U has the form (1). The operation U → Û is called grade involution and
U → Ũ is called reversion. Also we have operation of complex conjugation

Ū = ūe+ ūae
a +

∑
a1<a2

ūa1a2e
a1a2 +

∑
a1<a2<a3

ūa1a2a3e
a1a2a3 + . . .

where we take complex conjugation of complex numbers ua1...ak . Superposition
of reversion and complex conjugation is pseudo-Hermitian conjugation of Clifford
algebra elements4

U ‡ = ˜̄U.

In the real Clifford algebra C`p,q ⊂ C⊗ C`p,q we have U ‡ = Ũ , because Ū = U .

Let us consider in complexified C ⊗ C`p,q and real C`p,q ⊂ C ⊗ C`p,q Clifford
algebras the linear operation (involution) † : C ⊗ C`p,q → C ⊗ C`p,q such that
(λea1...ak)† = λ̄(ea1...ak)−1, λ ∈ C. We call this operation Hermitian conjugation
of Clifford algebra elements5. We use notation ea = ηabe

b = (ea)−1 = (ea)†

and ea1...ak = (ea1...ak)−1 = (ea1...ak)†. This operation is well-known and many
authors use it, for example, in different questions of field theory in the case of
signature (p, q) = (1, 3). For more details, see [15], and for the case of real
Clifford algebras see [1], [2], [3] (so-called transposition anti-involution in real
Clifford algebras).

4Pseudo-Hermitian conjugation of Clifford algebra elements is related to pseudo-unitary matrix
groups as Hermitian conjugation is related to unitary groups, see [27], [15].

5Note that it is not Hermitian conjugation of matrix but it is related to this operation.



80 Dmitry Shirokov

Note that we have the following relation between operation of Hermitian conjuga-
tion of Clifford algebra elements † and other operations in complexified Clifford
algebra C⊗ C`p,q (see [15])

U † = e1...pU
‡e1...p, if p is odd

U † = e1...pÛ
‡e1...p, if p is even (3)

U † = ep+1...nU
‡ep+1...n, if q is even

U † = ep+1...nÛ
‡ep+1...n, if q is odd.

We have the following well-known isomorphisms:

C⊗ C`p,q ' Mat(2
n
2 ,C), if n is even

C⊗ C`p,q ' Mat(2
n−1
2 ,C)⊕Mat(2

n−1
2 ,C), if n is odd.

Hermitian conjugation of Clifford algebra elements corresponds to Hermitian con-
jugation of matrix β(U †) = (β(U))† for faithful and irreducible matrix represen-
tations over C and C ⊕ C of complexified Clifford algebra, based on the fixed
idempotent and basis of corresponding left ideal, see [15].

It is not difficult to prove that for matrix representation β of real Clifford algebra
C`p,q from the previous section we have

β(U †) = (β(U))T, p− q ≡ 0, 1, 2 mod 8

β(U †) = (β(U)†, p− q ≡ 3, 7 mod 8 (4)

β(U †) = (β(U))∗, p− q ≡ 4, 5, 6 mod 8

where T is the operation of matrix transposition, ∗ is the operation of conjugate
transpose of matrices of quaternions, U † is the Hermitian conjugate of a Clifford
algebra element U , β(U)† is the Hermitian conjugate of the corresponding matrix.
Note, that in [2] analogous statement is proved for matrix representations based on
the fixed idempotent and the basis of corresponding left ideal. In this paper we do
not use idempotent to construct matrix representation. We use the recurrent method
of construction of matrix representation (see previous section). So, we must verify
statement for fixed matrices in some cases of small n (see the beginning of the
previous section) and then, using the method of mathematical induction, we must
verify that, using items 1-4, we obtain matrix representations of other Clifford
algebras with the same property (4). We omit the detailed proof.
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In the cases p− q ≡ 0, 1, 2 mod 8 for the real Clifford algebra C`p,q ⊂ C⊗ C`p,q
we have

UT = e1...pŨe
1...p, if p is odd

UT = e1...p
˜̂
Ue1...p, if p is even (5)

UT = ep+1...nŨe
p+1...n, if q is even

UT = ep+1...n
˜̂
Uep+1...n, if q is odd

where UT = β−1(βT(U)) = U †.

In the cases p− q ≡ 3, 7 mod 8 for the real Clifford algebra C`p,q we have

U † = e1...pŨe
1...p, if p is odd

U † = e1...p
˜̂
Ue1...p, if p is even (6)

U † = ep+1...nŨe
p+1...n, if q is even

U † = ep+1...n
˜̂
Uep+1...n, if q is odd.

In the cases p− q ≡ 4, 5, 6 mod 8 for the real Clifford algebra we have

U∗ = e1...pŨe
1...p, if p is odd

U∗ = e1...p
˜̂
Ue1...p, if p is even (7)

U∗ = ep+1...nŨe
p+1...n, if q is even

U∗ = ep+1...n
˜̂
Uep+1...n, if q is odd

where U∗ = β−1(β∗(U)) = U †. We use formulas (5) - (7) in the next sections.

4. Additional Signature of Real Clifford Algebra

In [25] we have introduced the notion of additional signature (k, l) of complexified
Clifford algebra. Now we want to generalize this notion to the case of real Clifford
algebras.

Suppose we have faithful and irreducible matrix representation β over C or C⊕C
of complexified Clifford algebra. We can always use such matrix representation
that all matrices βa = β(ea) are symmetric or skew-symmetric. Let k be the num-
ber of symmetric matrices among {βa} for matrix representation β, and l be the
number of skew-symmetric matrices among {βa}. Let eb1 , . . . , ebk denote the gen-
erators for which the matrices are symmetric. Analogously, we have ec1 , . . . , ecl
for skew-symmetric matrices.
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We use the notion of additional signature of Clifford algebra when we study rela-
tion between matrix representation and operations of conjugation. In complexified
Clifford algebra we have (see [25])

UT = eb1...bk Ũe
b1...bk , k is odd

UT = eb1...bk
˜̂
Ueb1...bk , k is even (8)

UT = ec1...clŨe
c1...cl , l is even

UT = ec1...cl
˜̂
Uec1...cl , l is odd.

Numbers k and l depend on the matrix representation β. But they can take only
certain values despite dependence on the matrix representation.

In [25] we have proved that in complexified Clifford algebra we have only the
following possible values of additional signature

n mod 8 (k mod 4, l mod 4)

0 (0, 0), (1, 3)

1 (1, 0)

2 (1, 1), (2, 0)

3 (2, 1)

n mod 8 (k mod 4, l mod 4)

4 (3, 1), (2, 2)

5 (3, 2)

6 (3, 3), (0, 2)

7 (0, 3)

Now we want to use the notion of additional signature in real Clifford algebra. Let
us consider faithful and irreducible matrix representation over R, R⊕ R, C, H, or
H⊕H of real Clifford algebra. We can always use such matrix representation that
all matrices βa = β(ea) are symmetric or skew-symmetric (for example, we can
use matrix representation β : C`p,q → Lp,q from Section 2). Let k be the number of
symmetric matrices among {βa} for matrix representation β, and l be the number
of skew-symmetric matrices among {βa}. Let eb1 , . . . , ebk denote the generators
for which the matrices are symmetric. Analogously, we have ec1 , . . . , ecl for skew-
symmetric matrices.

Note, that in the cases p − q ≡ 0, 1, 2 mod 8 for the real Clifford algebra C`p,q
the formulas (8) are valid and they coincide with formulas (5) (we have p = k
and q = l). In the cases p − q ≡ 3, 7 mod 8 for the real Clifford algebra we can
use formulas (8). The proof is similar to the proof for the complexified Clifford
algebra. Actually, it is sufficient to prove these formulas for basis elements because
of linearity of operation of conjugation. For example, if k is odd, then

(ea1...am)T = (ebk)−1 . . . (eb1)−1 ˜ea1...ameb1 . . . ebk

= (ebk)−1 . . . (eb1)−1eam . . . ea1eb1 . . . ebk

= (−1)mk−jeam . . . ea1 = (−1)m−jeam . . . ea1
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where j is the number of elements ea1 , . . . , eam that have symmetric matrix repre-
sentation. We can analogously prove remaining three formulas from (8).

But formulas (8) are not valid in real Clifford algebra of signatures p − q ≡ 4, 5, 6
mod 8 because of the properties of operation of transposition for quaternionic ma-
trices: (AB)T 6= BTAT for quaternionic matrices A and B.

So, it makes sense to use the notion of additional signature of real Clifford algebra
only in the cases p− q ≡ 3, 7 mod 8. We do not want to obtain all possible values
of additional signature, but we want to obtain some possible values. If we consider
matrix representation β from Section 2, then in the case (p, q) = (0, 1) we have
(k, l) = (1, 0). Note, that we use only transformations of types 1, 3 and 4 from
Section 2 to obtain matrix representations of other Clifford algebras of signatures
p−q ≡ 3, 7 mod 8. If we use transformation of type 1, then (p, q)→ (p+1, q+1)
and (k, l) → (k + 1, l + 1). When we use transformation of type 3, we have
(p, q) → (q + 1, p − 1) and (k, l) → (l + 1, k − 1) because β1 is a symmetric
matrix. When we use transformation of type 4, we have (p, q) → (p − 4, q + 4)
and it is not difficult to obtain that k and l do not change the parity. So, for matrix
representation β we always have: if p is even and q is odd, then k is odd and l is
even (note, that the same is true in complexified Clifford algebra, see table above).
For example, for (p, q) = (1, 2) we have (k, l) = (2, 1), for (p, q) = (3, 0) we
have (k, l) = (2, 1), for (p, q) = (2, 3) we have (k, l) = (3, 2) and so on. We will
use this fact in the proof of Theorem 6.2 in the following section.

5. Theorems

Let us consider the following subsets of complexified Clifford algebra [20]

G2i1
p,q = {U ∈ C`(0)p,q ⊕ iC`(1)p,q ; U ‡U = e}

G2i3
p,q = {U ∈ C`(0)p,q ⊕ iC`(1)p,q ; Û ‡U = e}

G23
p,q = {U ∈ C`p,q ; ŨU = e} (9)

G12
p,q = {U ∈ C`p,q ;

˜̂
UU = e}

G2
p,q = {U ∈ C`(0)p,q ; ŨU = e}.

They can be considered as Lie groups. Their Lie algebras are

2⊕ i1, 2⊕ i3, 2⊕ 3, 2⊕ 1, 2 (10)

respectively.
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Note, that we have the following properties (see [22], [23], [24])

[k,k] ⊆ 2, k = 0, 1, 2, 3

[k, 2] ⊆ k, k = 0, 1, 2, 3 (11)

[0, 1] ⊆ 3, [0, 3] ⊆ 1, [1, 3] ⊆ 0

where [U, V ] = UV −V U is the commutator of arbitrary Clifford algebra elements
U and V .

It is not difficult to calculate dimensions of these Lie algebras, because we know
that dimC`kp,q = Ckn = n!

k!(n−k)! . So, for example

dim 2 =
∑

k≡2 mod 4

Ckn = 2n−2 − 2
n−2
2 cos

πn

4
·

Let us represent Lie groups, corresponding Lie algebras, and their dimensions in
the following table.

Lie group Lie algebra dimension

G2i1
p,q 2⊕ i1 2n−1 − 2

n−1
2 cos π(n+1)

4

G2i3
p,q 2⊕ i3 2n−1 − 2

n−1
2 sin π(n+1)

4

G23
p,q 2⊕ 3 2n−1 − 2

n−1
2 sin π(n+1)

4

G12
p,q 2⊕ 1 2n−1 − 2

n−1
2 cos π(n+1)

4

G2
p,q 2 2n−2 − 2

n−2
2 cos πn4

Theorem 1 ([20]) . We have the following Lie group isomorphisms

G2i1
p,q ' G12

q,p, G2i3
p,q ' G23

q,p, G2
p,q ' G12

p,q−1 ' G12
q,p−1, G2

p,q ' G2
q,p.

Proof: We must use transformation ea → eaen or ea → iea, a = 1, 2, . . . , n in
different cases. �

According to Theorem 1 it is sufficient to consider only groups G12
p,q and G23

p,q.
In [20] we proved isomorphisms between these groups and classical matrix Lie
groups in the cases of signatures p− q ≡ 0, 1, 2 mod 8. Now let us consider cases
p− q ≡ 3, 7 mod 8 and p− q ≡ 4, 5, 6 mod 8.

Theorem 2. We have the following Lie group isomorphisms. In the cases of sig-
natures p− q ≡ 3, 7 mod 8 (n is odd)

G23
p,q '


U(2

n−1
2 ), (p, q) = (n, 0)

U(2
n−3
2 , 2

n−3
2 ), n ≡ 3, 7 mod 8, q 6= 0

Sp(2
n−3
2 ,C), n ≡ 5 mod 8

O(2
n−1
2 ,C), n ≡ 1 mod 8.
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In the cases of signatures p− q ≡ 3, 7 mod 8 (n is odd )

G12
p,q '


U(2

n−1
2 ), (p, q) = (0, n)

U(2
n−3
2 , 2

n−3
2 ), n ≡ 1, 5 mod 8, p 6= 0

Sp(2
n−3
2 ,C), n ≡ 3 mod 8

O(2
n−1
2 ,C), n ≡ 7 mod 8.

In the cases of signatures p− q ≡ 1, 5 mod 8 (n is odd )

G2i1
p,q '


U(2

n−1
2 ), (p, q) = (n, 0)

U(2
n−3
2 , 2

n−3
2 ), n ≡ 1, 5 mod 8, q 6= 0

Sp(2
n−3
2 ,C), n ≡ 3 mod 8

O(2
n−1
2 ,C), n ≡ 7 mod 8.

In the cases of signatures p− q ≡ 1, 5 mod 8 (n is odd )

G2i3
p,q '


U(2

n−1
2 ), (p, q) = (0, n)

U(2
n−3
2 , 2

n−3
2 ), n ≡ 3, 7 mod 8, p 6= 0

Sp(2
n−3
2 ,C), n ≡ 5 mod 8

O(2
n−1
2 ,C), n ≡ 1 mod 8.

In the cases of signatures p− q ≡ 2, 6 mod 8 (n is even )

G2
p,q '


U(2

n−2
2 ), (p, q) = (0, n), (0, n)

U(2
n−4
2 , 2

n−4
2 ), n ≡ 2, 6 mod 8, p, q 6= 0

Sp(2
n−4
2 ,C), n ≡ 4 mod 8

O(2
n−2
2 ,C), n ≡ 0 mod 8.

We use the standard notation of classical matrix groups [7]

U(n) = {A ∈ Mat(n,C) ; A†A = 1}
U(p, q) = {A ∈ Mat(p+ q,C) ; A†ηA = η}

Sp(n,C) = {A ∈ Mat(2n,C) ; ATΩA = Ω}
O(n,C) = {A ∈ Mat(n,C) ; ATA = 1}

where Ω is the block matrix Ω =

(
0 −1
1 0

)
.

Proof: We consider Lie group G23
p,q in Clifford algebra C`p,q ' Mat(n−12 ,C),

p − q ≡ 3, 7 mod 8. We use complex matrix representation β : U → β(U), U ∈
C`p,q in the cases p− q ≡ 3, 7 mod 8 from Section 2 such that β(U †) = (β(U))†.
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In the case of signature (n, 0) we have Ũ = U † (see (6)). From ŨU = e we obtain
U †U = 1 and isomorphism with group U(2

n−1
2 ).

Consider the case q 6= 0. If p is odd and q is even, then Ũ = e1...pU
†e1...p. In

the case p ≡ 1 mod 4 (in this case we have q ≡ 2 mod 4 and n ≡ 3 mod 4) let
us consider matrix M = β1...p. We have M2 = (−1)

p(p−1)
2 1 = 1, M † = M−1,

trM = 0. Thus, the spectrum of matrix M consists of the same number of 1 and
−1. So there exists such unitary matrix T † = T−1 that J = T−1MT , where
J = diag(1, . . . , 1,−1, . . . ,−1) is the diagonal matrix with the same number of
1 and −1 on the diagonal. Now we consider transformation T−1βaT = γa and
obtain another matrix representation γ of Clifford algebra with γ1...p = J . From
ŨU = e we obtain U †JU = J and isomorphism with the group U(2

n−3
2 , 2

n−3
2 ).

The case p ≡ 3 mod 4 (in this case we have q ≡ 0 mod 4, n ≡ 3 mod 4) is
similar (we must consider element M = iβ1...p).

Now let p be even and q be odd. Then n ≡ 1 mod 4. We know that k is odd
and l is even in these cases (see previous section). So we can use formula UT =
eb1...bk Ũe

b1...bk . Let us consider matrix M = βb1...bk . We have MT = M−1,
trM = 0, M2 = 1 (or M2 = −1). Thus there exists such orthogonal matrix
TT = T−1 that J = T−1MT (or Ω = T−1MT , because for Ω we also have
ΩT = Ω, Ω2 = −1, trΩ = 0). We consider transformation T−1βaT = γa and
obtain another matrix representation γ of Clifford algebra with γb1...bk = J (or
γb1...bk = Ω). So we obtain condition UTJU = J (or UTΩU = Ω). Thus we
obtain in the case n ≡ 1 mod 8 isomorphism with group O(2

n−3
2 , 2

n−3
2 ,C) '

O(2
n−1
2 ,C) and in the case n ≡ 5 mod 8 isomorphism with group Sp(2

n−3
2 ,C).

We take into account that dim G23
p,q = 2n−1−2

n−1
2 sin π(n+1)

4 , dim O(2
n−1
2 ,C) =

2n−1 − 2
n−1
2 , dim Sp(2

n−3
2 ,C) = 2n−1 + 2

n−1
2 .

We can obtain isomorphisms for the group G12
p,q analogously. The statement for the

groups G2i1
p,q , G2i3

p,q and G2
p,q follows from Theorem 1. �

Theorem 3. We have the following Lie group isomorphisms. In the cases of sig-
natures p− q ≡ 4, 5, 6 mod 8

G23
p,q '



Sp(2
n−2
2 ), (p, q) = (n, 0), n is even

Sp(2
n−4
2 , 2

n−4
2 ), n ≡ 4, 6 mod 8, q 6= 0

O(2
n−2
2 ,H), n ≡ 0, 2 mod 8

Sp(2
n−3
2 )⊕ Sp(2

n−3
2 ), (p, q) = (n, 0), n is odd

Sp(2
n−5
2 , 2

n−5
2 )⊕ Sp(2

n−5
2 , 2

n−5
2 ), n ≡ 5 mod 8, q 6= 0

O(2
n−3
2 ,H)⊕O(2

n−3
2 ,H), n ≡ 1 mod 8

GL(2
n−3
2 ,H), n ≡ 3, 7 mod 8.
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In the cases of signatures p− q ≡ 4, 5, 6 mod 8

G12
p,q '



Sp(2
n−2
2 ), (p, q) = (0, n), n is even

Sp(2
n−4
2 , 2

n−4
2 ), n ≡ 2, 4 mod 8, p 6= 0

O(2
n−2
2 ,H), n ≡ 0, 6 mod 8

Sp(2
n−3
2 )⊕ Sp(2

n−3
2 ), (p, q) = (0, n), n is odd

Sp(2
n−5
2 , 2

n−5
2 )⊕ Sp(2

n−5
2 , 2

n−5
2 ), n ≡ 3 mod 8, p 6= 0

O(2
n−3
2 ,H)⊕O(2

n−3
2 ,H), n ≡ 7 mod 8

GL(2
n−3
2 ,H), n ≡ 1, 5 mod 8.

In the cases of signatures p− q ≡ 2, 3, 4 mod 8

G2i1
p,q '



Sp(2
n−2
2 ), (p, q) = (n, 0), n is even

Sp(2
n−4
2 , 2

n−4
2 ), n ≡ 2, 4 mod 8, q 6= 0

O(2
n−2
2 ,H), n ≡ 0, 6 mod 8

Sp(2
n−3
2 )⊕ Sp(2

n−3
2 ), (p, q) = (n, 0), n is odd

Sp(2
n−5
2 , 2

n−5
2 )⊕ Sp(2

n−5
2 , 2

n−5
2 ), n ≡ 3 mod 8, q 6= 0

O(2
n−3
2 ,H)⊕O(2

n−3
2 ,H), n ≡ 7 mod 8

GL(2
n−3
2 ,H), n ≡ 1, 5 mod 8.

In the cases of signatures p− q ≡ 2, 3, 4 mod 8

G2i3
p,q '



Sp(2
n−2
2 ), (p, q) = (0, n), n is even

Sp(2
n−4
2 , 2

n−4
2 ), n ≡ 4, 6 mod 8, p 6= 0

O(2
n−2
2 ,H), n ≡ 0, 2 mod 8

Sp(2
n−3
2 )⊕ Sp(2

n−3
2 ), (p, q) = (0, n), n is odd

Sp(2
n−5
2 , 2

n−5
2 )⊕ Sp(2

n−5
2 , 2

n−5
2 ), n ≡ 5 mod 8, p 6= 0

O(2
n−3
2 ,H)⊕O(2

n−3
2 ,H), n ≡ 1 mod 8

GL(2
n−3
2 ,H), n ≡ 3, 7 mod 8.

In the cases of signatures p− q ≡ 3, 4, 5 mod 8

G2
p,q '



Sp(2
n−3
2 ), (p, q) = (n, 0), (0, n), n is odd

Sp(2
n−5
2 , 2

n−5
2 ), n ≡ 3, 5 mod 8, p, q 6= 0

O(2
n−3
2 ,H), n ≡ 1, 7 mod 8

Sp(2
n−4
2 )⊕ Sp(2

n−4
2 ), (p, q) = (n, 0), (0, n), n is even

Sp(2
n−6
2 , 2

n−6
2 )⊕ Sp(2

n−6
2 , 2

n−6
2 ), n ≡ 4 mod 8, p, q 6= 0

O(2
n−4
2 ,H)⊕O(2

n−4
2 ,H), n ≡ 0 mod 8

GL(2
n−4
2 ,H), n ≡ 2, 6 mod 8.
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We use the standard notation of classical matrix groups [7]

GL(n,H) = {A ∈ Mat(n,H) ; detA 6= 0}
Sp(n) = {A ∈ GL(n,H) ; A∗A = 1}

Sp(p, q) = {A ∈ GL(p+ q,H) ; A∗ηA = η}
O(n,H) = O∗(2n) = {A ∈ GL(n,H) ; A∗i1A = i1}

where ∗ is the operation of conjugate transpose of matrix of quaternions.

Proof: Let us consider Lie group G23
p,q. In the cases p − q ≡ 4, 6 mod 8 we

have C`p,q ' Mat(2
n−2
2 ,H). In the cases p − q ≡ 5 mod 8 we have C`p,q '

Mat(2
n−3
2 ,H) ⊕ Mat(2

n−3
2 ,H) and we use block-diagonal representation β of

Clifford algebra (see Section 2).

In the case of signature (n, 0) we have U † = Ũ and obtain U †U = e. We have
(β(U))∗ = β(U †), where ∗ is the operation of conjugate transpose of matrices of
quaternions. So we obtain isomorphism with the group Sp(2

n−2
2 ) in the case of

even n and isomorphism with the group Sp(2
n−3
2 ) ⊕ Sp(2

n−3
2 ) in the case of odd

n.

Now let us consider the case q 6= 0. Let n be even. If p and q are even, then
we have U † = ep+1...nŨe

p+1...n and obtain U †ep+1...nU = ep+1...n. If p and q are
odd, then we have U † = e1...pŨe

1...p and obtain U †e1...pU = e1...p. Let us consider
matrix M = βp+1...n (or β1...p in the corresponding case). We have M∗ = M−1

and M2 = ±1, so M∗ = ±M . It is known (see [28]) that any square quaternionic
matrix of sizem has the Jordan canonical form with (standard)m right eigenvalues
(which are complex numbers with nonnegative imaginary parts) on the diagonal. If
matrix is normal (A∗A = AA∗), then there exists a unitary matrix T ∗ = T−1 such
that T ∗AT is a diagonal matrix with standard right eigenvalues on the diagonal.
If this matrix is Hermitian, then these right eigenvalues are real. We obtain that
there exists such element T ∗ = T−1 that η = T−1MT or i1 = T−1MT . We
use transformation T−1βaT = γa and obtain another matrix representation γ of
Clifford algebra with γp+1...n = η or i1 (or analogously for element γ1...p). We
obtain U∗ηU = η or U∗i1U = i1 and isomorphisms with group Sp(2

n−4
2 , 2

n−4
2 )

or O(2
n−2
2 ,H). We take into account that dim G23

p,q = 2n−1 − 2
n−1
2 sin π(n+1)

4 ,

dim Sp(2
n−4
2 , 2

n−4
2 ) = 2n−1 + 2

n−2
2 and dim O(2

n−2
2 ,H) = 2n−1 − 2

n−2
2 .

If n ≡ 1, 5 mod 8, then p is odd and q is even. So we can use formula U † =
ep+1...nŨe

p+1...n and obtain U †ep+1...nU = ep+1...n. Our considerations are like
considerations in the case of even n but our matrix representation is block-diagonal.
We obtain isomorphisms with groups O(2

n−3
2 ,H)⊕O(2

n−3
2 ,H) or Sp(2

n−5
2 , 2

n−5
2 )

⊕Sp(2
n−5
2 , 2

n−5
2 ) in different cases.
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If n ≡ 3, 7 mod 8, then p is even and q is odd. So, we have U∗ = e1...p
˜̂
Ue1...p

and Ũ = (e1...p)−1Û∗e1...p. We have block-diagonal matrix representation β (see
Section 2). The even part of an arbitrary Clifford algebra element has the form
diag(A,A) and the odd part of an element has the form diag(B,−B). Then we
obtain from ŨU = e

(diag(A−B,A+B))∗diag(G,G)diag(A+B,A−B) = diag(G,G)

where diag(G,G) is matrix representation of element e1...p. So, we obtain (A −
B)TG(A + B) = G and isomorphism with group GL(2

n−3
2 ,H) because for any

invertible matrix A there exists such matrix B that (A − B)TG(A + B) = G.

Note, that in particular case p = 0 we have U∗ =
˜̂
U and we obtain Û∗U = e,

(diag(A − B,A + B))∗diag(A + B,A − B) = 1, (A − B)T(A + B) = 1, and
isomorphism with linear group again.

We can obtain isomorphisms for the group G12
p,q analogously. The statement for the

groups G2i1
p,q , G2i3

p,q and G2
p,q follows from Theorem 1. �

6. Relation Between Group G2
p,q and Spin Group

Note that the spin group [12], [26]

Spin+(p, q) = {U ∈ C`(0)p,q |∀x ∈ C`1p,q, UxU−1 ∈ C`1p,q, ŨU = e}
is a subgroup of all five considered Lie groups (9). Moreover, group Spin+(p, q)
coincides with group

G2
p,q = {U ∈ C`(0)p,q ; ŨU = e}

in the cases of dimensions n ≤ 5. Lie algebra C`2p,q of Lie group Spin+(p, q)

is a subalgebra of algebras (10). Moreover, Lie algebra C`2p,q coincides with Lie
algebra 2 in the cases of dimensions n ≤ 5, because the notion of grade 2 and the
notion of quaternion type 2 coincide in these cases.

Let us represent all isomorphisms of the group G2
p,q in the following endless table.

We use notation 2Sp(1) = Sp(1)⊕ Sp(1) and similar notation.

p�q 0 1 2 3 4 5 6 7
0 O(1) O(1) U(1) Sp(1) 2Sp(1) Sp(2) U(4) O(8)
1 O(1) GL(1,R) Sp(1,R) Sp(1,C) Sp(1, 1) GL(2,H) O(4,H) O(8,C)
2 U(1) Sp(1,R) 2Sp(1,R) Sp(2,R) U(2, 2) O(4,H) 2O(4,H) O(8,H)
3 Sp(1) Sp(1,C) Sp(2,R) GL(4,R) O(4, 4) O(8,C) O(8,H) GL(8,H)
4 2Sp(1) Sp(1, 1) U(2, 2) O(4, 4) 2O(4, 4) O(8, 8) U(8, 8) Sp(8, 8)
5 Sp(2) GL(2,H) O(4,H) O(8,C) O(8, 8) GL(16,R) Sp(16,R) Sp(16,C)
6 U(4) O(4,H) 2O(4,H) O(8,H) U(8, 8) Sp(16,R) 2Sp(16,R) Sp(32,R)
7 O(8) O(8,C) O(8,H) GL(8,H) Sp(8, 8) Sp(16,C) Sp(32,R) GL(64,R)
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Note that isomorphisms of the group Spin+(p, q) are well-known (see, for exam-
ple, [12, table on the page 224])

p�q 0 1 2 3 4 5 6
0 O(1) O(1) U(1) SU(2) 2SU(2) Sp(2) SU(4)

1 O(1) GL(1,R) Sp(1,R) Sp(1,C) Sp(1, 1) SL(2,H)
2 U(1) Sp(1,R) 2Sp(1,R) Sp(2,R) SU(2, 2)

3 SU(2) Sp(1,C) Sp(2,R) SL(4,R)
4 2SU(2) Sp(1, 1) SU(2, 2)

5 Sp(2) SL(2,H)
6 SU(4)

So, in the cases n ≤ 5 the tables coincide (note, that SU(2) ' Sp(1)). In the cases
n = 6 condition U−1C`1p,qU ∈ C`1p,q in the definition of the group Spin+(p, q)
transforms into condition detγ(U) = 1 for matrix representation γ and we obtain
special groups.

Note that group Spin+(p, q) in the cases n ≥ 7 is not directly related to classical
matrix groups (see [12, p.224]). But we present classical matrix groups that contain
this group in the cases of arbitrary dimension n ≥ 7 and signature (p, q).

7. Conclusion

Using results of the present paper and [20], we can represent isomorphisms be-
tween considered five Lie groups and classical matrix groups in the following ta-
bles. There is n mod 8 in the lines and there is p− q mod 8 in the columns.

G12
p,q = {U ∈ C`p,q ;

˜̂
UU = e}

n�p− q 0, 2 4, 6

0, 6
O(2

n−2
2 , 2

n−2
2 ), p 6= 0

O(2
n
2 ), p = 0.

O(2
n−2
2 ,H)

2, 4 Sp(2
n−2
2 ,R) Sp(2

n−4
2 , 2

n−4
2 ), p 6= 0

Sp(2
n−2
2 ), p = 0.

n�p− q 1 3, 7 5

7
2O(2

n−3
2 , 2

n−3
2 ), p 6= 0

2O(2
n−1
2 ), p = 0.

O(2
n−1
2 ,C) 2O(2

n−3
2 ,H)

3 2Sp(2
n−3
2 ,R) Sp(2

n−3
2 ,C)

2Sp(2
n−5
2 , 2

n−5
2 ), p 6= 0

2Sp(2
n−3
2 ), p = 0.

1, 5 GL(2
n−1
2 ,R) U(2

n−3
2 , 2

n−3
2 ), p 6= 0

U(n−1
2

), p = 0.
GL(2

n−3
2 ,H)
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G23
p,q = {U ∈ C`p,q ; ŨU = e}

n�p− q 0, 2 4, 6

0, 2
O(2

n−2
2 , 2

n−2
2 ), q 6= 0

O(2
n
2 ), q = 0.

O(2
n−2
2 ,H)

4, 6 Sp(2
n−2
2 ,R) Sp(2

n−4
2 , 2

n−4
2 ), q 6= 0

Sp(2
n−2
2 ), q = 0.

n�p− q 1 3, 7 5

1
2O(2

n−3
2 , 2

n−3
2 ), q 6= 0

2O(2
n−1
2 ), q = 0.

O(2
n−1
2 ,C) 2O(2

n−3
2 ,H)

5 2Sp(2
n−3
2 ,R) Sp(2

n−3
2 ,C)

2Sp(2
n−5
2 , 2

n−5
2 ), q 6= 0

2Sp(2
n−3
2 ), q = 0.

3, 7 GL(2
n−1
2 ,R) U(2

n−3
2 , 2

n−3
2 ), q 6= 0

U(n−1
2

), q = 0.
GL(2

n−3
2 ,H)

G2i1
p,q = {U ∈ C`(0)p,q ⊕ iC`(1)p,q ; U ‡U = e}

n�p− q 0, 6 2, 4

0, 6
O(2

n−2
2 , 2

n−2
2 ), q 6= 0

O(2
n
2 ), q = 0.

O(2
n−2
2 ,H)

2, 4 Sp(2
n−2
2 ,R) Sp(2

n−4
2 , 2

n−4
2 ), q 6= 0

Sp(2
n−2
2 ), q = 0.

n�p− q 7 1, 5 3

7
2O(2

n−3
2 , 2

n−3
2 ), q 6= 0

2O(2
n−1
2 ), q = 0.

O(2
n−1
2 ,C) 2O(2

n−3
2 ,H)

3 2Sp(2
n−3
2 ,R) Sp(2

n−3
2 ,C)

2Sp(2
n−5
2 , 2

n−5
2 ), q 6= 0

2Sp(2
n−3
2 ), q = 0.

1, 5 GL(2
n−1
2 ,R) U(2

n−3
2 , 2

n−3
2 ), q 6= 0

U(n−1
2

), q = 0.
GL(2

n−3
2 ,H)

G2i3
p,q = {U ∈ C`(0)p,q ⊕ iC`(1)p,q ; Û ‡U = e}

n�p− q 0, 6 2, 4

0, 2
O(2

n−2
2 , 2

n−2
2 ), p 6= 0

O(2
n
2 ), p = 0.

O(2
n−2
2 ,H)

4, 6 Sp(2
n−2
2 ,R) Sp(2

n−4
2 , 2

n−4
2 ), p 6= 0

Sp(2
n−2
2 ), p = 0.
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n�p− q 7 1, 5 3

1
2O(2

n−3
2 , 2

n−3
2 ), p 6= 0

2O(2
n−1
2 ), p = 0.

O(2
n−1
2 ,C) 2O(2

n−3
2 ,H)

5 2Sp(2
n−3
2 ,R) Sp(2

n−3
2 ,C)

2Sp(2
n−5
2 , 2

n−5
2 ), p 6= 0

2Sp(2
n−3
2 ), p = 0.

3, 7 GL(2
n−1
2 ,R) U(2

n−3
2 , 2

n−3
2 ), p 6= 0

U(n−1
2

), p = 0.
GL(2

n−3
2 ,H)

G2
p,q = {U ∈ C`(0)p,q ; ŨU = e}

n�p− q 1, 7 3, 5

1, 7
O(2

n−3
2 , 2

n−3
2 ), p, q 6= 0

O(2
n−1
2 ), (n, 0), (0, n).

O(2
n−3
2 ,H)

3, 5 Sp(2
n−3
2 ,R) Sp(2

n−5
2 , 2

n−5
2 ), p, q 6= 0

Sp(2
n−3
2 ), (n, 0), (0, n).

n�p− q 0 2, 6 4

0
2O(2

n−4
2 , 2

n−4
2 ), p, q 6= 0

2O(2
n−2
2 ), (n, 0), (0, n).

O(2
n−2
2 ,C) 2O(2

n−4
2 ,H)

4 2Sp(2
n−4
2 ,R) Sp(2

n−4
2 ,C)

2Sp(2
n−6
2 , 2

n−6
2 ), p, q 6= 0

2Sp(2
n−4
2 ), (n, 0), (0, n).

2, 6 GL(2
n−2
2 ,R) U(2

n−4
2 , 2

n−4
2 ), p, q 6= 0

U(n−2
2

), (n, 0), (0, n).
GL(2

n−4
2 ,H)

Note that if we know isomorphisms between these Lie groups, then we know iso-
morphisms between corresponding Lie algebras. So, we also obtain isomorphisms
between Lie algebras 2⊕i1, 2⊕i3, 2⊕3, 2⊕1, 2 and corresponding classical matrix
Lie algebras: linear gl(k,R), gl(k,H), unitary u(k), u(r, s), orthogonal so(k,R),
so(r, s), so(k,C), so(k,H), symplectic sp(k), sp(r, s), sp(k,R), sp(k,C) or di-
rect sums of such Lie algebras of corresponding dimensions in different cases.

As we have already mentioned in the Introduction, group Gεp,q [2] coincides with
the group G23

p,q in the case of signature (n, 0) and with the group G12
p,q in the case of

signature (0, n). In [12] (p. 236, Tables 1 and 2) one finds isomorphisms between
classical matrix Lie groups and the groups G12

p,q and G23
p,q which are automorphism

groups of the scalar products on the spinor spaces. In the present paper we use
another technique. We obtain the same isomorphisms for groups G12

p,q and G23
p,q

and also isomorphisms for groups G2i1
p,q , G2i3

p,q , G2
p,q using the notion of additional

signature and relations between operations of conjugation in Clifford algebra and
the corresponding matrix operations. We also study the corresponding Lie algebras
which are related to subspaces of quaternion types.
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