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Abstract. We introduce the notion of D-homothetic bi-warping and starting from
a Sasakian manifold M , we construct a family of Kählerian structures on the prod-
uct R ×M. After, we investigate conditions on the product of a cosymplectic or
Kenmotsu manifold and the real line to be a family of conformal Kähler manifolds.
We construct several examples.
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1. Introduction

To study manifolds with negative curvature, Bishop and O’Neill introduced the
notion of warped product as a generalization of Riemannian product [1].

In 1985, using the warped product, Oubiña showed that there is a one-to-one cor-
respondence between Sasakian and Kählerian structures [14].

Recently, building on the work of Tanno [16] (the homothetic deformation on con-
tact metric manifold), Blair [6] introduced the notion of D-homothetic warping.
He used it for generating further results and examples of various structures. In
particular, he showed in another way that there is a one-to-one correspondence
between Sasakian and Kählerian structures.

Here by generalizing the D-homothetic warping and following what made Blair in
[6], we exceed this correspondence and we show that every Sasakian manifold M
generates a one-parameter family of Kählerian manifolds, thereby generalizing the
results of Oubiña [14] and Blair [6]. On the other hand, we define a two-parameter
family of conformally Kähler manifolds structures on the product manifold I×M
of an open interval and a cosymplectic or Kenmotsu manifold M (Theorem 7),
which is the first main result of the present paper. This text is organized in the
following way.

Section 2 is devoted to the background of the structures which will be used in the
sequel.
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In Section 3 we introduce the notion of D-homothetic bi-warping and prove some
basic properties.

Finally in Section 4 we give an application to some questions of the characteriza-
tion of certain geometric structures with examples.

2. Review Of Needed Notions

An almost complex manifold with a Hermitian metric is called an almost Hermitian
manifold. For an almost Hermitian manifold (M,J, g) we thus have

J2 = −1, g(JX, JY ) = g(X,Y ).

An almost complex structure J is integrable, and hence the manifold is a complex
manifold, if and only if its Nijenhuis tensor NJ vanishes, with

NJ(X,Y ) = [JX, JY ]− [X,Y ]− J [X,JY ]− J [JX, Y ].

For an almost Hermitian manifold (M,J, g), we define the fundamental Kähler
form Ω as

Ω(X,Y ) = g(X, JY ).

The triple (M,J, g) is then called almost Kähler if Ω is closed, i.e., dΩ = 0. An
almost Kähler manifold with integrable J is called a Kähler manifold, and thus is
characterized by the conditions: dΩ = 0 and NJ = 0. One can prove that both
these conditions combined are equivalent with the single condition

∇J = 0.

Definition 1 ([13]) . A Hermitian manifold (M,J, g) is called locally conformal
Kähler (conformally Kähler) manifold if there exists a closed (exact) one-form θ
(called the Lee form) such that

dΩ = θ ∧ Ω.

An odd-dimensional Riemannian manifold (M2n+1, g) is said to be an almost con-
tact metric manifold if there exist on M a (1, 1) tensor field ϕ, a vector field ξ
(called the structure vector field) and a one-form η such that

η(ξ) = 1, ϕ2(X) = −X+η(X)ξ, g(ϕX,ϕY ) = g(X,Y )−η(X)η(Y ) (1)

for any vector fieldsX ,Y onM . In particular, in an almost contact metric manifold
we also have ϕξ = 0 and η ◦ ϕ = 0.
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Such a manifold is said to be a contact metric manifold if dη = Φ, where Φ(X,Y ) =
g(X,ϕY ) is called the fundamental two-form of M .

On the other hand, the almost contact metric structure of M is said to be normal if

Nϕ(X,Y ) = [ϕ,ϕ](X,Y ) + 2dη (X,Y )ξ = 0 (2)

for any X , Y , where [ϕ,ϕ] denotes the Nijenhuis torsion of ϕ, given by

[ϕ,ϕ](X,Y ) = ϕ2[X,Y ] + [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ].

An almost contact metric structures (ϕ, ξ, η, g) on M is said to be

a) Sasaki ⇔ Φ = dη and (ϕ, ξ, η) is normal
b) Cosymplectic ⇔ dΦ = dη = 0 and (ϕ, ξ, η) is normal
c) Kenmotsu ⇔ dη = 0, dΦ = 2Φ ∧ η and (ϕ, ξ, η) is normal

(3)

where d denotes the exterior derivative. These manifolds can be characterized
through their Levi-Civita connection, by requiring

1) Sasaki ⇔ (∇Xϕ)Y = g(X,Y )ξ − η(Y )X
2) Cosymplectic ⇔ ∇ϕ = 0
3) Kenmotsu ⇔ (∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX

(4)

(see [2], [3], [9] and [17] ).

3. D-Homothetic Bi-Warping

Let (M,ϕ, ξ, η, g) be an almost contact metric manifold with dimM = 2n + 1.
The equation η = 0 defines a 2n-dimensional distribution D on M . By an 2n-
homothetic deformation or D-homothetic deformation [16] we mean a change of
structure tensors of the form

ϕ = ϕ, η = aη, ξ =
1

a
ξ, g = ag + a(a− 1)η ⊗ η

where a is a positive constant. If (M,ϕ, ξ, η, g) is a contact metric structure with
contact form η, then (M,ϕ, ξ, η, g) is also a contact metric structure [16].
The idea works equally well for almost contact metric structures, the deformation

ϕ = ϕ, η = λη, ξ =
1

λ
ξ, g = α2g + β2η ⊗ η

is again an almost contact metric structure if λ2 = α2 + β2.
Putting α2 = a2 and β2 = a2(b2 − 1) where λ = ab 6= 0, we get the deformation

ϕ = ϕ, η = abη, ξ =
1

ab
ξ, g = a2g + a2(b2 − 1)η ⊗ η.
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Definition 2. Let (M ′, g′) be a Riemannian manifold and let (M,ϕ, ξ, η, g) be an
almost contact metric manifold, and f, h be two smooth functions on M ′. The
D-homothetically bi-warped metric on M̃ = M ′ ×M is defined by

g̃ = g′ + f2g + f2(h2 − 1)η ⊗ η

where fh 6= 0 everywhere.

In particular, if h = ±1 then we have a warped product metric and if h = ±f we
get the D-homothetically warped metric [6].

Using the Koszul formula for the Levi-Civita connection of a Riemannian metric,
one can obtain the following

Proposition 3. Let∇′,∇ and ∇̃ denote the Riemannian connections of g′, g, and g̃
respectively. For all X ′, Y ′ vector fields on M ′ and independent of M and X,Y
vector fields on M , we have the relations

∇̃X′Y ′ = ∇′X′Y ′

g̃(∇̃X′Y,Z) = g̃(∇̃YX ′, Z) = −g̃(∇̃Y Z,X ′)

= fX ′(f)g(Y, Z) + f
(

(h2 − 1)X ′(f) + fhX ′(h)
)
η(Y )η(Z)

g̃(∇̃XY, Z) = g̃(∇XY, Z) + f2(h2 − 1)
(1

2

(
g(∇Xξ, Y ) + g(∇Y ξ,X)

)
η(Z)

+dη(X,Z)η(Y ) + dη(Y, Z)η(X)
)
.

Let σ denotes the second fundamental form of M in M ′ ×M and while f, h are
two functions onM ′, for emphasis we denote their gradients by grad′f and grad′h
respectively. Then we have the following Theorem.

Theorem 4. For an almost contact metric manifold (M2n+1, ϕ, ξ, η, g) and a D-
homothetically bi-warped metric on M̃ = M ′ ×M we have the following asser-
tions: 1) M ′ is a totally geodesic submanifold. 2) If gardf grad′(h− f) = 0 then
M is a quasi-umbilical submanifold and its second fundamental form is given by

σ(X,Y ) = −1

2

(
g(X,Y ) + (h2 + fh− 1)η(X)η(Y )

)
grad′f2.

3) The mean curvature vector of M in M ′ ×M is

H = −grad′
((2n+ h2)f2

2(2n+ 1)

)
.

4) M is minimal if and only if

h2 =
c

f2
− 2n
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where c > 0 in which case M is quasi-umbilical and its second fundamental form
is given by

σ(X,Y ) =
1

2

(
g(X,Y )− (2n+ 1)η(X)η(Y )

)
grad′f2.

5) If dη(ξ,X) = 0 for every X on M (equivalently the integral curves of ξ are
geodesics), then the Reeb vector field ξ is g̃-Killing if and only if it is g-Killing.

Proof: Recall that any submanifoldN in M̃ is a quasi-umbilical submanifold if its
second fundamental form ω has the following form

ω(X,Y ) = αg(X,Y )ρ′ + βη(X)η(Y )ρ′

where α, β are two scalars, X,Y are two vectors fields on N and ρ′ is a normal
vectors field.

• If α = 0 then N is cylindrical.

• If β = 0 then N is umbilical.

• If α = β = 0 then N is geodesic.

1. Let σ′ denotes the second fundamental form of M ′. Since we have ∇̃X′Y ′ =
∇′X′Y ′ then

σ′ = ∇̃X′Y ′ −∇′X′Y ′ = 0.

2. From Proposition 3 we have

g̃
(
∇̃XY,Z ′

)
= −fZ ′(f)g(X,Y )− f

(
(h2 − 1)Z ′(f) + fhZ ′(h)

)
η(X)η(Y )

= −fg′
(
g(X,Y )grad′f +

(
(h2 − 1)grad′f

+fh grad′h
)
η(X)η(Y ), Z ′

)
since g̃

(
∇XY,Z ′

)
= 0 and knowing that σ = ∇̃XY −∇XY one ends with

σ(X,Y ) = −1

2
g(X,Y )grad′f2−1

2

(
(h2−1)grad′f2+f2 grad′h2

)
η(X)η(Y ). (∗)

If grad ′h = grad′f then we obtain

σ(X,Y ) = −f
(
g(X,Y ) + (h2 + fh− 1)η(X)η(Y )

)
grad′f.
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3. Knowing that the mean curvature vector of M in M ′ ×M is given by

H =
1

2n+ 1
trg σ =

1

2n+ 1

2n+1∑
i=1

σ(ei, ei)

where {ei}i=1,2n+1 is an orthonormal basis on M so

H =
1

2n+ 1

i=2n+1∑
i=1

σ(ei, ei)

= − f

2n+ 1

i=2n+1∑
i=1

(
(2n+ 1)grad′f +

(
(h2 − 1)grad′f + fh grad′h

))
= − 1

2(2n+ 1)
grad′

(
(2n+ h2)f2

)
.

4. The submanifold M is minimal, i.e., the mean curvature H is zero, using the
result (3), we get

h2 =
c

f2
− 2n.

Now replacing grad′h2 = − c
f4

grad′f2 in (∗) we find

σ(X,Y ) =
1

2

(
g(X,Y )− (2n+ 1)η(X)η(Y )

)
grad′f2.

5. For every two vectors fields X̃ = X ′ +X and Ỹ = Y ′ + Y on M̃ we have that

ξ is g̃ − Killing⇔ g̃(∇̃X̃ξ, Ỹ ) + g̃(∇̃Ỹ ξ, X̃) = 0

and

g̃(∇̃X̃ξ, Ỹ ) + g̃(∇̃Ỹ ξ, X̃) = g̃(∇̃X′+Xξ, Y
′ + Y ) + g̃(∇̃Y ′+Y ξ,X

′ +X)

= g̃(∇̃X′ξ, Y ) + g̃(∇̃Xξ, Y ′) + g̃(∇̃Xξ, Y ) (∗∗)
+g̃(∇̃Y ′ξ,X) + g̃(∇̃Y ξ,X ′) + g̃(∇̃Y ξ,X).

Suppose dη(ξ,X) = 0, i.e., ξη(X) = η
(
∇ξX

)
then, we can easily check the

following assertions

g̃(∇̃X′ξ, Y ) =
1

2
X ′(f2h2)η(Y )
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g̃(∇̃Xξ, Y ′) = −1

2
Y ′(f2h2)η(X)

g̃(∇̃Xξ, Y ) = g̃(∇Xξ, Y ) + f2(h2 − 1)dη(X,Y ).

When replacing in (∗∗) we obtain also

g̃(∇̃X̃ξ, Ỹ ) + g̃(∇̃Ỹ ξ, X̃) = g̃(∇Xξ, Y ) + g̃(∇Y ξ,X)

= f2
(
g(∇Xξ, Y ) + g(∇Y ξ,X)

)
.

This completes the proof. �

4. Application to Geometric Structures

In the remaining part of the paper, we consider the case where M ′ = R, M is an
almost contact metric manifolds and the metric

g̃ = dt2 + f2g + f2(h2 − 1)η ⊗ η (5)

where f, h are functions on R. For brevity we denote the unit tangent field to R by
∂t. In this case the proposition (3) becomes

Proposition 5. Let (M,ϕ, ξ, η, g) be an almost contact metric manifold. Let ∇
and ∇̃ denote the Riemannian connections of g, and g̃ respectively. For all X,Y
vector fields tangent to M and independent of R, we have

g̃(∇̃∂tY, Z)= g̃(∇̃Y ∂t, Z)=−g̃(∇̃Y Z, ∂t)=ff ′g(ϕY, ϕZ) + fh(fh)′η(Y )η(Z)

g̃(∇̃XY, Z) = g̃(∇XY,Z) + f2(h2 − 1)
(1

2

(
g(∇Xξ, Y ) + g(∇Y ξ,X)

)
η(Z)

+dη(X,Z)η(Y ) + dη(Y,Z)η(X)
)
.

Next, we introduce a class of almost complex structure J̃ on manifold M̃

J̃(∂t, X) =
(
fhη(X)∂t , ϕX −

1

fh
ξ
)

(6)

for any vector fildsX ofM where f, h, are functions on R and fh 6= 0 everywhere.

That J2 = −I is easily checked and for all X̃ = (a∂t, X), Ỹ = (b∂t, Y ) on M̃ we
can see that g̃ is almost Hermitian with respect to J̃ , i.e.,

g̃
(
J̃X̃, J̃ Ỹ

)
= g̃(X̃, Ỹ ).
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On the other hand, the fundamental two-form Ω̃ of (J̃ , g̃) is

Ω̃
((
a
∂

∂t
,X
)
,
(
b
∂

∂t
, Y
))

= g̃
((
a
∂

∂t
,X
)
, J̃
(
b
∂

∂t
, Y
))

we can check that is very simply as follows

Ω̃ = f(2h dt ∧ η + fΦ) (7)

we have immediately that

dΩ̃ = f(−2h dt ∧ dη + 2f ′dt ∧ Φ + fdΦ). (8)

For the special cases we have the following

1) contact metric dΩ̃ = −2f(h− f ′)dt ∧ Φ

2) almost cosymplectic dΩ̃ = 2ff ′dt ∧ Φ

3) almost Kenmotsu dΩ̃ = 2f(f ′dt+ fη) ∧ Φ.

(9)

We note that Ω̃ is closed in the contact metric case if and only if h = f ′ and in the
almost cosymplectic case if and only if f is constant. In the Kenmotsu case cannot
be closed; it would force f to be zero.

Now, putting h = f ′, the structure (g̃, J̃) (see (5), (6)) becomes

g̃ = dt2 + f2g + f2(f ′2 − 1)η ⊗ η (10)

J̃(a
∂

∂t
,X) =

(
ff ′η(X)

∂

∂t
, ϕX − a

ff ′
ξ
)

(11)

where ff ′ 6= 0 on M everywhere, and X any vector field of M .

We denote by NJ̃ the Nijenhuis tensor of the almost complex structure J̃ . Then
from (11) we have

NJ̃

(
(0, X), (0, Y )

)
=
(
ff ′N (2)

ϕ (X,Y )
∂

∂t
, N (1)

ϕ (X,Y )
)

NJ̃

(
(
∂

∂t
, 0), (0, X)

)
=
(
N (4)
ϕ (X)

∂

∂t
,

1

ff ′
N (3)
ϕ (X)

)
for any vector fields X , Y of M. We denote by N (1)

ϕ , N
(2)
ϕ , N

(3)
ϕ and N (4)

ϕ the
following tensor fields on M defined respectively by

N (1)
ϕ (X,Y ) = [ϕ,ϕ](X,Y ) + 2dη(X,Y )ξ

N (2)
ϕ (X) =

(
LϕX

)
(Y )−

(
LϕY

)
(X)

N (3)
ϕ (X) = −

(
Lξϕ)(X), N (4)

ϕ (X) =
(
Lξη)(X).
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Proposition 6 ([3]) . For an almost contact manifold M = (M,ϕ, ξ, η) the van-
ishing of the tensor field N (1)

ϕ implies the vanishing of the tensor fields N (2)
ϕ , N

(3)
ϕ

and N (4)
ϕ .

From the above proposition, we see that an almost contact metric manifold M =

(M,ϕ, ξ, η) is normal if and only if N (1)
ϕ vanishes everywhere on M ([3], p.81).

Therefore, summing up the arguments above, we have the following main theorem

Theorem 7. 1. The almost contact metric structure on M is a contact metric
structure if and only if the almost Hermitian structure (g̃, J̃) is almost Kähler
(i.e., dΩ̃ = 0) for all function f on R such that ff ′ 6= 0. In addition,
the structure on M is Sasakian if and only if the structure (g̃, J̃) on M̃ is
Kählerian.

2. The almost contact metric structure on M is almost cosymplectic if and only
if the almost Hermitian structure (g̃, J̃) satisfies dΩ̃ = 2ff ′(dt∧Φ) in which
case the structure is conformally almost Kähler. In addition, the structure
on M is cosymplectic if and only if the structure (g̃, J̃) on M̃ is conformally
Kähler.

3. The almost contact metric structure on M is almost Kenmotsu if and only
if the almost Hermitian structure (g̃, J̃) satisfies dΩ̃ = 2f(f ′dt + fη) ∧ Φ
in which case the structure is conformally almost Kähler if and only if η
is exact. In addition, if the structure on M is Kenmotsu then the structure
(g̃, J̃) on M̃ is conformally Kähler if and only if η is exact. Moreover, if
η = −dβ for some β ∈ C∞(M̃) then e2(β−ln |f |)g̃ will be a Kähler metric
on M̃ .

Proof: The necessity was observed above for both cases (see (3)). For the suffi-
ciency, first observe that from equation (8) where h = f ′ we have

1) dΩ̃
(( ∂
∂t
, 0
)
,
(
0, X

)
,
(
0, Y

))
= 2ff ′

(
Φ− dη

)
(X,Y ). (12)

If dΩ̃ = 0, then the equation (12) gives Φ = dη and we have a contact metric
structure.

So, if M is Sasakian then the structure (g, J) is Kählerian.

2) If dΩ̃ = 2ff ′(dt ∧ Φ), then the equation (12) gives dη = 0 and applying d to
dΩ̃ = 2ff ′(dt ∧ Φ) we have dΦ = 0 and hence an almost cosymplectic structure
on M .
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Now consider the metric g = 1
f2
g̃, it is almost Hermitian with respect to J̃ and its

fundamental two-form Ω = 1
f2

Ω̃. Then

dΩ =
−2f ′

f3
dt ∧ Ω̃ +

1

f2
dΩ̃

=
−2f ′

f3
dt ∧ f(2f ′dt ∧ η + fΦ) +

1

f
(−2f ′dt ∧ dη + 2f ′dt ∧ Φ + fdΦ)

= 0

giving a conformally almost Kähler structure.

3) If dΩ̃ = 2f(f ′dt+ fη) ∧ Φ, then the equation (12) gives dη = 0 and applying
d to dΩ̃ = 2f(f ′dt+ fη) ∧ Φ we get

(f ′dt+ fη) ∧ dΦ = 2f ′dt ∧ η ∧ Φ

so that dΦ = 2η ∧ Φ, and hence an almost Kenmotsu structure on M .

Using (7) and (9,3) with h = f ′ we get

dΩ̃ = 2
(
d(ln |f |) + η

)
∧ Ω̃. (13)

From definition (1), it is obvious that M̃ is conformally Kähler if and only if η is
exact. Now, consider the metric ĝ = e2(β−ln |f |)g̃ with β ∈ C∞(M̃). This metric
is Hermitian with respect to J̃ and its fundamental two-form Ω̂ = e2(β−ln |f |)Ω̃.
Then, by straightforward calculations, using (13) and η = −dβ we obtain dΩ̂ = 0
and this completes the proof. �

Special cases:

• For f = t with h = f ′, where t > 0 and by (10) we get the metric cone
(see [14])

g̃ = dt2 + t2g, J̃(a
∂

∂t
,X) =

(
tη(X)

∂

∂t
, ϕX − a

t
ξ
)
.

• For f = h = et, and by (10) we get the D-homothetic warping (see [6])

g̃ = dt2 + e2tg + e2t(e2t − 1)η ⊗ η

J̃(a
∂

∂t
,X) =

(
e2tη(X)

∂

∂t
, ϕX − ae−2tξ

)
.

Example 8. We denote the Cartesian coordinates in a three-dimensional Euclidean
space E3 by (x, y, z) and define a symmetric tensor field g by

g =

 ρ2 + τ2 0 −τ
0 ρ2 0
−τ 0 1


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where ρ and τ are functions on E3 such that ρ 6= 0 everywhere.

Further, we define an almost contact metric (ϕ, ξ, η) on E3 by

ϕ =

 0 −1 0
1 0 0
0 −τ 0

 , ξ =

 0
0
1

 , η = (−τ, 0, 1).

The fundamental one-form η and the two-form Φ have the forms

η = dz − τdx and Φ = −2ρ2dx ∧ dy

and hence

dη = τ2dx ∧ dy + τ3dx ∧ dz, dΦ = −4ρ3ρdx ∧ dy ∧ dz

where ρi = ∂ρ
∂xi

and τi = ∂τ
∂xi
·

Knowing that the components of the Nijenhuis tensor Nϕ in (2) can be written as

N i
kj = ϕlk(∂lϕ

i
j − ∂jϕil)− ϕlj(∂lϕik − ∂kϕil) + ηk(∂jξ

i)− ηj(∂kξi)

where the indices i, j, k and l run over the range 1, 2, 3, then by a direct computa-
tion we can verify that

N i
kj = 0, for all i, j, k

implying that the structure (ϕ, ξ, η, g) is normal. From definitions in (3), the struc-
ture (ϕ, ξ, η, g) is a

1) Sasaki, when τ2 = −2ρ2 and τ3 = 0

2) cosymplectic, when ρ3 = 0, τ2 = 0 and τ3 = 0

3) Kenmotsu, when ρ3 = ρ, τ2 = 0 and τ3 = 0.

Using the above cases and Theorem (7), the manifold (R× E3, g̃, J̃) is

1) Kählerian, when τ2 = −2ρ2 and τ3 = 0

2) conformally Kählerian, when ρ3 = 0, τ2 = 0 and τ3 = 0

3) conformally Kählerian, when ρ3 = ρ, τ2 = 0 and τ3 = 0.

Note that

g̃ =


1 0 0 0
0 f2(ρ2 + f ′2τ2) 0 −τf2f ′2
0 0 f2ρ2 0
0 −τf2f ′2 0 f2f ′2

, J̃ =


0 −τff ′ 0 ff ′

0 0 −1 0
0 1 0 0
− 1
ff ′ 0 −τ 0

.
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