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A RIGOROUS FRAMEWORK FOR THE LANDAU AND LIFSHITZ
APPROACH TO THOMSON ELECTROSTATICS
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Abstract. Landau and Lifshitz [7] proposed a novel formulation of the famous
Thomson theorem, also known as the Thomson variational principle. In an attempt
to explain, rather than postulate, the distribution of electrical charge exclusively on
the surface of the conductor, Landau and Lifshitz allow the admissible variations
in the electrical charge to penetrate the interior of the conductor. This is a valuable
generalization of their predecessors’ work, as well as a step towards basing more of
the analysis on first principles.
Landau and Lifshitz’ approach has not received the attention it deserves because it
was not formulated as a rigorous technique, but rather as a slight of hand to arrive
at a known result. In this paper, we construct a rigorous mathematical framework
based on the Landau and Lifshitz idea. In particular, we prove that surface distribu-
tion of charges corresponds to the absolute minimum of electrostatic energy.
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1. The Thomson Principle

The Thomson principle, also known as the variational principle of electrostatics of
conductors, has played in important role in a broad range of disciplines from elec-
tromagnetism to applied mathematics [1, 2, 7–9]. There are many different forms
of the Thomson principle. It was formulated for conductors and, in its original
form, states that the equilibrium distribution of electric charges on the surface of
an electric conductor minimizes the total electrostatic energy. The principle has
since been generalized in a number of ways. For instance, according to one of the
alternative formulations [2], at equilibrium, the conductor’s boundary is an equipo-
tential surface.

One extension of the Thomson principle was suggested by Landau and Lifshitz [7].
Until Landau and Lifshitz, only admissible variations in the surface charge den-
sity were considered. In other words, only those variations that kept all electrical

doi: 10.7546/jgsp-41-2016-69-75 69



70 Michael Grinfeld and Pavel Grinfeld

charges on the conductor’s surface. Landau and Lifshitz, on the other hand, ad-
ditionally considered the redistribution of the electric charges into the conductor’s
interior.

To quote Landau and Lifshitz [7]: The energy of the electrostatic field of conductors
has a certain extremum property, though this property is more formal than physical.
To derive it, let us suppose that the charge distribution on the conductors undergoes
an infinitesimal change (the total charge on each conductor remaining unaltered),
in which the charges may penetrate into the conductors; we ignore the fact that
such a charge distribution cannot in reality be stationary.

Here is the essence of the argument presented in [7]. The total electrostatic energy
U is given by the integral

U =
1

8π

∫
E2dV (1)

which extends over the entire space, including the interior of the conductor, since
the virtual displacement of charges results in a nonzero electric field E. In what
follows, we continue to use the integral sign

∫
without specifying the domain to de-

note integration over the entire space, possibly with the exclusion of some singular
interfaces.

The field E is related to the electrostatic potential ϕ by the familiar identity

E = −∇ϕ. (2)

The energy variation δU induced by redistribution of charges is given by

δU = − 1

4π

∫
∇ϕ · δEdV (3)

where δE is the corresponding variation in the electric field E. By the product rule,
the energy variation can be written as

δU = − 1

4π

∫
∇(ϕδE)dV +

1

4π

∫
ϕ∇· (δE) dV. (4)

Since the electrostatic potential vanishes sufficiently fast at infinity, the first inte-
gral in (4) is zero by the divergence theorem. The divergence of the electric field
variation δE is given by

∇ · (δE) = 4πδρ (5)

where δρ is the variation in the electric charge density. Therefore, the energy
variation δU is given by

δU = −
∫
ϕδρdV. (6)
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If ϕ is the equilibrium electrostatic potential then the integral in (6) vanishes for
the following reasons: a) outside the conductor, there are no charges and therefore
δρ = 0, b) inside the conductor, ϕ is constant and can therefore be factored out,
and c) once ϕ is factored out, the remaining integral of δρ vanishes since the total
charge is preserved. Therefore, the total energy corresponding to the equilibrium
configuration represents a local stationary point.

This idea is a valuable extension to the classical formulation. However, it has not
received the attention it deserves (if any at all) since its publication. The lack of
attention can be explained by the fact that the proposed approach somewhat vague
and unsystematic and cannot satisfy the demand for rigor commensurate with the
standards of mathematical physics and, in particular, classical electrostatics. For
instance, the infinitesimal change δρ in the spatially distributed charge will neces-
sarily induce an infinitesimal change δτ in the surface charge distribution, leading
to discontinuities in the electrical field across the interface S. Thus, an applica-
tion of the divergence theorem in the entire space, without regard to the interface,
is invalid. It is possible that this approach can be remedied by considering addi-
tional boundary terms or by introducing some concept of generalized derivatives.
However, this was not discussed by Landau and Lifshitz.

It is equally important to note that Landau and Lifshitz did not perform the second
energy variation analysis, necessary in order to show at least a weak minimum of
the electrostatic energy [3]. Thus, there is no evidence that the equilibrium charge
distribution indeed delivers the minimum of the accumulated electrostatic energy.
Interestingly, the Russian original of [7] claimed that there exists a simple proof
of the minimum property without actually presenting the proof. Nor did a proof
appear in any other publication. Furthermore, the very claim of an existing proof is
absent in the English translation [7] referenced throughout this paper. This gap is
essential from the standpoint of mathematical physics and precludes this beautiful
idea from being widely used. In this paper, we show that the Landau and Lifshitz
approach is indeed correct and present a proof of not just a weak, but an absolute,
minimum.

Consider a conductor Ω enclosed by the fixed surface S. Let Q be the fixed to-
tal electrical charge distributed on S with surface density τ and over Ω with the
volume density ρ subject to the single constraint∫

Ω
ρdΩ +

∫
S
τdS = Q. (7)

The electrostatic potential ϕ is governed by Poisson’s equation

∇i∇iϕ = −4πρ (8)
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subject to the boundary conditions across the interface S

[ϕ]S = 0, Ni

[
∇iϕ

]
S

= 4πτ (9)

where [·]S indicates the jump across the interface in the enclosed quantity and Ni

is the exterior unit normal. Finally, ϕ vanishes (sufficiently fast) at infinity.

2. Demonstration of the Landau-Lifshitz Version of the
Thomson Theorem

Consider two different distributions of the electric charge. Let the first distribution
correspond the situation where the entire charge is distributed along the surface
and let τ0 be the corresponding equilibrium surface distribution. It is well known
that the corresponding electrostatic potential ϕ0 is uniform over Ω.

In the second configuration, the total charge is divided between surface charges
and volume charges. The individual total charges Qτ and Qρ

Qτ =

∫
S
τdS, Qρ =

∫
Ω
ρdΩ (10)

add up to the total charge Q
Q = Qτ +Qρ. (11)

The electrostatic potential corresponding to the second configuration is denoted by
ϕ without a subscript.

In order to prove the Landau and Lifshitz version of the Thomson theorem, intro-
duce the positive quantity

1

8π

∫
∇i (ϕ0 − ϕ)∇i (ϕ0 − ϕ) dΩ (12)

where is integral is calculated over the entire space excluding the interface S. Mul-
tiplying out the integrand, we find

1

8π

∫ (
∇iϕ∇iϕ− 2∇iϕ∇iϕ0 +∇iϕ0∇iϕ0

)
dΩ > 0. (13)

In a moment, we will present a proof of the fact that∫
∇iϕ∇iϕ0dΩ =

∫
∇iϕ0∇iϕ0dΩ. (14)

With the help of (14) equation (13) yields

1

8π

∫ (
∇iϕ∇iϕ−∇iϕ0∇iϕ0

)
dΩ > 0 (15)
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which is equivalent to

1

8π

∫
∇iϕ∇iϕdΩ >

1

8π

∫
∇iϕ0∇iϕ0. (16)

Thus the electrostatic energy associated with the equilibrium surface distribution is
smaller than that for the alternative configuration that combines surface and volume
charges.

Now, onto the proof of (14). By the product rule∫
∇iϕ∇iϕ0dΩ =

∫ (
∇i (ϕ0∇iϕ)− ϕ0∇i∇iϕ

)
dΩ. (17)

The first term in the integrand in analyzed by the divergence theorem. Since the
potentials ϕ0 and ϕ are assumed to vanish sufficiently fast at infinity, the outer
boundary term vanishes. However, due to the discontinuities at the interface S, we
find ∫

∇i
(
ϕ0∇iϕ

)
dΩ =

∫
S
Ni

[
ϕ0∇iϕ

]
S

dS (18)

where, once again, [·]S denotes the jump in the enclosed quantity. Since the equi-
librium potential ϕ0 is continuous across S and is constant on S it can be factored
out of the surface integral in (18)∫

∇i
(
ϕ0∇iϕ

)
dΩ = ϕ0

∫
S
Ni

[
∇iϕ

]
S

dS. (19)

And, since according to the boundary condition (9), Ni

[
∇iϕ

]
S

= 4πτ , we obtain∫
S

dSNi

[
ϕ0∇iϕ

]
S

= 4πϕ0

∫
S
τdS = 4πϕ0Qτ . (20)

In the second term of equation (17), we find ∇i∇iϕ, the Laplacian of ϕ, which,
according to equation (8), equals −4πρ. Furthermore, ϕ0 is constant inside the
conductor, which is the only part of the entire space where ρ is nonzero. Therefore,
the integral over the entire space reduces to the integral over Ω∫

ϕ0∇i∇iϕdΩ = −4πϕ0

∫
Ω
ρdΩ = −4πϕ0Qρ. (21)

Combining (20) and (21), we find that∫
∇iϕ∇iϕ0dΩ = 4πϕ0Qτ + 4πϕ0Qρ = 4πϕ0Q. (22)
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Since Q is the total charge for each of the two configurations we are comparing,
we can express it as the surface integral of the jump in the electrostatic potential
ϕ0

Q =
1

4π

∫
S
Ni

[
∇iϕ0

]
S

dS. (23)

Thus∫
∇iϕ∇iϕ0dΩ = 4πϕ0Q = ϕ0

∫
S
Ni

[
∇iϕ0

]
S

dS =

∫
S
Ni

[
ϕ0∇iϕ0

]
S

dS (24)

where, in the last step, we were able to insert ϕ0 inside the discontinuity symbol
since ϕ0 is continuous across the interface S.

Next, apply the divergence theorem to the surface integral in (24)∫
S
Ni

[
ϕ0∇iϕ0

]
S

dS =

∫
∇i
(
ϕ0∇iϕ0

)
dΩ (25)

where we have once again used the fact thatϕ0 decays to zero at infinity sufficiently
fast. Combining (24) and (25), we find∫

∇iϕ∇iϕ0dΩ =

∫
∇i
(
ϕ0∇iϕ0

)
dΩ.

Finally, recall that ϕ0 is characterized by the vanishing Laplacian at all points in
space away from the interface S. Thus, by the product rule, we find∫

∇iϕ∇iϕ0dΩ =

∫
∇iϕ0∇iϕ0dΩ. (26)

This is the relationship we set out to prove in order to demonstrate (16) which
shows that the equilibrium surface distribution of charges delivers smaller energy
than any alternative distribution with spatially distributed charges. This completes
the overall proof.

3. Discussion

The principle that we have demonstrated is stronger than Landau and Lifshitz’
original claim. Landau and Lifshitz described a weak minimum of the electrostatic
energy with respect to the distribution of charges, that is one with respect to in-
finitesimal perturbations of charges. We showed that the equilibrium configuration
in which all of the charge is distributed on the surface is an absolute minimum.
The presented proof is consistent with the standards of mathematical physics and
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classical electrostatics. At the same time, we would like to emphasize that the “in-
finitesimal” (variational) approach of [7] permits much more useful and straight-
forward generalization than our approach but our approach has the advantage of
consistency, rigor, and clarity. Various other generalizations of the Thomson prin-
ciple can be found in [4–6] and references therein.
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