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Abstract. Based on symmetries Taub-NUT shares with Bertrand spacetime, we
cast it as the latter with magnetic fields. Its nature as a Bianchi-IX gravitational
instanton and other related geometrical properties are reviewed. We provide an
easy derivation and comparison between the spatial Killing-Yano tensors deduced
from first-integrals and the corresponding hyperkähler structures and finally verify
the existence of a graded Lie-algebra structure via Schouten-Nijenhuis brackets.
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1. Introduction

The Taub-NUT [26] is an exact solution of Einstein’s equations, found by Abraham
Huskel Taub (1951), and extended to a larger manifold by E. Newman, T. Unti and
L. Tamburino (1963). It is a gravitational anti-instanton with corresponding SU(2)
gauge fields, frequently studied for its geodesics which approximately describe the
motion of well seperated monopole-monopole interactions. As a dynamical system
it exhibits spherically symmetry, with geodesics admitting Kepler-type symmetry,
implying first-integrals such as the angular momentum and Runge-Lenz vectors re-
spectively. Witten’s prescription [45] realized Taub-NUT space as a hyper-Kahler
quotient using T-duality. This construction has a natural interpretation in terms of
D-branes [12], serving as an important example in string theory.

Bertrand spacetime, formulated by Perlick [41] is also spherically symmetric

ds2 = h(ρ)2dρ2 + ρ2
(
dθ2 + sin2 θ dφ2

)
− dt2

Γ(ρ)
(1)

derived from Bertrand’s Theorem, describing stable and closed geodesics with pe-
riodic orbits. Upon comparison, Euclidean Bertrand spaces and Taub-NUT spaces
appear similar apart from magentic monopole and dipole interaction of the Taub-
NUT. This implies dynamical similarities due to similar first-integrals characteriz-
ing motion, and that Taub-NUT possibly exhibits Kepler-Hooke duality.

Consequently, we try to find first-integrals similar to those associated with central-
force motion under potentials involved in Bertrand’s Theorem: the angular mo-
mentum and Laplace-Runge-Lenz vector. Since we are interested in the dynam-
ical aspects of Taub-NUT spaces, our attention is directed toward geodesics and
Killing tensors. Naturally, we will be looking at Killing tensors affiliated with
Runge-Lenz-like vector. They obey the equation

∇(aKb1)b2...bn = 0. (2)
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Such tensors are the Killing-Stäckel tensors which are symmetric under index per-
mutation and the Killing-Yano tensor. The Killing-Yano tensors are antisymmetric
under index permutation, and their square gives the Stäckel tensor, like the an-
tisymmetric tensor whose square gives the Runge-Lenz-like quantity as we shall
see. Such Killing tensors exhibit quaternionic algebra, implying a connection to
Hyperkähler structures associated with the metric.

We start in Section 2, with preliminaries on dynamics with magnetic field inter-
actions, then compute first-integrals similar to the angular momentum and the
Laplace-Runge-Lenz vector for the Taub-NUT. We deduce such first-integrals first
by from equations of motion and then by a momentum polynomial expansion.

In Section 3, we compare Taub-NUT metric to Euclidean Bertrand spacetime with
magnetic monopoles and dipoles. Demonstrating such a similarity allows the in-
tensely studied Bertrand spacetimes to share many important properties, and con-
versely extend properties of the Taub-NUT to Bertrand spaces with magnetic fields.
This helps us identify symmetries and conserved quantities of Taub NUT and em-
ploy its curvature properties for Bertrand spacetimes. The last subsection covers
the conserved quantity called the Fradkin tensor under Bohlin-Arnold-Vassiliev
transformation which are bound to have such Killing tensors embedded.

In Section 4 we derive the Taub-NUT from the self-dual Bianchi-IX metric de-
scribed by the classical Darboux-Halphen system. Then we geometrically analyze
it, computing curvature and confirming its self-duality as a gravitational instanton

Rµνρσ = ±1

2
εµν

λγRλγρσ. (3)

This helps us study the metric as an integrable system. Finally, we compute topo-
logical invariants shared with comparable Bertrand spacetime with magnetic fields.

In Section 5, after introducing Killing Stäckel and Yano tensors, we will focus on
the latter. After a brief review of their properties, we will show how to find them
embedded within conserved quantities, and see if they exhibit a graded Lie-algebra
structure that allows construction of higher order Killing-Yano tensors.

Finally, in Section 6 we derive hyperkähler structures of the Taub-NUT and com-
pare them to the Killing-Yano tensors to see if they also exhibit quaternion algebra.

In the last section we conclude our work, discussing possibilities of further research
along the line of the present article. The Appendix contains detailed computation
regarding Killing tensors following Holten’s algorithm, a review of Bohlin’s trans-
formation and the double derivative of Killing Yano tensors.
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2. Conserved Quantities

In classical mechanics it is important to identify constants of motion called con-
served quantities or first-integrals of the system. In the theory of integrable sys-
tems, all first-integrals are in involution or commute with each other within the
Poisson brackets, with at least one integral definitely being available.

In Hamiltonian mechanics, a conserved quantity Q commutes with H , a first-
integral resulting from time-translation invariance, within the Poisson brackets{

Q,H
}

= 0. (4)

However, this prescription is not gauge covariant for systems with gauge interac-
tions. To understand why, consider the following metrics as examples.

For spacetime with scalar potential U(x) only, the metric where t is cyclical is

ds2 = δijdx
idxj − 1 + 2U(x)

m
dt2.

Under the parameterization t = τ , the lagrangian, Hamiltonian and Hamilton’s
dynamical equations for particles in presence of scalar potentials is given by

Lṫ=1 =
m

2
ẋ2 − U(x)

the Legendre transform giving the Hamiltonian H =
∑

k 6=t
∂L
∂ẋk

ẋk − L

H =
1

2m
p2 + U(x) ⇒


ẋ =

∂H

∂p
=
p

m

ṗ = −∂H
∂x

= −∇U(x).

For this system without magnetic fields, the fundamental brackets are{
xi, pj

}
= δij ,

{
xi, xj

}
=
{
pi, pj

}
= 0. (5)

Now, for charged particles in U(1) gauge fields from magnetic dipoles and monopole
interactions, without scalar potential, the metric is

ds2 = δijdx
idxj − 1

m

(
dt−Ak(x)dxk

)2 (6)

so the corresponding Lagrangian and Hamiltonian for ṫ = 1 are given by

L =
1

2

(
mẋ2 −

(
ṫ−A(x).ẋ

)2)
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∴ H =
1

2m

(
p− qA(x)

)2
+
q2

2
, q =

(
∂L

∂ṫ

)
ṫ=1

= 1−A(x).ẋ.

Now let us consider a Kaluza-Klein modification of this spacetime, such that we
include another cyclical co-ordinate ψ that is periodic along with magnetic field
components coupled with it. This results in a 4 + 1 spacetime from a 3 + 1 one

ds2 = δijdx
idxj +

1

m

(
dψ +Ak(x)dxk

)2 − (1 + 2U(x)
)
dt2

so the Lagrangian and Hamiltonian for ṫ = 1, ignoring constant additive terms are

Lṫ=1 =
1

2

[
mẋ2 +

(
ψ̇ +A(x).ẋ

)2]− U(r)

∴ H =
1

2m

(
p− qA(x)

)2
+ U(r), q =

∂L

∂ψ̇
= ψ̇ −A(x).ẋ

(7)

where q is a conserved charge. The corresponding Hamilton’s equations are

ẋ =
∂H

∂p
=
p− qA
m

ṗ = −∂H
∂x

=
q

m

(
∇A

)
.
(
p− qA

)
−∇U.

Since the potentials are gauge dependent (A→ A+ ∇Λ), the momenta therefore
must be so as well (p→ p+q∇Λ). Then, we must write gauge invariant momenta
and express the Hamiltonian in its gauge invariant form

H =
Π2

2
+ V (r), Π = p− qA.

Functions and partial derivative operators in gauge invariant forms are written as

f(x,p) −→ f(x,Π)

∂

∂xi
−→ ∂Πj

∂xi
∂

∂Πj
+

∂

∂xi
= −q∂iAj

∂

∂Πj
+

∂

∂xi

∂

∂pi
−→ ∂Πj

∂pi
∂

∂Πj
+

∂

∂pi
=

∂

∂Πi
(No explicit dependence on p)

with which the fundamental brackets become{
xi,Πj

}
= δij ,

{
xi, xj

}
= 0,

{
Πi,Πj

}
= −qFij . (8)

Interestingly, the new Poisson Brackets (8) between gauge covariant momenta are
non-zero, as opposed to (5). This is a classical analogue of Ricci-identity (in the
absence of torsion). We can furthermore redefine the Poisson Brackets as{

f, g
}

=
∂f

∂x
· ∂g
∂Π
− ∂f

∂Π
· ∂g
∂x
− qFij

∂f

∂Π
· ∂g
∂Π
· (9)
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Having redefined the Poisson Brackets to make Hamiltonian dynamics manifestly
gauge invariant in the modified bracket, we can analyze the conserved quantities in
a general gauge invariant form with the Holten Algorithm as shown in [24] and [38]
discussed later as we shall see.

2.1. A Dynamical-Systems Description of Taub-NUT

The Euclidean Taub-NUT metric as shown in [26] is given by

ds2 = f(r)
{

dr2 + r2
(
dθ2 + sin2 θ dφ2

)}
+ g(r)

(
dψ + cos θ dφ

)2
where f(r) = 1 +

4M

r
, g(r) =

(4M)2

1 + 4M
r

·
(10)

For later reference, taking ds̃2 = ds2

4M we shall re-write the above metric into

ds̃2 = V (r) δij dxidxj + V −1(r)
(
dψ +A.dx

)2
where V (r) =

1

4M
+

1

r
, A.dx = cos θ dφ.

(11)

We now consider the geodesic flows of the generalized Taub-NUT metric given by
(10), for which we can compose the Lagrangian

L =
1

2
f(r)

{
ṙ2 + r2

(
θ̇2 + sin2 θ φ̇2

)}
+

1

2
g(r)

(
ψ̇ + cos θ φ̇

)2
. (12)

We can further re-write the Lagrangian (12) into three-dimensional form with a
potential, as in (7), independent of the ψ as

L =
1

2
f(r)|ẋ|2 +

1

2
g(r)

(
ψ̇ +A.ẋ

)2 − U(r)

where the momentum can be written as

p =
∂L
∂ẋ

= f(r)ẋ+ qA, Π = f(r)ẋ = p− qA.

Spaces with the metric (10) exhibit SU(2)× U(1) isometry group. Since we have
two cyclical variables ψ and φ, we will have four Killing vectors given by

D0 = ∂ψ

D1 = − sinφ ∂θ − cosφ cot θ ∂φ +
cosφ

sin θ
∂ψ

D2 = cosφ ∂θ − sinφ cot θ ∂φ +
sinφ

sin θ
∂ψ

D3 = ∂φ

(13)
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whereD0 commutes with the other three killing vectorsD1, D2, D3, which exhibit
SU(2) Lie algebra:

[
Di, Dj

]
= −εijkDk. Since ψ is cyclic, we have a conserved

quantity known as the relative electric charge

q =
∂L
∂ψ̇

= g(r)
(
ψ̇ + cos θ φ̇

)
= g(r)

(
ψ̇ +A.ẋ

)
= const.

The symplectic two-form ω and energyH = E for the Taub- NUT are

ω =
1

2

(
ω0 + qF (x)

)
jk

dxj ∧ dxk =
3∑
i=1

d
(
pi − qAi(x)

)
∧ dxi =

3∑
i=1

dΠi ∧ dxi

ω =
3∑
i=1

dpi ∧ dxi − q

2r3

∑
i,j,k

εijkx
i dxj ∧ dxk (14)

H =
|Π|2

2f(r)
+

q2

2g(r)
+ U(r) = E , Fij(x) = −

∑
k

εijk
xk

r3
· (15)

Consequently, the Hamilton’s equations are given by

ẋ =
{
x,H

}
θ

=
Π

f(r)

Π̇ =
{
Π,H

}
θ

=

[
f ′(r)

2
(
f(r)

)2 ∣∣Π∣∣2 +
g′(r)

2
(
g(r)

)2 − U ′(r)]xr +
q

r3f(r)
x×Π.

Using these equations, we find angular momentum in presence of magnetic fields(
dx

dt
×Π+x×dΠ

dt

)
=

q

r3f(r)

[
x×
(
x×Π

)]
= q

[(
x.ẋ

)
x

r3
− ẋ
r

]
= −q d

dt

(
x

r

)
∴

d

dt

(
x×Π + q

x

r

)
= 0 ⇒ J = x×Π + q

x

r
· (16)

The cyclic variable allows reduction of the geodesic flow on T (R4 − {0}) to a
system on T (R3 − {0}). The reduced system’s rotational invariance implies a
conserved energy, angular momentum and vector K analogous to the Laplace-
Runge-Lenz vector

H =
1

2

Π2

f(r)
+

(
1

2

q2

g(r)
+ U(r)

)
(17)

J = x×Π + q
x

r
(18)

K =
1

2
Kµν ẋ

µẋν = Π× J +

(
q2

4m
− 4mE

)
x

r
· (19)
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This concludes the detailing of conserved quantities of Taub-NUT from a dynam-
ical systems perspective. Now we shall proceed to consider a systematic analytic
process describing conserved quantities as power series expansions of momenta.

2.2. The Holten Algorithm Description

One way of obtaining conserved quantities that are polynomials in momenta is by
writing them in a power series expansion involving the gauge invariant momenta

Q = C(0)(r) + C
(1)
i (r)Πi +

1

2!
C

(2)
ij (r)ΠiΠj +

1

3!
C

(3)
ijk(r)ΠiΠjΠk + ....

where all the coefficients of momenta power series are symmetric under index per-
mutation. Applying this to eq (4), we can obtain the relations for each coefficient
by matching the appropriate product series of momenta for both the terms

{
Q,H

}
=
∑
n

[{
C

(n)
{i}

∏
{i}

Πk,Πj
}

Πj +
{
C

(n)
{i}

∏
{i}

Πk, V (r)
}]

= 0

∴ ∇jC(n)
{m}

∏
{m}

Πk = qC
(n+1)
{m}i

(
F ij + ∂jV (r)

) ∏
({m},k 6=i)

Πk.

The equations we will get up to the third order setting C(i)
{m} = 0, i ≥ 3 are

order 0: 0 = C(1)
m ∂m

(
V (r)

)
order 1: ∇iC(0) = qFijC

(1)
j + C

(2)
ij ∂j

(
V (r)

)
order 2: ∇iC(1)

j +∇jC(1)
i = q

(
FimC

(2)m
j + FjmC

(2)m
i

)
order 3: ∇iC(2)

jk +∇kC
(2)
ij +∇jC(2)

ki = 0.

(20)

Now we will turn our attention to some familiar conserved quantities.

2.2.1. Some Basic Killing Tensors

Using the above relations, we now look at some familiar conserved quantities stud-
ied in classical mechanics.
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Angular Momentum

The conserved quantity deduced from first order term of the Holten series alone is

Q(1) = C
(1)
i Πi = −gim(~x)εmjkθ

kxjΠi

⇒ L.θ = −
(
εijkΠ

ixj
)
θk =

(
x×Π

)
.θ

∴ L = x×Π.

This eventually becomes the conserved quantity known as the angular momentum.

Laplace-Runge-Lenz Vector

On the other hand, the conserved quantity from the second order term alone is

Q(2) =
1

2
C

(2)
ij ΠiΠj =

{∣∣Π∣∣2(n.x)− (Π.x
)(

Π.n
)}

⇒ N .n =
{∣∣Π∣∣2x− (Π.x

)
Π
}
.n =

{
Π×

(
x×Π

)}
.n

∴ N = Π×
(
x×Π

)
.

This quantity is a term contained in another conserved quantity known as the
Laplace-Runge-Lenz vector. Having found the two familiar types of conserved
quantities, we can now proceed to see what it looks like for the Taub-NUT metric.

2.2.2. The Holten Algorithm for Taub-NUT

Now, for the Taub-NUT metric, we have (17) giving the Hamiltonian. This can be
written in dimensionally reduced form as

H =
1

2
|Π|2 + f(r)W (r), W (r) = U(r) +

q2

2g(r)
+
E
f(r)

− E .

From this Hamiltonian, after setting all higher orders C(2)
ij = C

(3)
ijk = 0, we get the

modified first and second order equations to be the following

order 1: ∂iC
(0) = qFijC

(1)j

order 2: ∇iC(1)
j +∇jC(1)

i = 0.
(21)

The constraint equation of the second order of (21) gives us

C
(1)
i = gim(x)εmjkθ

jxk
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∂iC
(0) =

q

r3
εijk ε

j
nmx

kθmxn ≡ q

r3

[
x×

(
θ × x

)]
i

=
q

r3

[
r2θ −

(
x.θ
)
x
]
i

∂iC
(0) = q

(
θi
r
−
(
x.θ
)
xi

r3

)
⇒ C(0) = qθi

xi

r
·

Thus, we have the overall solution, and the corresponding conserved quantity

Q ≡ Jkθk = C(0) + C
(1)
i Πi =

(
− gim(x)εmjkx

jΠi + q
xk
r

)
θk

∴ J .θ =

(
x×Π + q

x

r

)
.θ ⇒ J = x×Π + q

x

r
· (22)

However, if we explore upto the second order, setting C(2)
ij 6= 0, we will return to

the equations (20). For the third order, the solution for C(2)
ij is given by (80), so

C
(2)
ij =

(
2gij(x)nk − gik(x)nj − gkj(x)ni

)
xk.

Eventually the other co-efficients from (20) are given by

FikC
(2)
kj = −2εijn

xn

r3

(
nmx

m
)︸ ︷︷ ︸

n.x

+ εikn
xkxn

r3
nj︸ ︷︷ ︸

0

+ εiknn
kxn︸ ︷︷ ︸

(n×x)i

xj
r3

∇iC(1)
j +∇jC(1)

i = −q
{
∇j
(
εikmn

kxm

r

)
+∇i

(
εjkmn

kxm

r

)}
.

Thus, we can easily see which term on the RHS corresponds to what on the LHS,
allowing us to solve for the first order and zeroth order coefficients from (20)

C
(1)
i = −q

r
gim(x)εmjkn

kxj .

In the case of the generalised Taub-NUT metric, the most general potentials admit-
ting a Runge-Lenz vector are of the form

U(r) =
1

f(r)

(
q2

2r2
+
β

r
+ γ

)
− q2

2g(r)
+ E

∇iC(0) = β

(
ni
r
−
(
n.x

)
xi

r3

)
, C(0) = βni

xi

r
·

For integrability, we require the commutation relation[
∂i, ∂j

]
C(0) = 0 ⇒ ∆

(
f(r)W (r)− q2g2

2r2

)
= 0
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⇒ f(r)W (r) =
q2g2

2r2
+
β

r
+ γ, β, γ ∈ R.

Thus, this overall conserved quantity is given as

Q ≡ Rkθk = C(0) + C
(1)
i Πi + C

(2)
ij ΠiΠj

R.n =

(
Π×

(
x×Π

)
− q
r
x×Π +β

x

r

)
.n ⇒ R = Π×J +β

x

r
. (23)

Now we will take a detour to look at some details regarding the Runge-Lenz vector.

3. Bertrand Spacetime Dualities

In Newtonian mechanics, there are only two potentials allowing stable, closed and
periodic orbits: Hooke’s Oscillator (V (r) = ar2 + b), and Kepler’s orbital motion
(Γ(r) = a

r + b) potentials. There is a relativistic analogue, given by the corre-
sponding metrics in [41], describing spherically symmetric and static spacetime,
with bounded and periodic trajectories. The Taub- NUT is one example of a spher-
ically symmetric spacetime. Naturally, one would ask how it compares with the
Euclidean Bertrand spacetime (BST) metric with magnetic fields.

3.1. Bertrand Spacetimes with Magnetic Fields

If we take the Euclidean version of Bertrand spacetime metric (1) and include
magnetic monopole and dipole interactions, the metric becomes like (6) as

ds2 = h(ρ)2dρ2 + ρ2
(
dθ2 + sin2 θ dφ2

)
+

1

Γ(ρ)

(
dt+Ai dxi

)2
. (24)

If we recall, the Taub-NUT metric was given by (10). To see how it compares to
(24), we shall attempt a co-ordinate map.

f(r) dr2 = h(ρ)2dρ2, f(r)r2 = ρ2, g(r) =
1

Γ(ρ)
, t = ψ + k

⇒ dr

r
=
h(ρ) dρ

ρ
⇒ r = r0 e

∫
dρ

h(ρ)
ρ .

Thus, Taub-NUT resembles Bertrand spacetime with magnetic fields. We can go
the other way, starting with the generalized Taub-NUT metric and proceeding to-
wards Bertrand spacetime by applying appropriate potential power laws [27].

Therefore, like the BSTs, there are two Taub-NUT configurations
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1. Hooke’s Oscillator configuration

fO(r) = ar2 + b, gO(r) =
r2
(
ar2 + b

)
cr4 + dr2 + 1

2. Kepler’s orbital configuration

fK(r) =
a+ br

r
, gK(r) =

r
(
a+ br

)
cr2 + dr + 1

·

The duality between these two configurations of the metric can be demonstrated.
To study Taub-NUT space duality, we confine motion to a cone (θ = const) be-
cause of the conserved angular momentum (16), for which [26–28]

J .er =
∣∣J ∣∣ cos θ = const ⇒ θ = const. (25)

This allows us to reduce the problem to two-dimensions by rendering θ a constant
co-ordinate, allowing us to write the metric using α = sin θ, β = cos θ

ds2 = f(r)
(
dr2 + r2α2 dφ2

)
+ g(r)

(
dψ + β dφ

)2
. (26)

We represent the co-ordinates as z = x + iy, ξ = X + iY , where |z| = r cos θ2 ·
The complex co-ordinates in these spaces [14], where (θ = const) (25) are

z = |z| exp

[
i

2

(
ψ + φ

)]
, ξ = |ξ| exp

[
i

2

(
χ+ Φ

)]
, Z, ξ ∈ C

z → ξ = z2 ⇒ |z|2 exp
[
i
(
ψ + φ

)]
= |ξ| exp

[
i

2

(
χ+ Φ

)]
⇒ φ→ Φ = 2φ, ψ → χ = 2ψ

(27)

So Bohlin’s transformation (27) [4] on the Oscillator metric from (26) gives(
ds2
)
O =

(
a|z|2 + b

)
|dz|2 +

|z|2(a|z|2 + b)

c|z|4 + d|z|2 + 1

(
dψ + β dφ

)2
z → ξ = z2, φ→ Φ = 2φ, ψ → χ = 2ψ(

ds2
)
O =

1

4

{
a|ξ|+ b

|ξ|
|dξ|2 +

|ξ|
(
a|ξ|+ b

)
c|ξ|2 + d|ξ|+ 1

(
dχ+ β dΦ

)2}
. (28)

Comparing (28) with the Kepler system in presence of magnetic fields(
ds2
)
K =

b|z|+ a

|z|
|dz|2 +

|z|
(
b|z|+ a

)
c|z|2 + d|z|+ 1

(
dψ + β dφ

)2
shows that aside from a factor of

1

4
, a variable swap a ↔ b completes the trans-

formation, and thus, the two configurations of Taub-NUT are related via Bohlin’s
transformation like Bertrand spacetime. For various settings of the constants, we
get different configurations of spacetime, as shown in the following table.



Taub-NUT as Bertrand Spacetime with Magnetic Fields 45

Table 1. Systems for various settings, K - Kepler, O - Oscillator.

Type a b c d f(r) g(r) System Name

K 0 1 1 −2 1
r2

(1− r)2
MIC-Zwangier

K 0 1 0 −2k

q2
1

r2

1− 2k
q2
r

MIC-Kepler

O 0 1
k

q2
0 1

r2

1 + k
q2
r4

MIC-Oscillator

K 4m 1 0
1

4m

4m+ r

r

(4m)2r

4m+ r
Euclidean Taub-NUT

3.2. Kepler-Oscillator Duality

In the study of central force problem, we learn that the Kepler and Oscillator sys-
tems are dual to each other according a duality map demonstrated in [42] and [22].
This is summed up in Bertrand’s theorem, describing them as the only systems with
stable, closed and periodic orbits. Thus, curved Bertrand space-times are classified
as Type I and Type II, representing Kepler and Oscillator systems respectively.

If we start with the two-dimensional simple harmonic oscillator equation ẍi =
−ω2xi, we are reminded of a conserved tensorial quantity, known as the Fradkin
tensor

T ij = pipj + κxixj , i, j = 1, 2. (29)

Any conserved quantity can be obtained by contracting the Fradkin tensor (29)
over its two indices by any chosen structure, i.e.,

Q = MijT
ij .

This quantity is symmetric under index permutation. Its complex counterpart is

Tzazb = Gij
zazb

Tij , za =
{
z, z̄
}

Gzz =

(
1 i
i −1

)
, Gz̄z̄ =

(
1 −i
−i −1

)
, Gzz̄ = Gz̄z =

(
1 0
0 1

)
.
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According to the Arnold-Vasiliev duality [1], a co-ordinate transformation and re-
parametrization of the first two complex Fradkin tensors will give us the Laplace-
Runge-Lenz vector

A = p×L+ β
x

r
· (30)

In tensorial form, (30) is written as follows

Ai = εiklε
l
jmp

kxjpm +
β

r
δijx

j = xj
{(
δijδkm − δikδjm

)
pkpm +

β

r
δij

}
.

Showing that the first term can be expressed as quadratic in momenta. Since it is a
linear combination of Fradkin tensor components, we prefer it being symmetric in
the momentum indices like its oscillator counterpart. Thus, we can write

Ai = xj
{

1

2

(
2δijδkm − δikδjm − δimδjk

)
pkpm +

β

r
δij

}
. (31)

Hence, to describe this first-integral of the Kepler system, we need tensors that are:

1. quadratic in momenta

2. symmetric under index permutation

3. conserved along geodesics.

We will explore such tensors in the next section.

4. A Review of Geometric Properties

An instanton or pseudo-particle is a concept in mathematical physics describing
solutions to equations of motion of classical field theory on Euclidean spacetime.
The first such solutions discovered were localized in spacetime, hence, named in-
stanton or pseudoparticle. They are important in quantum field theory because

1. They are leading quantum corrections to classical equations in path integral

2. They are useful for studying tunneling in systems like Yang-Mills theory.

While considering the Taub-NUT metric defined on a four-dimensional Euclidean
space, it is worth checking if it is an instanton. In this section, we will analyze its
geometrical properties exhaustively, verify if Taub-NUT is an instanton from the
curvature computed from the metric, and also look at its topological properties.
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Taub-NUT (10) under variable transformation m = 2M and r −→ r −m is

ds2 =
r +m

r −m
dr2 +4m2 r −m

r +m

(
dψ+cos θ dφ

)2
+
(
r2−m2

)(
dθ2 +sin2 θ dφ2

)
.

(32)
This can be further recast into the form

ds2 =
r +m

r −m
dr2 + 4m2 r −m

r +m
σ2

1 +
(
r2 −m2

)(
σ2

2 + σ2
3

)
(33)

where the variables σi are essentially solid angle elements in four-dimensional
Euclidean space obeying the following structure equation

dσi = −εijk σj ∧ σk, σi = − 1

r2
ηiµνx

µdxν . (34)

Having identified the vierbeins, we implement Cartan’s method of computing spin
connections and the Riemann curvature components. Embedded within them are
the SU(2) gauge fields and their corresponding field strengths as we shall see.

4.1. Taub-NUT as a Darboux-Halphen System

The Taub-NUT is a special case of self-dual Bianchi-IX metrics [5], characterized
by the classical Darboux-Halphen system. The self-dual Bianchi-IX metric is

ds̃2 =
(
Ω1Ω2Ω3

)
dr̃2 +

Ω2Ω3

Ω1

(
σ1

)2
+

Ω3Ω1

Ω2

(
σ2

)2
+

Ω1Ω2

Ω3

(
σ3

)2 (35)

and its characteristic classical Darboux-Halphen system of equations are

Ω′1 = Ω2Ω3 − Ω1

(
Ω2 + Ω3

)
Ω′2 = Ω3Ω1 − Ω2

(
Ω3 + Ω1

)
Ω′3 = Ω1Ω2 − Ω3

(
Ω1 + Ω2

)
, ( )′ =

d

dr̃
( )

(36)

where Ωi are parameters defined to re-write Bianchi-IX metric into the form (35)
to write self-dual equations. One particular first integral of the this system [7] is

Q =
(Ω1)2

(Ω3 − Ω1)(Ω1 − Ω2)
+

(Ω2)2

(Ω1 − Ω2)(Ω2 − Ω3)
+

(Ω3)2

(Ω2 − Ω3)(Ω3 − Ω1)
·

(37)
In case of the Taub-NUT, we need to set Ω2 = Ω3 = Ω 6= Ω1 = Λ in (35) and
(36). This way, we will get the following metric and system of equations

ds̃2 = Ω2Λ dr̃2 + Λ
((
σ2

)2
+
(
σ3

)2)
+

Ω2

Λ

(
σ1

)2 (38)
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dΛ

dr̃
= Ω(Ω− 2Λ),

dΩ

dr̃
= −Ω2. (39)

Under the limit Ω2 → Ω3 = Ω, the conserved quantity Q from (37) becomes[
lim

Ω2→Ω3=Ω
Q

]
Ω1=Λ

= − Λ2

(Λ− Ω)2
+

1

Λ− Ω

[
lim

Ω2→Ω3=Ω

(
(Ω2)2

Ω2 − Ω3
− (Ω3)2

Ω2 − Ω3

)]
= − Λ2

(Λ− Ω)2
+

2Ω

Λ− Ω
= −1−

(
Ω

Λ− Ω

)2

. (40)

Rescaling the radius and solving (39) with suitable constants of integration gives

dr̃ = − dr

2mΩ2
,

dΩ

dr
=

1

2m
,

d

dr

(
Λ

Ω2

)
= − 1

Ω2

dΩ

dr

Ω =
r −m

2m
, Λ =

r2 −m2

4m2
· (41)

Rescaling the metric (38) as ds = 2m ds̃ and applying (41) gives us tthe Taub-
NUT (33)

ds2 =
r +m

r −m
dr2 + 4m2 r −m

r +m

(
σ1

)2
+ (r2 −m2)

[(
σ2

)2
+
(
σ3

)2]
and the conserved quantity (40) becomes[

lim
Ω2→Ω3=Ω

Q

]
Ω1=Λ

= −1−
(

Ω

Λ− Ω

)2

= −r
2 − 2mr + 5m2

(r −m)2
· (42)

This concludes another possible symmetry of the Taub-NUT as a member of Bianchi-
IX metrics or solutions to Darboux-Halphen systems.

4.2. Curvature and Anti-Self Duality

Now that we have identified the individual vierbeins, we shall proceed to compute
the spin connections. We can describe the vierbeins as

e0 = c0(r) dr, ei = ci(r)σ
i, i = 1, 2, 3.

Obviously, e0 produces no connection terms (de0 = 0). Under torsion-free condi-
tion the first Cartan structure equation (dei = −ωij ∧ ej) gives the spin connec-
tions.

ωi0 =
∂rci
c0

σi, ωij = −εijk
c2
i + c2

j − c2
k

2cicj
σk.
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The elaborate form of the spin connections is used to keep it anti-symmetric. We
therefore construct the spin-connection matrix as shown below

ω =


0 − 2m2

(r+m)2
σ1 −

(
1− m

r+m

)
σ2 −

(
1− m

r+m

)
σ3

2m2

(r+m)2
σ1 0 − m

r+mσ
3 m

r+mσ
2(

1− m
r+m

)
σ2 m

r+mσ
3 0 −

(
1− 2m2

(r+m)2

)
σ1(

1− m
r+m

)
σ3 − m

r+mσ
2
(
1− 2m2

(r+m)2

)
σ1 0

 . (43)

If we view spin connections as a linear combination of self dual and anti-self dual
tensors, then we can accordingly seperate out the self and anti-self dual compo-
nents as ωij = ω

(+)
ij + ω

(−)
ij . To this end, we can split the spin connection matrix

(43) into two separate components: the self dual and the anti-self dual parts

ω(+) = −1

2

(
σ1η1 + σ2η2 + σ3η3

)
= −1

2
σiηi

ω(−) =

{(
1

2
− 2m2

(r +m)2

)
σ1η̄1 −

(
1

2
− m

r +m

)(
σ2η̄2 − σ3η̄3

)}
.

(44)

For reference, the t’Hooft symbol matrices η(±) exhibit the SU(2) Lie algebra[
ηi, ηj

]
= −2εij

kηk.

The curvature tensor can be decomposed into self and anti-self dual components
Rij = R

(+)
ij +R

(−)
ij , where by Cartan’s second equation, R = dω + ω ∧ ω. Thus,

we can write the spin connections as a linear combination of self and anti-self dual
t’Hooft symbols giving self-dual and anti-self dual spin connections described in
(44). Consequently, according to (34), the self-dual curvature vanishes

R(+) = dω(+) + ω(+) ∧ ω(+) = −1

2

(
dσi + εijk σ

j ∧ σk
)
ηi = 0. (45)

Only the anti-self dual curvature remains, reflecting the Taub-NUT’s anti-self dual-
ity. We make our job easier by writing the spin connection as ω(−) = ω

(−)
1 + ω

(−)
2

ω(−) =
1

2

(
σ1η̄1 − σ2η̄2 + σ3η̄3

)
+

(
− 2m2

(r +m)2
σ1η̄1 +

m

r +m

(
σ2η̄2 − σ3η̄3

))
where one can verify that ω(−)

1 will follow the same rule as ω(+) in (45). This
allows us to compute the anti-self-dual curvature given by

R(−) =
2m

(r +m)3
η̄1

(
e0 ∧ e1 − e2 ∧ e3

)
(46)

+
m

(r +m)3

(
− η̄2

(
e0 ∧ e2 − e3 ∧ e1

)
+ η̄3

(
e0 ∧ e3 − e1 ∧ e2

))
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where we can see from the signs attached to the dual components that the curvature
derived from Taub-NUT metric is clearly anti-self dual, as shown in [37]. This also
confirms that it is an instanton. To elaborate, we can show that only SU(2)− gauge
fields are embedded within the spin-connection components as shown below

ω(±)
µν = η(±)k

µν A
(±)
k ⇒ A(±)i =

1

4
η(±)i
µν ωµν

A(+)1 = −σ
1

2
, A(−)1 =

(
1− 4m2

(r +m)2

)
σ1

2

A(+)2 = −σ
2

2
, A(−)2 = −r −m

r +m

σ2

2

A(+)3 = −σ
3

2
, A(−)3 =

r −m
r +m

σ3

2

(47)

while the field strengths are given by

R(−)
µν = η(−)k

µν F
(−)
k ⇒ F (±)i =

1

4
η(±)i
µν Rµν

F (−)1 = R01 = −R23 =
2m

(r +m)3

(
e0 ∧ e1 − e2 ∧ e3

)
F (−)2 = R02 = −R31 = − m

(r +m)3

(
e0 ∧ e2 − e3 ∧ e1

)
F (−)3 = R03 = −R12 =

m

(r +m)3

(
e0 ∧ e3 − e1 ∧ e2

) (48)

where it is obvious that due to the absence of self-dual curvature, there are no
SU(2)+ gauge fields, i.e., F (+)i = 0 and thus field strengths are anti-self dual
(F = − ∗ F ) which of course, coincide with the curvature tensor (46). In terms of
two-forms, the independent components are given by

R
(−)
0101 = R

(−)
2323 = −R(−)

0123 =
2m

(r +m)3

R
(−)
0202 = R

(−)
1313 = R

(−)
0213 = − m

(r +m)3

R
(−)
0303 = R

(−)
1212 = −R(−)

0213 = − m

(r +m)3
·

This lets us compute the Ricci tensors and scalar in accordance with the formula:

Rik = gjlRijkl = δjlRijkl, R = δikRik
∴ R00 = R11 = R22 = R33 = 0, R = 0.

Since the Ricci tensors vanish, the Taub-NUT is clearly a vaccum solution of Ein-
stein’s equations.
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4.3. Topological Invariants

Topological invariants are analogous to an overall charge distributed in the mani-
fold. In the gravity side, there are two topological invariants associated with the
Atiyah-Patodi-Singer index theorem for a four dimensional elliptic complex [3,13],
the Euler characteristic χ(M) and the Hirzebruch signature τ(M), which can be
expressed as integrals of four-manifold curvature.

Recall that in electromagnetic theory, the field action is given by

S = − 1

16π

∫
dΩ FijF

ij = − 1

16π

∫
F ∧ F

where F =
1

2
Fijdx

i ∧ dxj and εijkldΩ = dxi ∧ dxj ∧ dxk ∧ dxl.

The equations of motion are obtained by solving for minimum variation of the elec-
tromagnetic field action. We merely apply these equations to compute topological
invariants as integrals analogous to action. We can write the general lagrangian

L = cabcdRab ∧Rcd = cabcdF
(±)m
ab F

(±)n
cd η

(±)m
ij η

(±)n
kl εijkldΩ

L = ±2dΩcabcdF
(±)m
ab ∂cA

(±)m
d (49)

where εijkldΩ = ei ∧ ej ∧ ek ∧ el. Applying Lagrange’s equation to (49) gives the
contracted Bianchi identity for curvature

∂c

(
∂L

∂(∂cA
(±)m
d )

)
= ±2cabcd∂cF

(±)m
ab = 0. (50)

Conversely, the Bianchi identity for SU(2)± gauge fields the root of topological
invariance. One can verify this starting from (50) and work backwards to obtain
the invariants.

Since the boundary integral vanishes, the overall invariant is computed only from
the bulk part. For non-compact manifolds like Taub-NUT, there are additional
boundary terms not separated into self-dual or anti-self-dual parts unlike the vol-
ume terms. They are the eta-invariant ηS(∂M), given for k self-dual gravitational
instantons by [19]

ηS(∂M) = − 2ε

3k
+

(k − 1)(k − 2)

3k

{
ε = 0, ALE boundary conditions
ε = 1, ALF boundary conditions.

Since Taub-NUT is an ALF hyper-kahler four-manifold it has a non-vanishing eta-
invariant which is equal to −2

3 . According to [39], upon applying curvature of
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(46), the Euler characteristic χ and the Hirzebruch signature complex τ are

χ(M) =
1

32π2

∫
M
εabcdRab ∧Rcd = 1 (51)

τbulk(M) = − 1

12π2

(∫
M
Rab ∧Rab

)
a<b

=
2

3
(52)

∴ τ(M) = τbulk(M) + ηS(∂M) = 0.

One could say that the form of topological invariants can enerally be written as

C(M) =
1

kπ2

∫
M
cabcdRab ∧Rcd

=


1

kπ2

∫
M Fab

(
∗ F ab

)
, cabcd = εabcd

(
Euler Characteristic

)
1

kπ2

∫
M FabF

ab, cabcd = gacgbd
(
Hirzebruch Signature

)
.

(53)

where cabcd is contracting tensor defined in respect to the relevant circumstances.

5. Killing-Yano Tensors and the Taub-NUT Metric

There are tensors quadratic in momenta and conserved along geodesics, expressed
as a vectorK whose components transform among themselves under three-dimen-
sional rotations. They are similar to the Runge-Lenz vector in the Kepler problem
with components

K(i) =
1

2
K(i)µνpµpν . (54)

Provided that J0 6= 0, such vectors usually satisfy the following property

r.

(
K ± HJ

J0

)
=

1

2

(
J2 −

(
J0
)2) (55)

where if (J0,J , H,K) are all constant, the three-dimensional position vector r

lies in a plane. Using (55) and the relation J0 =
r.J

r
, we can see that

r.K = ∓rH +
1

2

(
J2 −

(
J0
)2)

. (56)

In Taub-NUT geometry, there are also 4 antisymmetric Killing tensors known as
Killing-Yano tensors. Three of these are complex structures, realizing quaternionic
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algebra since the Taub-NUT manifold is hyper-Kähler. The fourth is a scalar with
a non- vanishing field strength, existing by virtue of the metric being of Petrov type
D. Their existence is implied by a triplet of symmetric second rank Killing tensors
called the Stäckel-Killing tensor satisfying

D(λK
(i)
µν) = 0. (57)

We will examine properties of Killing-Yano tensors relevant for studying Taub-
NUT symmetries after listing references that initiated the study of such symme-
tries.

Dynamical symmetries of the Kaluza Klein monopole were discussed in detail
by Feher in [15]. The dynamics of two non-relativistic BPS monopoles was de-
scribed using Atiyah-Hitchin metric (Taub-NUT being a special case), the corre-
sponding O(4)/O(3, 1) symmetry discovered in [18], and applied to calculate the
underlined motion group-theoretically in [16]. The symmetry was then extended
to O(4, 2) in [20] and [10]. In [20] Gibbons et al discussed dynamical symmetries
of multi-centre metrics and applied the results to the scattering of BPS monopoles
and fluctuations around them, giving a detailed account of the hidden symmetries
of the Taub-NUT. The hidden symmetries in large-distance interactions between
BPS monopoles and of the fluctuations around them are traced to the existence of
a Killing-Yano tensor on the self-dual Taub-NUT. The global action on classical
phase space of these symmetries was discussed in [21] and the quantum picture
involving the“dynamical groups” SO(4), SO(4, 1) and SO(4, 2) was also given.
A comprehensive review of the dynamical symmetry can be found in [15]. Super-
symmetry and extension to spin has also been studied in [9, 25].

5.1. Yano and Stäckel Tensors

We can construct these Killing-Yano tensors in terms of simpler objects known as
Yano tensors that are antisymmetric rank two tensors satisfying the Killing like
equation. Thus, the covariant derivative is antisymmetric over permutations of all
possible pairs of indices. This allows us to write the covariant derivative of the
Yano tensor in terms of the cyclic permutations as

fµν = −fνµ, ∇µfνλ +∇νfµλ = 0 (58)

∇µfνλ = ∇νfλµ = ∇λfµν = ∇[µfνλ] =
1

3

(
∇µfνλ +∇νfλµ +∇λfµν

)
. (59)

We can construct symmetric rank two Killing tensors by symmetrized multiplica-
tion

K(ab)
µν =

1

2

(
f (a)λ
µ f

(b)
λν + f (b)λ

µ f
(a)
λν

)
≡ 1

2

(
f (a)λ
µ f

(b)
λν + f (a)λ

ν f
(b)
λµ

)
= Kab

(µν) (60)
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These symmetric Killing tensors satisfy the Killing-Yano condition (57). The
Taub-NUT manifold admits 4 such Killing-Yano tensors, given by a scalar f0 and
three components that transform as a vector f i ∀ i = 1, 2, 3. We can form triplets
of symmetric Killing tensors as in (60), given by setting a = 0 and b = i

K(i)
µν = K(0i)

µν =
1

2

(
f0λ
µ f iλν + f iλµ f

0
λν

)
, i = 1, 2, 3. (61)

Using (58) we can see how they obey (57) as follows

∇γKij
(µν) +∇µKij

(νγ) +∇νKij
(γµ) = 0

∇(γK
ij
µν) = 0 ⇒ ∇(γK

i
µν) ≡ ∇(γK

0i
µν) = 0. (62)

Thus, we are assured that (57) is satisfied by this symmetric Killing tensor. This
allows construction of tensors of (57) that are quadratic in momenta, showing how
to get Stäckel tensors from Killing-Yano tensors. However, since Killing-Yano
tensors are anti-symmetric, they cannot form polynomials with components of the
same vector. They must be mixed products of components of different vectors,
as in the case of angular momentum, a product with a position and a momentum
component each. Applying Holten’s algorithm yields the Killing equation in (58).

5.2. Euclidean Taub-NUT

The Taub-NUT metric [44] admits four Yano tensors written as two-forms

f0 = 4
(
dψ + cos θ dφ

)
∧ dr + 2r

(
r ± 1

)(
r ± 2

)
sin θ dθ ∧ dφ (63)

f i = ±4
(
dψ + cos θ dφ

)
∧ dxi − εijkf(r) dxj ∧ dxk. (64)

One can always find Killing tensors embedded within conserved quantities, as ev-
ident from the Poisson Brackets of any conserved quantity expanded ala Holten
algorithm. The coefficient from Laplace-Runge-Lenz vector is analogous to the
Killing-Stäckel tensor Kij , so we can argue

Q(2) = KijΠ
iΠj ≡ 1

2
C

(2)
ij ΠiΠj .

Now the angular momentum co-efficients according to (22) are

C(0) = q gjk(x)
xj

r
θk, C

(1)
i = −gim(x)εmjkθ

kxj .

If we write C(1)
i = fikθ

k (see Section 8.1), using Holten’s Algorithm gives

∇jC(1)
i = ∇jfikθk = −gim(x)εmjkθ

k

∇iC(1)
j +∇jC(1)

i = 0 ⇒
(
∇ifjk +∇jfik

)
θk = 0
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which is the Killing equation (58). Thus, we can say that the Killing-Yano tensor
is

f0
jk = gjk(~x) ⇒ f j0k = δjk

f ijk = εijk ⇒ f i = εijke
j ∧ ek

such that the square of it gives the Stäckel tensor

Kk
ij = f0

imf
km

j .

This shows how Killing tensors are embedded within the conserved quantities. We
can choose four combinations of three indices out of the available four. Since
Taub-NUT can alternately be written in the form given by (10), the vierbeins of the
metric are given by

e0 =
4
(
dψ +A.dx

)√
f(r)

, ei =
√
f(r) dxi. (65)

So, according to our theory, we should have

f i = −εijk ej ∧ ek + δik e
0 ∧ ek

= −εijkf(r) dxj ∧ dxk ± 4
(
dψ +A.dx

)
∧ dxi.

This result so far is comparable with the result (64), so we have a possible method
for constructing Killing-Yano tensors from the coefficients of conserved quantities.
Their covariant exterior derivatives and their properties are given by

Df0 = ∇γf0
µν dxγ ∧ dxµ ∧ dxν = r

(
r ± 2

)
sin θ dr ∧ dθ ∧ dφ

Df i = 0, i = 1, 2, 3.

From above, we infer that covariant derivatives hold the following properties

∇γf0
µν = ∇µf0

νγ = ∇γνf0
γµ, ∇γf iµν = 0, i = 1, 2, 3.

Showing that they obey the condition for covariant derivatives of Killing-Yano
tensors. As shown in (61), these tensors can form a symmetric triplet or a vector
of Killing tensors. They also exhibit the mutual anti-commutation property

f if j = −δij + εijkf
k

{{
f i, f j

}
= f if j + f jf i = −2δij[

f i, f j
]

= f if j − f jf i = 2εijkf
k.

(66)

Proving that they are complex structures realizing the quaternion algebra. This im-
plies that f i are objects in quaternionic geometry and possibly hyperkähler struc-
tures, which we shall examine for the Taub-NUT in the next section.
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5.3. Graded Lie-Algebra via Schouten-Nijenhuis Brackets

We will now see if Killing-Yano tensors of the Taub-NUT exhibit Lie algebra under
the action of Schouten-Nijenhuis brackets. If they do, we could form higher order
Killing-Yano tensors from lower order ones of rank above 1. It is noteworthy, in
this context, that Kastor et al already found that Killing-Yano tensors on constant
curvature spacetimes do form Lie algebras with respect to the Schouten-Nijenhuis
Bracket (SNB) [29].

The SNB is a bracket operation between multivector fields which for two such
fields A = Ai1i2...im

∧m
k=1 ∂ik , B = Bj1j2...jn

∧n
k=1 ∂jk , is given by

Ca1...am+n−1 =
[
A,B

]a1...am+n−1

SN

= mAc[a1...am−1∇cBam...am+n−1]

+ n
(
− 1
)mn

Bc[a1...an−1∇cAan...am+n−1].

(67)

This new tensor is completely antisymmetric, fulfilling the first requirement to be
considered a Killing-Yano tensor. All that remains is for its covariant derivative to
exhibit the same Killing equation (59) relevant to such tensors. Now, we will use
an important identity (see (87) in Appendix) for Killing-Yano tensors

∇a∇bKc1c2...cn = (−1)n+1n+ 1

2
R[bc1|a|

dKc2c3...cn]d. (68)

Upon applying (68) to the covariant derivative of (67), we get

∇bCa1...am+n−1 =−
(
m+ n

)(
∇cA[ba1...am−1

)
∇cBam...am+n−1]

−
(
m+ n

)
Ac[a1...am−1

R|bd|camBam+1...am+n−1]
d.

(69)

The first term shows anti-symmetry of index b with other indices, but the second
term exhibits it only under certain circumstances. One could say that by symmetry
of the curvature tensor, in maximally symmetric spaces it could be expressed as

Rabcd(x) = f(x)gij(x)εiabε
j
cd = f(x)

{
gac(x)gbd(x)− gad(x)gbc(x)

}
.

So, for cases of constant curvature f(x) = k, we could write(
Rabcd

)
const

= k
{
gac(x)gbd(x)− gad(x)gbc(x)

}
. (70)

Thus, upon applying the constant curvature formula of (70) to (69), we get

∇bCa1...am+n−1 =−
(
m+ n

)[(
∇cA[ba1...am−1

)
∇cBam...am+n−1]

− kA[a1...am−1
Bam...am+n−1b]

]
= ∇[bCa1...am+n−1].

(71)
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This is similar to equation (59), showing that it is also a Killing-Yano tensor. So the
SNB of any two Killing-Yano tensors in constant curvature space is also a Killing-
Yano tensor. However, as evident from (46), the curvature of the Taub-NUT is
not constant, allowing us to conclude that its Killing-Yano tensors do not exhibit
Lie algebra under Schouten-Nijenhuis brackets. Thus, we cannot produce higher
order Killing-Yano tensors using the lower order ones for the Taub-NUT as in [43],
limiting us to the four available rank two Killing-Yano tensors.

6. Hyperkähler Structure and the Killing-Yano Tensors

Let M be a complex manifold. A Riemannian metric on M is called Hermitian if
it is compatible with the complex structure J of M ,

(
〈JX, JY 〉 = 〈X,Y 〉

)
. Then

the associated differential two-form ω defined by

ω(X,Y ) = 〈JX, Y 〉

is called the Kähler form, where ω is closed if and only if J is parallel. Then M is
called a Kähler manifold.

The connection between the metric g and the Kähler form ω is

ωµν = Jµ
λ.gλν =

(
Jg
)
µν

where J is the complex structure, for which J2 = −I.

Definition 1 (Hyperkähler manifold) A hyperkähler manifold is a C∞ Rieman-
nian manifold together with three covariantly constant orthogonal endomorphisms
I, J and K of the tangent bundle which satisfy the quaternionic relations

I2 = J2 = K2 = IJK = I.

Define three symplectic forms

ω1(v, w) = g(Iv, w), ω2(v, w) = g(Jv,w), ω3(v, w) = g(Kv,w)

for v, w ∈ TM . It is the same as the Kähler manifold except with more than one
type of complex structures. This implies a corresponding number of individual
Hyperkähler two-forms, given by

ωiµν = J iµ
λ
.gλν =

(
J ig
)
µν

(72)

gλν being the hyper-hermitian metric and J iµλ the almost complex structure ex-
hibiting quaternion algebra

JαJβ = −δαβI + εαβ
γJγ
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and thus, we can see that the hyperkähler structures exhibit the same algebra(
J iJ j

)
µν

= J iµρ g
ρσJ jσν

[
J i, J j

]
µν

= 2εijkJ
k
µν(

ωiωj
)
µν

= ωiµγω
jγ
ν =

(
J iµ

ρ
.gργ

)
gγλ
(
J jλ

σ
.gσν

)
= J iµ

ρ
J jρ

σ
gσν =

(
J iJ jg

)
µν

∴
[
ωi, ωj

]
µν

=
([
J i, J j

]
g
)
µν

= 2
(
εijkJ

kg
)
µν

= 2εijkω
k
µν .

These complex structures originate from t’Hooft symbols which have three self
dual and three anti-self dual components, meaning six different symplectic two-
forms. The almost complex J i can be represented by t’Hooft symbols, themselves
given by

J ijk = εijk ±
1

2

(
δ0
jδ
i
k − δ0

kδ
i
j

)
.

Thus, we can argue that hyper-kähler structures given by (72) are

ωijk =
(
J ig
)
jk

= gjn(x)

[
εink ±

1

2

(
δ0nδik − δ0

kδ
in
)]
. (73)

As shown in (11) and following [17] we take a different form of the Taub-NUT

ds2 = V (r) δij dxidxj + V −1(r)
(
dτ + σ.dx

)2
for which, the vierbeins, in a similar fashion to (65) are given by

e0 =
4
(
dτ + σ.dx

)√
V (r)

, ei =
√
V (r) dxi.

Thus, remembering that g = δij e
i ⊗ ej the hyper-Kähler forms (73) are

ωi = ωijkdx
j ∧ dxk = J ijke

j ∧ ek = εijk V (r) dxj ∧ dxk − e0 ∧ ei

ωi = εijkV (r)dxj ∧ dxk ±
(
dτ ∧ dxi + σn dxn ∧ dxi

)
. (74)

For the Taub-NUT, choosing only anti-self-dual components for V (r) = l+
1

r
and

restricting σ to lie on a plane (σ = (0, σ2, σ3)), the reduced symplectic forms are

ω1 = dx1 ∧ dτ + σ2dx1 ∧ dx2 + σ3dx1 ∧ dx3 +

(
l +

1

r

)
dx2 ∧ dx3

ω2 = dx2 ∧ dτ + σ3dx2 ∧ dx3 −
(
l +

1

r

)
dx1 ∧ dx3

ω3 = dx3 ∧ dτ − σ2dx2 ∧ dx3 +

(
l +

1

r

)
dx1 ∧ dx2.

(75)
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Table 2. Comparison between Killing-Yano tensors and hyperkähler struc-
tures, where dς =

(
dψ +Andxn

)
, γij = dxi ∧ dxj .

i Killing-Yano tensor f i Hyperkähler structure ωi

i ±4dς ∧ dxi − εijkf(r)γjk ±
(
dτ + σn.dx

n
)
∧ dxi + εijkV (r)γjk

1 ∓4dx1 ∧ dς +

(
1 +

4

r

)
γ23 dx1 ∧

(
dτ + σ2dx2 + σ3dx3

)
+

(
l +

1

r

)
γ23

2 ∓4dx2 ∧ dς −
(

1 +
4

r

)
γ13 dx2 ∧

(
dτ + σ3dx3

)
−
(
l +

1

r

)
γ13

3 ∓4dx3 ∧ dς +

(
1 +

4

r

)
γ12 dx3 ∧

(
dτ − σ2dx2

)
+

(
l +

1

r

)
γ12

This construction of hyperkähler structures is similar to deduction of spatial Killing-
Yano tensors, proving that Killing-Yano tensors are the hyperkähler structures of
the Taub-NUT. Few points are worth mentioning here. By studying the G2 holon-
omy equation for biaxial anti-self dual Bianchi IX base Gibbons et.al [11] found
associated first order equations satisfied by the metric coefficients to yield self-dual
Ricci flat Taub-NUT metrics where SO(3) ⊂ U(2) rotates the three hyperkähler
forms as a triplet.

7. Discussion

In this article we see that Taub-NUT is comparable to Euclideanized Bertrand
spacetime with magnetic fields due to the shared geometry, conserved quanti-
ties, and dual configuration as oscillator or Kepler systems. Identical conserved
quantities imply identical symmetry and Killing tensors. These are the Killing-
Stäckel and Killing-Yano tensors embedded as co-efficients within the Laplace-
Runge- Lenz and angular momentum vectors respectively. The Killing-Yano ten-
sors exhibit quaternionic algebra, implying that Killing-Yano tensors and hyper-
kähler structures are the same for Taub-NUT. Since euclideanization does not ef-
fect symmetry, we can expect Bertrand spacetimes with magnetic fields to exhibit
the same properties.
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Taub-NUT is a special case of anti-self-dual Bianchi-IX spaces [5], derived from
the equations that arise upon applying the corresponding settings to the classical
Darboux-Halphen system. Shared features, such as Ricci flow, integrability aspects
and integrable reductions to Painleve systems can be explored to some extent. In
special cases, self-dual Einstein Bianchi-IX metrics reduce to Taub-NUT de Sitter
metric with two parameters of the biaxial solutions identified as the NUT parameter
and the cosmological constant. Its anti-self dual curvature confirms that Taub-
NUT is a gravitational instanton, and thus, Ricci-flat with topological invariants
comparable with other possible diffeomorphically equivalent Ricci-flat manifolds.
According to Kronheimer classifications [30,31] all hyperkähler metrics like Taub-
NUT in four dimensions are always anti-self dual, so the hyperkähler quotient
construction due to Hitchin, Karlhede, Lindstrom and Rocek [23] carries an anti-
self dual conformal structure, allowing Penrose’s twistor theory [40] techniques to
be applied here.

Recent works in emergent gravity [32] aim at constructing a Riemannian geom-
etry from U(1) gauge fields on noncommutative spacetime. This construction is
invertible to find corresponding U(1) gauge fields on a (generalized) Poisson man-
ifold for a metric (M, g). There exist detailed tests [33] of the emergent gravity
picture with explicit solutions in both gravity and gauge theory. Symplectic U(1)
gauge fields have been derived starting from the Eguchi-Hanson metric in four- di-
mensional Euclidean gravity. The result precisely reproduces U(1) gauge fields of
the Nekrasov-Schwarz instanton derived from the top-down approach. To clarify
the role of noncommutative spacetime, the prescription was inverted and Braden-
Nekrasov U(1) instanton defined in commutative spacetime was used to derive
a gravitational metric just to show that the Kähler manifold determined by the
Braden-Nekrasov instanton exhibits a spacetime singularity while the Nekrasov-
Schwarz instanton gives rise to a regular geometry in the form of Eguchi-Hanson
space. This implies the importance noncommutativity of spacetime plays in resolv-
ing spacetime singularities [34] in general relativity. Some relevant studies related
to emergent nature of Schwarzschild spacetime was also performed in [6].

One may wonder if we can similarly get U(1) gauge fields from the Taub-NUT
metric. A critical difference from the Eguchi-Hanson metric [13] is that the Taub-
NUT (10) is locally asymptotic at infinity to R3 × S1, so it belongs to the class
of Asymptotically Locally Flat (ALF) spaces. Thus, Hopf coordinates cannot
represent the Taub-NUT metric, and it is difficult to naively generalize the same
construction to ALF spaces. From gauge theory perspective, it may be related to
ALF spaces arising from NC monopoles [36] whose underlying equation is de-
fined by an S1-compactification of the self(anti)-dual-instanton equation, the so-
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called Nahm equation. We will discuss in [35] a possible generalization to include
Taub-NUT in the bottom-up approach of emergent gravity.

For a special choice of the NUT parameter we get a regular metric, but generally,
one encounters singularities at either end of the four-dim radial coordinate. In
the most generic case, for a specific choice of azimuthal angle period, one can
get away with the bolt-singularity. The NUT singularity (co-dimension 4 orbifold
singularity) stays, possibly admitting an M theory interpretation associated with
the corresponding non-abelian gauge symmetries [2].

Recently, Ricci flat metrics of ultrahyperbolic signature were constructed [8] with
l-conformal Galilei symmetry, involving an AdS2 part reminiscent of the near hori-
zon geoemtry of extremal black holes. Similarly, it should be interesting to see if
Taub-NUT spaces are associable with geodesics that can describe second order
dynamical systems. Perhaps the most interesting issue will be to explore whether
something like “Taub-NUT/CFT” correspondence can be conjectured.

8. Appendix

This section contains some important computations and derivations used in the
article.

8.1. Basic Killing Tensors from Holten’s Algorithm

Angular Momentum

If we choose to set C(n)
{i} = 0, n ≥ 2, we get the Killing equations

∇(iC
(1)
j) = 0. (76)

There are two parts of this solution to study in detail. We can write (76) as

∇iC(1)
j +∇jC(1)

i = 0 ⇒ ∇iC(1)
j = −∇jC(1)

i .

This is an anti-symmetric matrix, written as θij = −θji. Further elaboration gives

θij(~x) = εijk(~x)θk = gim(~x)εmjkθ
k

∴ −∇jC(1)
i = gim(~x)εmjkθ

k ⇒ C
(1)
i = −gim(~x)εmjkθ

kxj .

Thus, we have the rotation operator as the first order co-efficient

C
(1)
i = −gim(~x)εmjkθ

kxj . (77)
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Applying this (77) into the first term of the power series, we get

Q(1) = C
(1)
i Πi = −gim(~x)εmjkθ

kxjΠi

⇒ L.θ = −
(
εijkΠ

ixj
)
θk =

(
x×Π

)
.θ

∴ L = x×Π. (78)

This eventually becomes the conserved quantity known as the angular momentum.

Laplace-Runge-Lenz Vector

Now when we choose to set C(n)
{i} = 0, n ≥ 3, we get the Killing equations

∇iC(2)
jk +∇jC(2)

ki +∇kC
(2)
ij = 0. (79)

Clearly, (79) perfectly matches the property of the Killing-Yano and Stäckel ten-
sors. The Runge-Lenz like quantity is given by a symmetric sum as shown below[

A×
(
B ×C

)]
i

= εilmε
m
jkA

lBjCk, εilmε
m
jk = δijδlk − δikδlj

∇kC
(2)
ij = εilm(~x)εmjk(~x)nl + (i↔ j)

=
(
2gij(~x)gkl(~x)− gik(~x)gjl(~x)− gil(~x)gkj(~x)

)
nlxk

C
(2)
ij =

(
2gij(~x)nk − gik(~x)nj − gkj(~x)ni

)
xk. (80)

As before, applying (80) to the second order term in the power series gives

Q(2) =
1

2
C

(2)
ij ΠiΠj =

{∣∣Π∣∣2(n.x)− (Π.x
)(

Π.n
)}

= N .n =
{∣∣Π∣∣2x− (Π.x

)
Π
}
.n =

{
Π×

(
x×Π

)}
.n.

∴ N = Π×
(
x×Π

)
. (81)

This quantity is a term that is present in another conserved quantity known as the
Laplace-Runge-Lenz vector. Having found the two familiar types of conserved
quantities, we can now proceed to see what it looks like for the Taub-NUT metric.
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8.2. The Bohlin Transformation of Harmonic Oscillator Dynamics

The Bohlin transformation in a 2D plane is f : z → ξ = z2 = R eiφ; z, ξ ∈ C.
Another invariant, the angular momentum, will change form under this transfor-
mation. To preserve its form, we re-parametrize accordingly

l = r2θ̇ = |z|2θ̇ = |ξ|2φ′ ⇒ |ξ|dτ̃
dτ
θ′ = |ξ|2θ′

∴ τ −→ τ̃ :
dτ̃

dτ
= |ξ|. (82)

Using (82), the velocity and acceleration can be given as

ż =
1

2

(
ξ̄
) 1

2 ξ′, z̈ =
1

2

|ξ|2(
ξ
) 1

2

ξ′′ +
1

4

(
ξ
) 1

2 |ξ′|2. (83)

Applying (83), the Harmonic Oscillator equation z̈ = − k
mz becomes

ξ′′ = −
(

1

2
|ξ′|2 +

2k

m

)
ξ

|ξ|2
·

The oscillator HamiltonianH can be re-written to complete the transformation

H =
m

4

(
1

2
|ξ′|2 +

2k

m

)
|ξ| ⇒

(
|ξ′|2

2
+

2k

m

)
=

4H
m

1

|ξ|
= κ

1

|ξ|

∴ ξ′′ = −
(
|ξ′|2

2
+

2k

m

)
ξ

|ξ|2
≡ −κ ξ

|ξ|3
· (84)

Showing that it restores the central force nature of the system, giving us the equa-
tion of motion for inverse square law forces.

8.3. Double Derivative of Killing-Yano Tensors

Similar to Killing vectors, rank nKilling-Yano tensors exhibit a curvature equation(
∇a∇b −∇b∇a

)
Kc1...cn =

n∑
i=1

Rabci
dKc1...d...cn . (85)

For the LHS of (85), by permuting the indices according to the rules, we will get(
∇a∇b −∇b∇a

)
Kc1...cn = −∇a∇c1Kbc2...cn +∇b∇c1Kac2...cn

= 2∇c1∇bKac2...cn −Rabc1dKdc2...cn

+

n∑
i=2

(
Rbc1ci

dKac2...d...cn −Rac1cidKbc2...d...cn

)
= Rabc1

dKdc2...cn +

n∑
i=2

Rabci
dKc1...d...cn
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2∇c1∇bKac2...cn = 2Rabc1
dKdc2...cn +

(
Rabci

dKc1...d...cn︸ ︷︷ ︸
I

+

n∑
i=2

Rac1ci
dKbc2...d...cn −Rbc1ci

dKac2...d...cn︸ ︷︷ ︸
II

) (86)

∵ ∇c1∇bKac2...cn = ∇c1∇[bKac2...cn],

Wc1 := ∇c1∇[bKac2...cn]e
a ∧ eb ∧ ec2 ... ∧ ecn .

On writing (86) as a three-form, we can say that for I and II

I : Rabci
dea ∧ eb ∧ eci =

1

3

(
Rabci

d +Rbcia
d +Rciab

d
)
ea ∧ eb ∧ eci = 0

II : Rac1ci
dKbc2...d...cne

a ∧ eb ∧ eci = −Rc1cib
dKac2...d...cne

a ∧ eb ∧ eci .

Thus, on using Bianchi identity for curvature, II of (86) will become

−
n∑
i=2

(
Rc1cib

d +Rbc1ci
d
)
Kac2...d...cne

a ∧ eb ∧ eci

=
n∑
i=2

Rcibc1
dKac2...d...cne

a ∧ eb ∧ eci

=
n∑
i=2

Rabc1
dKdc2...ci...cne

a ∧ eb ∧ eci = (n− 1)Rabc1
dKdc2...ci...cne

a ∧ eb ∧ eci .

Applying this result back in the main equation (86), we get

2∇c1∇bKac2...cne
a ∧ eb ∧ eci =

[
2Rabc1

d + (n− 1)Rabc1
d
]
Kdc2...cne

a ∧ eb ∧ eci

2∇c1∇bKac2...cne
a ∧ eb ∧ eci = (n+ 1)Rabc1

dKdc2...cne
a ∧ eb ∧ eci .

Finally, we get the double-derivative of Killing-Yano tensors as

∴ ∇a∇bKc1c2...cn = (−1)n+1n+ 1

2
R[bc1|a|

dKc2c3...cn]d. (87)
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