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Abstract. In this paper we develop the quantization of a particle in the plane un-
der the influence of a perpendicular magnetic field using the geometric quantization
with half–forms in Hilbert space of holomorphic functions. An original coordinate
transformation is applied to convert the problem into a system of harmonic oscilla-
tors. Then, it is solved highlighting the relationship between different representa-
tions. We emphasize the isomorphism between the holomorphic representation and
the Schrödinger representation.
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1. Introduction

Geometric quantization is a well established theory (see for example [5, 11, 15, 16,
22,25,27,31]), and it is useful in the choice of coordinates and other structures such
as operators, Hilbert spaces and isomorphisms between different representations.

The system studied here is a particle in a plane under the influence of a perpendic-
ular magnetic field. This system provides the basis for analyzing other phenomena
such as the quantum Hall effect [20] or the study of anyons [30]. The same system
was studied in [4] with a completely different approach. Also, a different approach
to the holomorphic quantization of a particle in a magnetic field is presented by
Hall and Kirwin [14] or Dunne [6].

The following section briefly explains the theory of geometric quantization. We
state the main ideas that lead to the quantization with half–forms, without exten-
sive developments and demonstrations which can be found in the reference sec-
tion.Then a model consisting of a charged particle moving in a plane under the in-
fluence of a perpendicular magnetic field is developed. Special emphasis is placed
on the original choice of coordinates, the complex structure and description of the
Hilbert space. In the literature we can find interesting examples of complex prob-
lems solved through a specific coordinate transformations [7].
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Finally, we explicitly write the isomorphism between the holomorphic representa-
tion and the Schrödinger representation, also known as the Segal–Bargmann trans-
form [12].

2. Geometric Quantization

The classical mechanical systems can be described very elegantly in the language
of differentiable manifolds [1, 2]. In this description, the physical states are the
points of a smooth manifold M, known as the phase space. This manifold is
equipped with a closed two-form, the symplectic form. This form gives a natu-
ral volume in the manifold called the Liouville volume. The symplectic structure
results in a geometry called symplectic geometry [8], where the basic fact is not the
measurement of the length, but the oriented area. Hence, it follows that symplectic
forms can only exist in manifolds with even dimension.

The other important elements in the description of a classical physical system are
the observables, which are differentiable functions defined on the manifold. In
the set of observables there is a bilinear operation, namely the Poisson bracket,
which plays a key role. This operation converts the space of smooth functions
into a Poisson algebra. Also, it is worth noting the relevance of the Hamiltonian
observable, which represents the energy and determines the time evolution of any
observable. The time derivative of an observable is the Poisson bracket of the same
observable with the Hamiltonian.

The quantization of a classical system associates it with its quantum counterpart,
assigning Hermitian operators in a Hilbert space to the classical observables. This
space describes the quantum states. Hermitian operators play the role of quantum
observables.

Quantum observables form a non–commutative algebra, with the commutator mul-
tiplied by −i/~ as bilinear operation.

The geometric quantization [15, 22, 25, 27, 31], which began with the works of
Kostant and Souriau [18, 28], is a set of rules that associate self–adjoint operators
on some Hilbert space with functions on a symplectic manifold M (i.e., classical
observables). This linear mapping, f 7→ f̂ , should verify the following rules

1) 1̂ = I

2) {̂f, g} = −(i/~)[f̂ , ĝ].

Here, 1 is the constant function, I is the identity operator, {f, g} is the Poisson
bracket between f and g and [f̂ , ĝ] = f̂ ĝ − ĝf̂ is the commutator between the
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operators f̂ and ĝ. A map that satisfies these conditions is called a prequantization
map.

Ideally, a third condition should be verified, which when M = R2n, can be ex-
pressed as

3) canonical coordinates qi and pi, i = 1, ..., n are represented irreducibly.

Let A and B be two self-adjoint operators on H satisfying the canonical com-
mutation relations ([A,B] = i~I). Also, suppose that A and B act irreducibly on
H , meaning that the only closed subspaces of H invariant under A and B are
{0} and H . Then, providing the exponentiated commutation relations hold [13],
by the Stone–von Neumann theorem [13, 23], A and B are unitarily equivalent to
the operators of position and momentum, q̂ and p̂, i.e., there is a unitary operator
U : H → L2(R) such that UAU−1 = q̂ and UBU−1 = p̂.

In the Schrödinger representation of the Euclidean case, the Stone–von Neumann
theorem implies that the Hilbert space consists of square integrable functions that
depend only on the position, and the operators which correspond to q and p are
the multiplication by q and the derivative with respect to q multiplied by −i~,
respectively.

Finding an application that verifies all the conditions for all the observables is
impossible. Moreover, it is not even possible in the Euclidean case restricting
observables to polynomial functions, as described in the theorem of Groenewold–
van Hove [10]. Therefore, the geometric quantization program can only aspire to
represent some operators. In the best case scenario, it represents a Lie subalgebra
of the algebra of observables.

Geometric quantization is a two-step process. First, a Hilbert space is associated
with the symplectic manifold on which the observables act as symmetric operators
(prequantization). The conditions 1) and 2) are verified. The representation of
the canonical coordinates is not irreducible. The reason is that the wave functions
depend on the coordinates and momenta. In the second step, in order to verify the
condition 3), a subspace of wave functions that depend on half of the variables is
chosen. This is achieved by selecting a structure called polarization, this essentially
being a choice of a maximal subspace on which the symplectic form vanishes at
each point of the cotangent bundle of the phase space.
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2.1. Prequantization

The phase space has a natural volume, the Liouville volume, Ω. If we call ω to the
symplectic form, it follows that

Ω = (−1)
n(n−1)

2
ωn

n!
(1)

where ωn is the exterior product of ω with itself n times.

The candidate for prequantization Hilbert space is the space of square integrable
complex functions with the measure given by this volume. In this space the observ-
ables act as classical Hamiltonian vector fields. A function f corresponds to the
unique vector field Xf defined by ω(Xf , ·) = df. The Poisson bracket between
functions f and g is given by {f, g} = ω(Xf , Xg).

If we associate the operator −i~Xf to the function f , then this map satisfies con-
dition 2) but not condition 1), since the constants are in the kernel of the operator.
One might think that modifying this operator with the addition of a term f , i.e.,
taking −i~Xf + f , solves the problem. Despite condition 1) being now satisfied,
condition 2) is not fulfilled.

There is not a naturally associated space of complex functions. To consider com-
plex functions we must find how to “glue” the complex plane at each point of the
phase space (thought of as complex vector space of dimension one). A structure of
this type is called a complex line bundle. The condition for the existence of such
structure is that the integral of ω on any closed surface be an integer multiple of
2π~. This condition corresponds to the quantization conditions in the early models
of quantum mechanics [26]. A symplectic manifold that satisfies this condition is
called quantizable.

We call L to this complex line bundle. L has a natural projection, assigning m to
every point of the complex plane onm ∈M . The natural way to view the complex
functions is through applications of M in L such that when composed with the
projection it gives the identity on M . These applications are called sections of L.

After choosing a section s0 of module one, i.e., |s0(m)| = 1 for all m ∈ M, any
other section is written as s(m) = φ(m)s0(m). In the fibers of L it is defined a
Hermitian scalar product given by (s1(m), s2(m)) = φ̄1(m)φ2(m). Integrating
this product on M we obtain a scalar product in the space of sections of L. The
square integrable sections form a Hilbert space which is called prequantization
Hilbert space.

Given a symplectic potential θ, i.e., a locally defined one-form such that ω = dθ,
and a vector field X on M, the following expression defines a covariant derivative
of the section s = φs0 in the direction of the field X
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∇Xs = X(φ)s0 +
i

~
θ(X)s0 (2)

where θ is called the connection one-form.

Given an observable f, if we define the operator

f̂PQ = −i~∇Xf
+ f (3)

where Xf is the Hamiltonian field of f and the last term is the operator of multi-
plication by f, then f̂PQ is a symmetric operator which satisfies 1) and 2).

The expression (2) depends on the symplectic potential θ which represents the con-
nection of the bundle in the corresponding coordinate chart. If the symplectic form
is not exact, then a globally defined one-form θ cannot be defined and hence at the
intersection of two coordinate charts the respective one-forms θ1 and θ2 are related
by θ2 = θ1 + du, with u being a locally defined function. When changing the
coordinate chart, the section s0 should be modified and this is accompanied by a
change in the function φ as follows φ2 = eiu/~φ1. The above mentioned summa-
rizes the theory of connections on complex line bundles with the corresponding
change of gauge.

At this point we note that the condition 3) is not verified. For example, in the
Euclidean case with canonical coordinates (q, p) the operators corresponding to q
and p are

q̂PQ = i~
∂

∂p
+ q, p̂PQ = −i~

∂

∂q
· (4)

This representation is not irreducible. For example, the sections that depend only
on the coordinate q are invariant under the action of both operators. It could be
expected that restricting the space to these functions, an irreducible representa-
tion will be achieved. However, in this case there is no square integrable nonzero
functions.

The next section shows how to make a map that verifies the quantization conditions
by introducing a new structure (complex polarization).

2.2. Holomorphic Quantization

The second step in the geometric quantization is to restrict the Hilbert space of
prequantization to assure that condition 3) is verified. When the manifold M is
R2n, one can take the set of functions that depend only on the position. As stated
above, there are no square integrable functions with the Liouville volume (unless
M is compact). To obtain the quantization space we can change the integration
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measure. This is done by introducing a new structure called polarization. How-
ever, the only quantizable canonical observables are those whose flow preserves
the polarization.

A polarization is a subspace with half the dimension of the tangent space where
the symplectic form vanishes. The polarization can be real or complex (it can also
be an intermediate case). In this paper we use a complex polarization.

A complex structure J is an automorphism of the tangent space of M verifying
J2 = −I [17]. A structure of a complex vector space can be locally given to the
tangent space by defining the product of a vector X with a complex number a+ ib
as (a + ib)X = aX + bJX. Whether this structure can be globally defined or
not is related to the Nirenberg–Newlander theorem [21]. Here, we assume that the
conditions of the theorem are met. In this case we have a complex manifold.

J acts on the complexified tangent space, which is obtained by linear combinations
of the vectors with complex coefficients. J has eigenvalues i and−i.Moreover, the
complexified tangent space is the direct sum of eigenspaces corresponding to these
eigenvalues. Then, the complex vector space defined above can be identified with
the eigenspace of eigenvalue−i at each point [9,17]. Thus, there is a smooth choice
of a subspace of the complexified tangent space at each point of the manifold. This
is called a distribution, and this distribution is called a holomorphic polarization.
TCM = P ⊕ P̄, TCM is the complexified tangent space, P is the holomorphic
polarization, and P̄ the antiholomorphic polarization.

Square integrable sections of the prequantization bundle that are covariantly con-
stant in the directions of the antiholomorphic polarization, i.e.,∇Xs = 0 ifX ∈ P̄ ,
form the Hilbert space of holomorphic quantization.

2.2.1. Half–Form Quantization

Thus far, we have considered the wave functions as sections of the bundle of pre-
quantization. However, if the physical interpretation is to be considered, the square
modulus of the wave functions is a probability density. The latter observation mo-
tivates the introduction of an additional structure, which is the final step in the
geometric quantization in most cases of physical interest. This structure is a bun-
dle of half–forms.

First we define the canonical bundle KP , comprised of the complex n-forms on
M which vanish in the fields of P̄, i.e., α(X) = 0 for all X in P̄. Those that are
closed, i.e., dα = 0, are the holomorphic n-forms and are called polarized.
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If α and β are elements of KP then ᾱ ∧ β is proportional to the Liouville volume.
We can define a scalar product in the fibers of KP , given by

1

n!
ᾱ ∧ β = (−i)n(α, β)Ω. (5)

In KP there are two operations, namely the Lie derivative LXα, defined for fields
that preserve P̄ , and the partial connection ∇Xα = dα(X), defined for fields in
P̄.
The square root of a bundle KP is a bundle δP on M such that δP ⊗ δP is isomor-
phic to KP together with the corresponding isomorphism. In this work we take a
cotangent bundle as phase space. Determining the existence of this bundle can be
difficult; however, in this case, the bundle δP exists. If ν1 and ν2 are sections of
δP , then ν1 ⊗ ν2 is a section of KP .
The Lie derivative and the partial connection may be extended to sections of the
bundle δP by imposing the condition LX(α ⊗ α) = 2α ⊗ LXα. From the afore-
mentioned, it follows that there is a unique Hermitian structure on δP such that

(ν, ν) =
√

(ν ⊗ ν, ν ⊗ ν). (6)

The connection in L and the partial connection on δP are combined to give a partial
connection on L⊗ δP .
In the space of square integrable polarized sections of L ⊗ δP there is a product
given by

〈sL1 ⊗ ν1, sL2 ⊗ ν2〉 =

∫
M

(sL1, sL2)(ν1, ν2)Ω (7)

where sLi ⊗ νi is a section of L ⊗ δP , and (sL1, sL2) and (ν1, ν2) are Hermitian
structures on L and δP , respectively.

With all of these elements, the quantization operator with half–forms can be de-
fined as follows: let f be a classical observable whose Hamiltonian flow preserves
the polarization P and s = sL ⊗ ν, then the operator

f̂(sL ⊗ ν) = (f̂PQsL)⊗ ν − i~sL ⊗ LXν (8)

is a symmetric operator which verifies the quantization conditions 1) and 2). This
step also verifies condition 3). Moreover, if the flow of Xf is complete, then f̂ is
self–adjoint.

3. Particle in a Magnetic Field

Considering a charged particle moving in a plane under the influence of a per-
pendicular magnetic field, the classical phase space of the system is the cotangent
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space M = T ∗R2. We use canonical coordinates v = (q1, q2, p1, p2) ∈ R4 and the
canonical symplectic two-form ω = dq1 ∧ dp1 + dq2 ∧ dp2.

We consider the symmetric gauge where the components of the magnetic vector
potential for the magnetic field B are A1 = −B q2/2 and A2 = B q1/2, and
also the classical observables H and L (the Hamiltonian and angular momentum).
These are given by

H =
1

2m

((
p1 +

eB

2
q2

)2

+

(
p2 −

eB

2
q1

)2
)
, L = q1p2 − q2p1 (9)

where m and e are the mass and the charge of the particle, respectively.

Following, with a change of canonical coordinates given by

Q1 = − p2√
eB

+
q1

2

√
eB, Q2 = − p1√

eB
+
q2

2

√
eB

P1 =
p1√
eB

+
q2

2

√
eB, P2 =

p2√
eB

+
q1

2

√
eB

(10)

we obtain

H =
ωc

2

(
P1

2 +Q2
1

)
, L =

1

2

(
P2

2 +Q2
2 −

(
P1

2 +Q2
1

))
(11)

where ωc = eB/m is the cyclotron frequency.

To obtain the quantum description of the above system we use the geometric quan-
tization scheme. In the cotangent case, we can choose a global symplectic poten-
tial. Then, we opt for a trivial prequantization bundle given by L = M × C with
connection form Θ0 = P1 dQ1 +P2 dQ2 (the canonical one-form of the cotangent
bundle).

Following, we analyze complex polarizations corresponding to complex structures
in R4. We take the complex structure J given by the matrix

J =


0 0 1 0
0 0 0 1
−1 0 0 0

0 −1 0 0

 . (12)

This is compatible with the symplectic structure and gives complex variables.
More precisely, if we consider the projections Π+ and Π− in the complexified
phase space (R4 ⊗ C ≡ C4) given by

Π± =
1∓ iJ

2
(13)
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and we call V = (Q1, Q2, P1, P2), then we have

Π+V = z1e1 + z2e2 (14)

where z1 = P1 + iQ1, z2 = P2 + iQ2, e1 = (−i, 0, 1, 0)/2 = ∂/∂z1 and
e2 = (0,−i, 0, 1)/2 = ∂/∂z2. Applying Π−, the conjugate equation is obtained,
in particular z̄1 = P1 − iQ1 and z̄2 = P2 − iQ2. e1 and e2 are a basis for the
complex polarization P , and ē1 and ē2 are a basis corresponding to P̄. Then, we
have R4 ⊗ C = P ⊕ P̄.
We call z = (z1, z2) ∈ C2 to the corresponding complex coordinates of the holo-
morphic polarization, and |z|2 = z1z̄1 + z2z̄2. A complex manifold of this type,
with a symplectic structure and a compatible metric, is called a Kähler manifold
(Kobayashi and Nomizu [17]). In this type of manifolds there exists a function, the
Kähler scalar, in this case given by

K =
1

2
|z|2. (15)

From this function, an adapted symplectic potential is obtained, and it is given by

θK = − i

2
(z̄1dz1 + z̄2dz2) = −i ∂K (16)

where ∂ is the operator

∂φ =
∂φ

∂z1
dz1 +

∂φ

∂z2
dz2. (17)

Using the above operator and its conjugate, the symplectic form is expressed as
follows

ω = − i

2
(dz̄1 ∧ dz1 + dz̄2 ∧ dz2) = −i ∂∂K. (18)

Thus, we have a complex admissible positive polarization P with adapted one-
form θK . This one-form defines a global trivialization of the fiber bundle L where
the polarized sections are holomorphic functions of z1 and z2.

The observablesH andL generate canonical fluxes which preserve the polarization
and are therefore quantizable. In coordinates (z, z̄) they are given by

H =
ωc

2
z1z̄1, L =

1

2
(z2z̄2 − z1z̄1) . (19)

We define a new symplectic potential θ given by

θ = θK +
i

2
dK =

1

2
(P1dQ1 + P2dQ2 −Q1dP1 −Q2dP2) . (20)
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In the gauge given by θ the wave functions can be expressed by

ψ(z, z̄) = φ(z) e−|z|
2/4~ (21)

where φ is a holomorphic function of z1 and z2. The Hilbert space of square inte-
grable wave functions have scalar product

〈ψ1, ψ2〉K =
1

(2π~)2

∫
C2

φ1(z)φ2(z) e−|z|
2/2~ d2z (22)

where d2z is the Lebesgue measure in C2, which coincides with the Liouville
volume.

The holomorphic function φ is an element of what is known as the Segal–Bargmann
space or Bargmann–Fock space [3, 12, 24]. This space is a closed subspace of the
Hilbert space of square integrable functions on C2 with the Gaussian measure.
Therefore, it is a Hilbert space denotedHK .

One of the most important characteristics of these spaces is that the point evaluation
operator is continuous. Hence, there exists a function named reproducing kernel,
holomorphic in the first variable and antiholomorphic in the second one, which in
this case is ew·v̄/2~ and for all φ ∈ HK verifies

φ(w) =
1

(2π~)2

∫
C2

φ(v)ew·v/2~e−|v|
2/2~ d2v (23)

where w · v̄ = w1v̄1 + w2v̄2.

To find the operators corresponding to H and L we must find the corresponding
Hamiltonian fields. From ω(Xf , ·) = dH and ω(Xf , ·) = dL we obtain

XH = iωc

(
z1

∂

∂z1
− z̄1

∂

∂z̄1

)
XL = i

(
z2

∂

∂z2
− z1

∂

∂z1

)
− i

(
z̄2

∂

∂z̄2
− z̄1

∂

∂z̄1

)
.

(24)

The terms in the conjugate directions vanish in the space of polarized functions.
Then, the quantized operators Ĥ and L̂, obtained using geometric quantization
with half–form correction (8) in the gauge given by θ are given by

Ĥψ = ~ωc

(
z1
∂φ

∂z1
+

1

2
φ

)
e−|z|

2/4~

L̂ψ = ~
(
z2
∂φ

∂z2
− z1

∂φ

∂z1

)
e−|z|

2/4~.

(25)

The 1/2 term in Ĥ arises from the Lie derivative of the square root of the volume
as explained above.
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3.1. The Spectrum of Ĥ and L̂

The operator Ĥ is the Hamiltonian of a harmonic oscillator and its holomorphic
eigenfunctions are positive or zero powers of the variable z1. In particular, the
equation Ĥψ = Eψ leads to the differential equation

z1
∂φ

∂z1
+

1

2
φ =

E

~ωc
φ (26)

whose holomorphic solutions are of the form φn = zn1 g(z2). Then, we have

Ĥψ = ~ωc

(
n+

1

2

)
ψ

L̂ψ = ~zn1
(
z2

dg

dz2
− ng

)
e−|z|

2/4~.

(27)

Let l be the eigenvalue of the angular momentum, i.e., L̂ψ = lψ. Then, we have

z2
dg

dz2
− ng = lg. (28)

Solving this equation for holomorphic g we obtain the normalized eigenfunctions

ψnl(z) =
zn1 z

n+l
2

(2~)n+l/2
√
n!(n+ l)!

e−|z|
2/4~ (29)

where l takes all integer values from −n. This is the Landau spectrum (see for
example Landau and Lifshitz [19]).

4. The Segal–Bargmann Transform

We were interested in finding the unitary map between the Schrödinger represen-
tation in the original canonical coordinates (q, p) and the holomorphic representa-
tion. First we made a unitary transformation on C2 to transform the coordinates
(z1, z2) into new coordinates (w1, w2) preserving the polarization. The change is
given by

w1 =
z1 + iz2√

2
, w2 =

z2 + iz1√
2
· (30)

Then, the wave functions are given by

ψ(w) = φ(w) e−|w|
2/4~ (31)

with the scalar product (22).
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The new coordinates w1 and w2 allowed us to relate more easily the holomorphic
representation with the original coordinates (q, p) (9). The real part of w is p and
the imaginary part is q, both up to a constant.

The common eigenvectors of Ĥ and L̂ are

ψnl(w) =
(w1 − iw2)n (w2 − iw1)n+l

(4~)n+l/2
√
n!(n+ l)!

e−|w|
2/4~. (32)

Following, we studied the pairing between this Hilbert space and the space cor-
responding to the real polarization used in the Schrödinger representation. In this
polarization the leaves are characterized by constant q coordinates, so the polarized
functions are only functions of q1 and q2.

The one-form θ that we used to represent the polarized wave functions in the
holomorphic representation is invariant under the coordinate transformation which
sends the original (q, p) to (Q,P ). Thus we have

θ =
1

2
(P1dQ1 + P2dQ2 −Q1dP1 −Q2dP2)

=
1

2
(p1dq1 + p2dq2 − q1dp1 − q2dp2)

= θ0 + du = θK +
i

2
dK.

(33)

where θ0 = p1dq1 + p2dq2 is the canonical one-form and u = −(q1p1 + q2p2)/2.
So the polarized wave functions in the Schrödinger representation and the holo-
morphic representation are

ψS(q, p) = φS(q)e−iq·p/2~, ψK(w,w) = φK(w) e−|w|
2/4~. (34)

One remarkable observation in the last line of the first equation in (33) is that the
selection of the coordinate z = P + iQ instead of Q + iP is responsible for the
compatibility of the forms θK and θ0. Therefore, a pairing between representations
can be readily written. This selection is somewhat arbitrary; however, this change
leads to a similar formula albeit with a change of the sign for the term θ0. Then,
we must also change the sign of the symplectic form.

As stated earlier, the complex variable w can be expressed as follows in terms of
the original canonical variables

w1 =

√
2√
eB

p1 + i

√
eB√
2
q1

w2 =

√
2√
eB

p2 + i

√
eB√
2
q2.

(35)
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The product of ψS with ψK can be integrated on the original manifold with the
Liouville volume. Then, we defined a pairing between these representations as
follows

〈ψS , ψK〉SK =
1

(2π~)2

∫
C2

φS(q)φK(w)eiq·p/2~−|w|2/4~ d2p d2q. (36)

Using the property (23) for φK and integrating in the variables p1 and p2 we have

〈ψS , ψK〉SK =
1

(2π~)2

∫
C2×R2

φS(q)φK(v)G(q, v)e−|v|
2/2~ d2q d2x d2y. (37)

where G is the function

G(q, v) =
e−eB(q−i

√
2v)2/8~e−eBq·(q−i2

√
2v)/8~

2π~
· (38)

For convenience we used the integration variables

v1 =

√
eB

2
(2x1 + iy1) and v2 =

√
eB

2
(2x2 + iy2). (39)

This pairing naturally induces a unitary map between holomorphic representation
and Schrödinger representation by imposing compatibility with scalar products
(22) ofHK and

〈ψ1, ψ2〉S =
eB

2π~

∫
R2

ψ1(q)ψ2(q) d2q (40)

ofHS (the latter is, up to a constant, the usual product in L2(R2) ≡ L2(C)). Then,
it must be verified that

〈ψS , ψK〉SK = 〈ψS ,ΛψK〉S = 〈Λ−1ψS , ψK〉K . (41)

These identities hold for isometries

(ΛψK) (q) =
1

2π~

∫
C2

φK(v)G(q, v)e−|v|
2/2~ d2x d2y (42)

and Λ−1, which is given by(
Λ−1ψS

)
(w) =

1

2π~

∫
R2

φS(q)G(q, w) d2q. (43)

The above expressions are versions of the Segal–Bargmann transform [3, 12, 24,
29, 31].
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Using the equation (42) we can find the wave functions in the Schrödinger repre-
sentation that corresponds to the eigenfunctions ψnl shown in (32). In terms of the
complex variable ξ =

√
eB(q1 + iq2)/

√
2~ we obtain

(Λψnl) (q) = (−i)n
√
n!√

(n+ l)!
ξlLl

n(|ξ|2) e−eB(q21+q22)/2~ (44)

where Ll
n is a generalized Laguerre polynomial. These eigenfunctions coincide

with Dunne’s [6] for the same problem.

5. Conclusions

In the literature we can find interesting examples of complex problems solved
through a specific coordinate transformations, e.g. [7]. Guided by the rules of ge-
ometric quantization, we show how to analyze in detail the structure of the Hilbert
space of a magnetic problem by using a formalism of holomorphic functions, with
an original approach involving a specific change of coordinates. Moreover, our
work allows for the relation of different representations associated with the prob-
lem.
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