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Abstract. Proper velocities are measured by proper time as opposed to coor-
dinate velocities, which are measured by coordinate time. The standard Lorentz
transformation group, in which each transformation is expressed by a coordinate
velocity and an orientation between two inertial frames, is well known. In contrast,
the equivalent proper-time Lorentz transformation group, in which each transfor-
mation is expressed by a proper velocity and an orientation between two inertial
frames is unknown. The dignity of special relativity theory requires that every pos-
sible means be explored for the solution of a problem so elegant and so celebrated.
Fortunately, a so calledgyro-formalismapproach to special relativity enables the
elusive proper-time Lorentz transformation group to be uncovered.

1. Introduction

Einstein velocity addition is a century-old idea whose time has come back. Fol-
lowing the discovery of thegyrovector space structureto which Einstein velocity
addition gives rise [26], and unleashing the power of its hyperbolic geometry [27],
hitherto important unsolved problems of special relativity theory can be solved.
The problem in case is the determination of the proper-time Lorentz transforma-
tion group, a problem that eluded all its previous explorers as we demonstrate in
this article.

Coordinate time, or observer’s time, is the timet of a moving object measured by
an observer at rest. Accordingly, special relativity theory is formulated in terms of
Coordinate time. Contrasting coordinate time, proper time, or traveller’s time, is
the timeτ of a moving object measured by a co-moving observer. Proper time is
useful, for instance, in the understanding of the twin paradox [11], and the mean
life time of unstable moving particles, like muons.

The mean lifetime of muons between creation, in the upper atmosphere, and dis-
integration is2.2µs (proper lifetime) measured by their proper time. This proper
time of the moving muon, measured by the muon own clock, is several orders
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of magnitude shorter than the time the muon is seen travelling through the at-
mosphere by Earth observers. Of course, there is no need to attach a co-moving
observer to the moving muon. Observers at rest measure the coordinate mean
lifetime of the moving muon that, owing to time dilation, is observer dependent.
Each observer, however, can translate his measure of the muon coordinate mean
lifetime into the muon proper mean lifetime, which is an intrinsic property of the
muon and hence observer independent [6].

The need to reformulate relativity physics in terms of proper time instead of coor-
dinate time arises from time to time – see, for instance, references [10,16,32].

As a result, derivations of various proper-time Lorentz transformations are avail-
able in the literature. Unfortunately, non of the resulting “proper-time Lorentz
transformation groups” is equivalent to the standard, coordinate-time Lorentz trans-
formation group.

Since 1993 Gill, Lindesay, and Zachary (GLZ) have been emphasizing the need
by developing a proper time formulation and studying its consequences in order to
gain new insights, see [15] and references therein. Their reformulation of relativ-
ity physics is based on the convention of replacing coordinate time by proper time
and, perhaps, other conventions. The convention(s) led them to a new invariance
group that they describe in [9] as a “new symmetry group which is distinct from,
but closely related to the Lorentz group”.

Gill, Lindesay, and Zachary agree that the passage from coordinate time to proper
time is a matter of convention. They, however, claim that this convention leads to
new physical matters of experimental fact. They thus write:

The above transformations [of the proper-time group] are so close to
Lorentz transformations that one might wander if any new physics is
possible. Not only is there new physics, as we will be seen later, but
. . .

GLZ [9, p. 1314]

and

The work of this paper shows that different conventions can lead to
different physical theories.

GLZ [9, p. 1349].

Physical theories are different if, and only if, they are experimentally distinguish-
able. Indeed, Gill, Lindesay, and Zachary report that their proper-time considera-
tions give rise to a new result that verifies that their proper-time relativistic theory
is experimentally distinguishable from Einstein’s special relativity:
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In this paper we show that Maxwell’s equations have a mathemati-
cally equivalent formulation [proper-time Maxwell equations]. How-
ever, the speed of light now depends on the motion of the source.

GLZ [9, p. 1347].

In contrast, in Einstein’s special relativity the speed of light is source independent.
It is a universal constantc, wherec < ∞ if measured by coordinate time, and
c = ∞ if measured by proper time.

The independence of the speed of light in vacuum on the speed of its source is a
matter of experimental fact. Thus, the claim of Gill, Lindesay, and Zachary that
different conventions can lead to different physical theories amounts to a claim
that matters of convention can give rise to matters of experimental fact. The
absurdity in extracting matters of experimental fact from matters of convention
indicates that the way in which Gill, Lindesay, and Zachary have implemented
the convention of replacing the standard, coordinate-time Lorentz transformation
group by a corresponding proper-time Lorentz transformation group must be erro-
neous. Of course, one may argue that Gill, Lindesay, and Zachary did not obtain
new physics directly from the convention of replacing coordinate time by proper
time. Rather, they have exploited the convention merely to extend the validity
of special relativity by another convention, and it is the extended relativity that
gives rise to their new physics. However, our point is that Gill, Lindesay, and
Zachary did not obtain a proper-time Lorentz group that is equivalent to the stan-
dard Lorentz group, as it should. In contrast, we present a method of uniquely
constructing the proper-time Lorentz group, which is demystified by a demonstra-
tion that it is equivalent to the standard Lorentz group algebraically, geometrically
and, hence, experimentally.

In [8] Gill and Zachary inform that their proper time formulation is related to the
work of Wegener [30], who showed that the use of the proper time allows the
construction of Galilean transformations from Lorentz transformations. Indeed,
Wegener claims in [30] that “proper time being invariant, the transformations of
coordinates must be Galilean”. Wegener, accordingly, proposes “a classical alter-
native to special relativity” which is experimentally slightly different from Ein-
stein’s special relativity. Thus, the convention of replacing coordinate time by
proper time results in new physical insights, different from those of special rela-
tivity.

Accordingly, the aim of this article is to uncover the unique way (in some speci-
fied sense) to translate the standard, coordinate-time Lorentz transformation group
into a corresponding proper-time Lorentz transformation group. To perform the
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translation we must first understand the algebraic “gyrostructure” of the standard
(homogeneous, proper, orthochronous) Lorentz group in terms of Einstein veloc-
ity addition. The passage to the proper-time Lorentz transformation group will
then become natural and unique, leaving no room for ambiguities. The gyrostruc-
ture of the standard Lorentz group that we employ to uncover the proper-time
Lorentz transformation group is presented in [26]. Therefore, the proof of some
statements will be omitted, referring interested readers to [26]. As expected, the
resulting proper-time Lorentz group is experimentally indistinguishable from its
standard, coordinate-time counterpart.

The task of understanding the actual algebraic structure of the standard Lorentz
group is culminated in Section 6 with the presentation of the abstract Lorentz
group. To improve our understanding of the abstract Lorentz group we present in
Sections 7, 9, 10 and 11 four examples that illustrate the realization of the abstract
Lorentz group by various concrete Lorentz groups. One of the four examples, in
Section 9, presents the proper-time Lorentz group, thus completing the main task
of this article.

2. The Abstract Spacetime Event

LetR be the real line and letV be the abstract real inner product space. Further-
more, let

Vc = {v ∈ V; ‖v‖ < c} (1)

be the ball of radiusc of V, wherec > 0 is an arbitrarily fixed positive constant
representing the vacuum speed of light.

The pair (
t
vt

)
=

(
t
x

)
(2)

t∈R, v∈Vc, x∈V, is called a spacetime event, wheret denotes time,x denotes
space, andv denotes relativistically admissible velocity.

The symbol “t” that appears on the left hand side of (2) two times must sometimes
be substituted by involved expressions. Hence, without loss of information, and
for convenience, we identify the pair in (2) with the pair

(
t
v

)
(3)

in which the symbol “t” appears once rather than twice. Accordingly, we call (2)
and (3), respectively, thespace notationand thevelocity notationof spacetime.
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Clearly, the space notation and the velocity notation are equivalent for allt > 0
(and for all t < 0 as well). We will use the velocity notation mainly in the
manipulation of intermediary results. Once a final result is obtained, we will
register it in the customary space notation.

Recalling that a nonempty set with a binary operation is called agroupoid, we
introduce a binary operation⊕E into the ballVc, turning it into a groupoid. The
binary operation is given by the equation

u⊕Ev =
1

1 + u·v
c2

{
u +

1
γu

v +
1
c2

γu

1 + γu
(u·v)u

}
(4)

for all u,v∈Vc, where· and‖·‖ are the inner product and norm that the ballVc

inherits from its spaceV, and whereγu is the Lorentz gamma factor

γv =
1√

1− ‖v‖2

c2

. (5)

The binary operation⊕E is recognized as Einstein addition of relativistically ad-
missible velocities [2,3,20], satisfying thegamma identity[27]

γu⊕Ev = γuγv

(
1 +

u·v
c2

)
(6)

or equivalently

γu⊕Ev

γuγv

= 1 +
u·v
c2

,
γuªEv

γuγv

= 1− u·v
c2

(7)

for all u,v ∈Vc. Einstein subtraction, denoted byªE is given by the equation
uªEv = u⊕E(−v).
For applications in special relativity one realizes the abstract real inner product
spaceV by the Euclidean 3-spaceR3, so that Einstein velocity addition of special
relativity, given by (4), becomes a binary operation in the Euclidean 3-dimensional
ballR3

c

R3
c = {v ∈ R3; ‖v‖ < c}. (8)

3. The Einstein Velocity Gyrogroup

Being neither commutative nor associative, Einstein addition⊕E is seemingly
structureless. It is therefore interesting to realize that Einstein groupoid(Vc,⊕E)
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has a grouplike structure called agyrocommutative gyrogroup, a term that was
coined in [24]. Accordingly, an Einstein groupoid is called an Einstein gyrogroup.
Being a gyrocommutative gyrogroup operation, Einstein addition⊕E is gyrocom-
mutative and gyroassociative just as a commutative group operation (like vector
addition) is commutative and associative.

To present the gyrocommutative and the gyroassociative laws of Einstein addition
we define thegyro-operation

gyr : Vc × Vc → Aut(Vc,⊕E) (9)

which generates gyrationsgyr [u,v] : Vc → Vc, u,v ∈ Vc, according to the
equation

gyr [u,v]w = ªE(u⊕Ev)⊕E{u⊕E(v⊕Ew)} (10)

for all u,v,w∈Vc. Clearly, Einstein gyrations (10) measure nonassociativity in
Einstein addition. In the special case of parallel velocities, when Einstein addition
is associative, Einstein gyrations are indeed trivial (a trivial map being the identity
mapI). Thus, ifu andv are parallel, thengyr [u,v] = I.
Einstein addition possesses theleft cancellation law

ªEu⊕E(u⊕Ev) = v (11)

for all u,v∈Vc (but, surprisingly, it does not possess a similar right cancellation
law, see [26]). Hence, for instance

gyr [0,v]w = w, gyr [v,0]w = w (12)

so that bothgyr [0,v] andgyr [v,0] are trivial for allv∈Vc, being the identity
automorphisms of the groupoid(Vc,⊕E).
We recall that an automorphism of a groupoid(G,⊕) is a bijective self-map of
G that preserves the binary operation⊕ in G. The set of all automorphisms of
a groupoid(G,⊕) forms a group denotedAut(G,⊕). It is shown in [26] that
the gyrationsgyr [u,v] of Vc are automorphisms of the groupoid(Vc,⊕E) for any
u,v∈Vc

gyr [u,v] ∈ Aut(Vc,⊕E). (13)

Hence, the gyrationsgyr [u,v], u,v ∈ Vc, are also calledgyroautomorphisms.
It can be shown that there are automorphisms inAut(Vc,⊕E) that are not gy-
roautomorphisms [26], and that the inverse of a gyroautomorphism is, again, a
gyroautomorphism

(gyr [u,v])−1 = gyr [v,u]. (14)
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In general, the composition of two gyroautomorphisms need not be a gyroauto-
morphism.

The gyroautomorphismsgyr [u,v], u,v∈Vc, regulate Einstein addition, forcing
it to be gyrocommutative and gyroassociative. As such, they form the missing
link between Einstein addition and ordinary vector addition. They give rise to the
gyrocommutative law of Einstein addition

u⊕Ev = gyr [u,v](v⊕Eu) (15)

and to the gyroassociative law (left and right) of Einstein addition

u⊕E(v⊕Ew) = (u⊕Ev)⊕Egyr [u,v]w
(u⊕Ev)⊕Ew = u⊕E(v⊕Egyr [v,u]w).

(16)

Furthermore, they possess a rich structure, including the loop property (left and
right)

gyr [u,v] = gyr [u⊕Ev,v], gyr [u,v] = gyr [u,v⊕Eu]. (17)

The gyration in the gyrocommutative law takes an Einstein sumv⊕Eu into the
reversely ordered Einstein sumu⊕Ev. As such, this effect of the gyration is
recognized as the familiar effect of Thomas precession, which was already known
to Silberstein in 1914 [21]. Hence, the gyroautomorphism notion extends the
Thomas precession effect by abstraction. Accordingly, the abstract Thomas pre-
cessions are the Thomas gyrations from which our gyrolangauge stems.

While the discovery that the presence of Thomas precession “repairs” the break-
down of commutativity in Einstein velocity addition dates back to the infancy of
special relativity, it has gone unnoticed that the presence of Thomas precession
“repairs” the breakdown of associativity in Einstein velocity addition as well. The
discovery of the gyroassociative law of Einstein addition in 1988 [22], prompted i)
the development of the so calledK-loop Theory[13], a term coined by the author
in 1989 [23], and ii) the development of the theory of gyrogroups and gyrovector
spaces, terms coined by the author later [24–26]. The history of gyrogroup theory
and its emergence in relativity physics is presented in [20, pp. 141–142].

Einstein addition⊕E thus gives rise to a concrete example of a gyrocommuta-
tive gyrogroup(Vc,⊕E). Gyrogroups(G,⊕), both gyrocommutative and non-
gyrocommutative, abound in group theory as evidenced from [4,5]. The theory of
gyrogroups, developed in [26], shares remarkable analogies with group theory.

Modelled on Einstein addition and guided by analogies with groups, the definition
of gyrogroups follows.
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Definition 1 (Gyrogroups) A groupoid(G,⊕) is a gyrogroup if its binary oper-
ation satisfies the following axioms. InG there is at least one element,0, called a
left identity, satisfying

G1) 0⊕a = a

for all a∈G. There is an element0∈G satisfying axiomG1) such that for each
a∈G there is an elementªa∈G, called a left inverse ofa, satisfying

G2) ªa⊕a = 0.

Moreover, for anya, b, c∈G there exists a unique elementgyr [a, b]c∈G such that
the binary operation obeys the left gyroassociative law

G3) a⊕(b⊕c) = (a⊕b)⊕gyr [a, b]c.

The mapgyr[a, b] : G → G given byc 7→ gyr[a, b]c is an automorphism of the
groupoid(G,⊕)

G4) gyr [a, b]∈Aut(G,⊕)
and the automorphismgyr[a, b] of G is called the gyroautomorphism ofG gen-
erated bya, b ∈ G. The operationgyr : G × G → Aut(G,⊕) is called the
gyrooperation ofG. Finally, the gyroautomorphismgyr[a, b] generated by any
a, b∈G possesses the left loop property

G5) gyr [a, b] = gyr [a⊕b, b].

The gyrogroup axioms in Definition 1 are classified into three classes.

1) The first pair of axioms, G1) and G2), is a reminiscent of the group
axioms;

2) The last pair of axioms, G4) and G5), presents the gyrooperation ax-
ioms, and

3) The middle axioms, G3), is a hybrid axiom linking the two pairs of
axioms in 1) and 2).

As in group theory, we use the notation

aªb = a⊕(ªb) (18)

in gyrogroup theory as well.

In full analogy with groups, gyrogroups are classified into gyrocommutative and
non-gyrocommutative gyrogroups.

Definition 2 (Gyrocommutative Gyrogroups) A gyrogroup(G,⊕) is gyrocom-
mutative if its binary operation obeys the gyrocommutative law
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G6) a⊕ b = gyr [a, b](b⊕ a)
for all a, b∈G.

Einstein’s failure to recognize and advance the gyrocommutative gyrogroup struc-
ture that underlies his relativistic velocity addition law contributed to the eclipse
of his velocity addition of relativistically admissible 3-velocities, creating a void
that could be filled only with the Lorentz transformation of 4-velocities. In the
gyro-approach to special relativity the Lorentz transformation of 4-vectors is no
longer considered as a primitive notion but, rather, as a notion derived from Ein-
stein addition, as we will see in the sequel.

4. The Spacetime Gyrogroup

We now wish to extend the gyrocommutative gyrogroup(G,⊕) to the larger gyro-
commutative gyrogroup of pairs(t,v)t, t∈R,v∈G, where the exponentt denotes
transposition. If one realizes the abstract gyrocommutative gyrogroup(G,⊕) by
the concrete example of Einstein gyrogroup(Vc,⊕E) then its extended gyrogroup
of pairs(t,v)t, t∈R,v∈Vc will naturally be viewed as a gyrogroup of spacetime
events, where events are registered in their velocity notation (3).

Let ρ : G → R>0 = {r ∈ R ; r > 0} be any given positive valued function
defined on the gyrocommutative gyrogroup(G,⊕), which is invariant under the
gyroautomorphisms ofG

ρ(w) = ρ(gyr [u,v]w) (19)

for all u,v,w∈G, and which is normalized by the condition

ρ(0) = 1. (20)

The mapρ is called acocyclic mapof the spacetime gyrocommutative gyrogroup
(R×G,⊕, ·, ρ), which is described below.

The product of two spacetime events(s,u)t and(t,v)t in the gyrocommutative
gyrogroup spacetime(R×G,⊕, ·, ρ) is given by the equation

(
s
u

)
·
(

t
v

)
=




ρ(u⊕v)
ρ(u)ρ(v)

st

u⊕v


 . (21)

The groupoid consisting of all spacetime events in(R×G,⊕, ·, ρ), with the binary
operation given by (21), forms a gyrocommutative gyrogroup. This technique
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of extending the gyrocommutative gyrogroup(G,⊕) into the gyrocommutative
gyrogroup(R×G,⊕, ·, ρ) is analogous to a well known technique of commutative
group extension in group theory [19].

The inner product,〈(s,u)t, (t,v)t〉, of two spacetime events, written in the veloc-
ity notation (3), is a nonnegative number given by the equation

〈(
s
u

)
,

(
t
v

)〉
=

ρ(uªv)
ρ(u)ρ(v)

st. (22)

The seemingly non-intuitive expressions on the right hand sides of (21) and (22),
which involve the cocyclic mapρ(v) with various arguments, are nothing else but
the abstraction of (7).

The squared norm of any spacetime event(t, v)t is accordingly

∥∥∥∥
(

t
v

)∥∥∥∥
2

=
〈(

t
v

)
,

(
t
v

)〉
(23)

so that, by (22) and (20) ∥∥∥∥
(

t
v

)∥∥∥∥ =
t

ρ(v)
(24)

for all v∈Vc andt > 0.

5. The Abstract Lorentz Boost

It follows from (24) that the spacetime events(ρ(v),v)t, v∈G, are unimodular
∥∥∥∥
(

ρ(v)
v

)∥∥∥∥ = 1. (25)

A boost is a unimodular spacetime event. The boost parameterized byv∈G is
thus

B(v) =
(

ρ(v)
v

)
(26)

so that the spacetime product (21) of two boosts is a boost given by parameter
gyroaddition in the gyrocommutative gyrogroup(G,⊕)

B(u)·B(v) =
(

ρ(u)
u

)
·
(

ρ(v)
v

)
=

(
ρ(u⊕v)
u⊕v

)
= B(u⊕v) (27)

as one can see from (21).
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The application of the boostB(u) to a spacetime event(t,v)t is given by space-
time product (21)

B(u)
(

t
v

)
=

(
ρ(u)
u

)
·
(

t
v

)
=




ρ(u⊕v)
ρ(v) t

u⊕v


 . (28)

Boosts preserve the inner product, that is
〈

B(a)
(

s
u

)
, B(b)

(
t
v

)〉
=

〈(
s
u

)
,

(
t
v

)〉
=

ρ(uªv)
ρ(u)ρ(v)

st (29)

for all a,b,u,v∈Vc ands, t∈R, as one can readily check, see ([26], Theorem
10.5, p. 316). Hence, boosts preserve the norm as well

∥∥∥∥B(u)
(

t
v

)∥∥∥∥ =
∥∥∥∥
(

t
v

)∥∥∥∥ =
t

ρ(v)
. (30)

The boost product in (27) is a gyrocommutative gyrogroup operation. It is not a
group operation since the set of all boosts forms a nongroup gyrogroup. While
the spacetime product of two boosts is a boost, the successive application of two
boosts is not equivalent to the application of a single boost. Indeed, two successive
boost applications is equivalent to the application of a single boost preceded, or
followed, by a gyration, as the following chain of equations demonstrates

B(u)B(v)
(

t
w

)
=

(
ρ(u)
u

)
·
{(

ρ(v)
v

)
·
(

t
w

)}
=

(
ρ(u)
u

)
·
(

ρ(v⊕w)
ρ(w) t

v⊕w

)

=

(
ρ(u⊕(v⊕w))

ρ(w) t

u⊕(v⊕w)

)
=

(
ρ((u⊕v)⊕gyr [u,v]w))

ρ(gyr [u,v]w) t

(u⊕v)⊕gyr [u,v]w

)
(31)

=
(

ρ(u⊕v)
u⊕v

)
·
(

t
gyr [u,v]w

)
= B(u⊕v)

(
t

gyr [u,v]w

)
.

In the chain of equations (31) we employ the product (21), the gyroassociative law
of the gyrogroup operation⊕, (16), and the invariance of the cocyclic mapρ(w)
under gyrations (19).

Suggestively, we use the notation

Gyr[u,v]
(

t
w

)
=

(
t

gyr [u,v]w

)
(32)
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so that the result of the chain of equations (31) can be written as the identity

B(u)B(v)
(

t
w

)
= B(u⊕v)Gyr[u,v]

(
t
w

)
. (33)

By similar gyrogroup theoretic techniques one can also establish an identity slightly
different from (33)

B(u)B(v)
(

t
w

)
= Gyr[u,v]B(v⊕u)

(
t
w

)
. (34)

Hence, two successive boosts are equivalent to a single boost preceded (33), or
followed (34), by a Thomas gyration.

Contrasting the general application of successive boosts, which involves Thomas
gyrations, a “symmetric” successive boost application is Thomas gyration free,
that is, it is equivalent to the application of a single boost. Three illustrative ex-
amples are given in the following three boost identities

B(u)B(u)
(

t
w

)
= B(2⊗u)

(
t
w

)

B(v)B(u)B(v)
(

t
w

)
= B(v⊕(u⊕v))

(
t
w

)

B(v)B(u)B(u)B(v)
(

t
w

)
= B(v⊕(u⊕(u⊕v)))

(
t
w

)

= B(2⊗(u⊕v))
(

t
w

)

(35)

where2⊗u = u⊕u and, accordingly,2⊗(u⊕v) = (u⊕v)⊕(u⊕v).

6. The Abstract Lorentz Group

We now extend the gyrocommutative gyrogroup of abstract Lorentz boosts to a
group of abstract Lorentz transformations. Let(G,⊕) be any gyrocommutative
gyrogroup (as, for instance, the Einstein gyrogroup(Vc,⊕E)), and letAut0(G,⊕)
be any subgroup of its automorphism groupAut(G,⊕) that contains all the gy-
roautomorphisms of(G,⊕). Furthermore, let(R × G,⊕, ·, ρ) be the associated
spacetime gyrocommutative gyrogroup equipped with a cocyclic mapρ. For any
V ∈Aut0(G,⊕) we use the notation

(
t

V v

)
= E(V )

(
t
v

)
(36)
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t∈R,v∈G, so that, for instance,

E(gyr [u,v]) = Gyr[u,v] (37)

or, equivalently but in full notation

E(gyr [u,v])
(

t
w

)
=

(
t

gyr [u,v]w

)
= Gyr[u,v]

(
t
w

)
(38)

as we see from (36) and (32).

The composition of an abstract boost and an automorphism gives an abstract
Lorentz transformation. The abstract Lorentz transformationL(v, V ) of the ab-
stract spacetime(R × G,⊕, ·, ρ) is parameterized by a velocity parameterv∈G
and an orientation parameterV ∈Aut0(G,⊕). It is given by the equation

L(v, V )
(

t
w

)
= B(v)E(V )

(
t
w

)
(39)

so that a Lorentz transformation is a boost preceded by an automorphism.

The set of all abstract Lorentz transformations of a given abstract spacetime forms
a group with group operation given by transformation composition. Indeed, the
abstract Lorentz transformation composition law is given by the equation

L(u, U)L(v, V ) = L(u⊕Uv,Gyr[u, Uv]UV ) (40)

for all u,v∈G andU, V ∈Aut0(G,⊕), as verified in [26]. The Lorentz trans-
formation composition law (40) is given by parameter composition called agy-
rosemidirect product. The latter, in turn, is fully analogous to the familiar semidi-
rect product in group theory [14]. Hence,

i) the Lorentz group is a gyrosemidirect product group of a gyrocommuta-
tive gyrogroup of boosts and a group of automorphisms (which are 3-space
rotations in the concrete realizations of interest in physics) just as

ii) the Galilei group is a semidirect product group of a commutative group of
boosts and a group of automorphisms (that is, 3-space rotations).

Having the abstract Lorentz transformation group in hand, we can now realize it
by concrete examples that result in various Lorentz groups. The abstract Lorentz
boost comprises of

1) A setG of objects called (relative) velocities that forms a gyrocommutative
gyrogroup(G,⊕), (26).
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2a) A cocyclic mapρ(v) that determines, and that is determined by, the invari-
ant norm (30) of spacetime.

2b) An invariant norm of spacetime,t/ρ(v), (24), that determines a legitimate
cocyclic mapρ(v).

Hence, to single out a unique concrete example of a Lorentz transformation group
when realizing the abstract Lorentz group, one must select

1) A concrete gyrocommutative gyrogroup(G,⊕) of objects called “veloci-
ties”, and

2) A concrete invariant norm of spacetime that gives rise to a legitimate co-
cyclic map.

Accordingly, in Section 7 we realize the abstract Lorentz transformation group
by selecting the Einstein gyrogroup of coordinate velocities and the standard rel-
ativistic norm, resulting in the standard (homogeneous, proper, orthochronous)
Lorentz group. By recovering the standard Lorentz group as a concrete example
of the abstract Lorentz group we demonstrate the ability of the abstract Lorentz
group to generate concrete examples of various finite and infinite Lorentz groups,
some of which could prove useful in physics.

In Section 9 we realize the abstract Lorentz transformation group by selecting the
proper velocity gyrogroup and a norm given by the positively valued proper time.
In Section 10 we demonstrate the realization of the abstract Lorentz group by a
concrete Lorentz group that keeps invariant the four-dimensional Euclidean norm
of spacetime. Finally, in Section 11 we present the Galilei transformation group
as a concrete example of the abstract Lorentz group.

Remark 3. In group theory one starts from the notion of the abstract group which,
in turn, is realized by various concrete examples. Clearly, the resulting concrete
groups need not be isomorphic. In full analogy, the abstract Lorentz group that we
define in this section can be realized by various concrete examples. But, also in
full analogy with realizations of the abstract group, resulting concrete examples
of Lorentz groups need not be experimentally equivalent.

Indeed, special care is taken in the realization of the abstract Lorentz group that
we present in Section 9 in order to insure that it remains experimentally equivalent
to the one in Section 7.

In contrast, the realization of the abstract Lorentz group that we present in
Section 10 is experimentally distinguishable from the ones in Sections 7 and 9.
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7. Realizing The Abstract Lorentz Group – Example I:
The Standard, Coordinate-Time Lorentz Group

To recover the standard (homogeneous, proper, orthochronous) Lorentz group
from the abstract Lorentz group

1) we realize the abstract gyrocommutative gyrogroup(G,⊕) by Einstein gy-
rogroup(R3

c ,⊕E), where Einstein addition⊕E in the Euclidean ballR3
c is

given by (4). Furthermore,
2) we realize the abstract spacetime norm (24) by the standard relativistic norm

∥∥∥∥
(

t
v

)∥∥∥∥ =

√
t2 − ‖x‖2

c2
=

t

γv

(41)

wherex = vt as in (2), and whereγv is the Lorentz gamma factor (5).
Rewriting (41) in space, rather than velocity, notation (2) – (3), it takes the
familiar form ∥∥∥∥

(
t
x

)∥∥∥∥ =

√
t2 − ‖x‖2

c2
=

t

γv

. (42)

Comparing (41) with (24) we see that our choice of the spacetime norm
(41) determines the cocyclic mapρ(v)

ρ(v) = γv =
1√

1− ‖v‖2

c2

. (43)

The resulting cocyclic mapρ(v) in (43) is legitimate since it satisfies the
conditions (19) and (20). To see that condition (19) is satisfied we note
that the gyrations of the Einstein gyrocommutative gyrogroup(R3

c ,⊕E) are
rotations ofR3

c about its origin, and thatρ(v) is clearly invariant under
rotations.

i) Realizing the gyrocommutative gyrogroup binary operation⊕ by Einstein
velocity addition⊕E in step 1), and

ii) selecting a spacetime norm that realizes the abstract cocyclic mapρ(v),
v∈G, by the concrete, legitimate cocyclic mapγv, v∈R3

c , in step 2),

we can now realize the boost application to spacetime (28), obtaining

B(u)
(

t
v

)
=




γu⊕Ev

γv
t

u⊕Ev


 =

(
γu(1 + u·v

c2
)t

u⊕Ev

)
(44)
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where we employ the gamma identity (6), and use the velocity notation (3).

Translating (44) from velocity into space notation of spacetime, (2) – (3), and not-
ing thatx = vt, we have

B(u)
(

t
x

)
=

(
γu(t + 1

c2
u·vt)

(u⊕Ev)γu(1 + 1
c2

u·v)t

)

=




γu(t + 1
c2

u·x)

γuut + x + 1
c2

γ2
u

1+γu
(u·x)u


 =

(
t′

x′

)
.

(45)

The boost application in (45) is recognized in the literature [26] as the standard
Lorentz boost of the special theory of relativity, that takes spacetime coordinates
(t,x)t into spacetime coordinates(t′,x′)t, and that keeps the relativistic norm
(42) invariant.

In order to extend the standard Lorentz boost to the standard Lorentz transforma-
tion we note that the groupSO(3) of all rotations of the Euclidean ballR3

c about its
origin forms a subgroup of the automorphism groupAut(R3

c ,⊕E) that contains all
the gyroautomorphisms of Einstein gyrogroup(R3

c ,⊕E). We, accordingly, realize
the abstract automorphism subgroupAut0(G,⊕) by the concrete automorphism
subgroupAut0(R3

c ,⊕E) = SO(3). This realization of the abstract Lorentz boost
and the abstract automorphism subgroup of the abstract Lorentz group gives the
standard Lorentz group which, in space notation takes the form

L(u, U)
(

t
x

)
=




γu(t + 1
c2

u·Ux)

γuut + Ux + 1
c2

γ2
u

1+γu
(u·Ux)u


 (46)

u∈R3
c , U∈SO(3), and it keeps the relativistic norm (42)

∥∥∥∥
(

t
x

)∥∥∥∥ =

√
t2 − ‖x‖2

c2
(47)

invariant. Herex∈R3
c,t

R3
c,t = {x∈R3; ‖x‖ < ct} (48)

for all t > 0.

Finally, being a realization of the abstract Lorentz transformation (39), the stan-
dard Lorentz transformation (46) possesses the group composition law (40)

L(u, U)L(v, V ) = L(u⊕EUv, Gyr[u, Uv]UV ) (49)
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for all u,v∈R3
c andU, V ∈SO(3).

This composition law represents the standard Lorentz group as the gyrosemidirect
product of

1) a gyrocommutative gyrogroup of boostsB(v),v ∈R3
c , isomorphic to the

Einsteinian gyrogroup(R3
c ,⊕E) of relativistically admissible velocities, and

2) the groupSO(3).

This representation is fully analogous to the familiar representation of the Galilean
group as the semidirect product of

1) a commutative group of Galilean boosts, isomorphic to the Newtonian group
(R3,+) of Newtonian velocities, and

2) the groupSO(3).

The parameterization of the Lorentz groupL(v, V ) by a velocity,v ∈R3
c , and

an orientation,V ∈ SO(3), parameters proves useful in the resulting Lorentz
transformation composition law (49). It is a composition law given by parame-
ter composition which, in turn, involves Einstein velocity addition. The inter-
play between Einsteinian relativity, based on Einstein addition of 3-velocities, and
Minkowskian relativity, based on Lorentz transformation of 4-velocities, is clearly
seen in the Lorentz transformation composition law (49). The approaches of Ein-
stein and Minkowski to special relativity, thus, complement each other rather than
compete with one another. The term “Minkowskian relativity” was coined by
Pyenson in [18, p. 146]. The historical struggle between Einsteinian relativity and
Minkowskian relativity is skillfully described by Walter in [29] where, for the first
time, the term “Minkowskian relativity” appears in a title.

In the same way that we recovered the standard Lorentz group from the abstract
one, other concrete Lorentz groups can be uncovered. An example of uncovering
the proper-time Lorentz group is presented in Section 9 following the presentation
of the proper velocity gyrogroup in Section 8.

8. The Proper Velocity Gyrogroup

Coordinate time, or observer’s time, is the timet of a moving object measured by
an observer at rest. Proper time, or traveller’s time, is the timeτ of a moving object
measured by a co-moving observer. A detailed presentation of the proper time in
a form that proves useful for the present article is found in [31, Section 6.2].
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The coordinate time,t, and the proper time,τ , of a uniformly moving object with
relative velocityv∈R3

c measured by coordinate time, are related by the equation

t = γvτ. (50)

Accordingly, the relative velocitiesv andw of an object measured by its coordi-
nate time and proper time, respectively, are related by the equations

w = γvv ∈ R3, v = βww ∈ R3
c (51)

whereγv is the gamma factor (5) and whereβw is thebeta factorgiven by the
equation

βw =
1√

1 +
‖w‖2

c2

. (52)

Gill and Zachary [9] attribute the relations in (51) to G. Schott.

Let φ : R3 → R3
c be the bijective map that (51) suggests

φw = βww = v (53)

with inverseφ−1 : R3
c → R3

φ−1v = γvv = w. (54)

Then Einstein addition⊕E in R3
c induces the binary operation⊕U in R3

w1⊕Uw2 = φ−1(φw1⊕Eφw2) (55)

w1,w2∈R3, thus uncovering the proper velocity composition law inR3. Using
software for symbolic manipulation, it can be shown that the binary operation⊕U ,
(55), inR3 is given by the equation

u⊕Uv = u + v +
{

βu

1 + βu

u·v
c2

+
1− βv

βv

}
u (56)

whereβv is the beta factor, satisfying the beta identity

βu⊕Uv =
βuβv

1 + βuβv
u·v
c2

(57)

for all u,v∈R3.

Owing to the isomorphismφ, the groupoid(R3,⊕U) forms a gyrocommutative
gyrogroup of proper velocities, isomorphic to Einstein gyrogroup(R3

c ,⊕E) of co-
ordinate velocities. The proper velocity gyrogroup(R3,⊕U) is also known as
an Ungar gyrogroup, a term coined by Chen in [1]. Having the proper veloc-
ity gyrogroup in hand, we are now in a position to realize the abstract Lorentz
transformation group by a proper-time Lorentz group.
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9. Realizing The Abstract Lorentz Group – Example II:
The Proper-Time Lorentz Group

To uncover the proper-time Lorentz group from the abstract Lorentz group

1) we realize the abstract gyrocommutative gyrogroup(G,⊕) by the proper-
velocity gyrogroup(R3,⊕U), where the proper velocity addition⊕U in the
Euclidean 3-spaceR3 is given by (56). Furthermore,

2) we realize the abstract spacetime norm (24) by the positive valued proper
time τ ∥∥∥∥

(
τ
v

)∥∥∥∥ = τ (58)

v ∈ R3, τ > 0, since we seek a proper-time Lorentz transformation that
keeps the proper time invariant. Selecting any different norm would break
the convention made in step 1) to replace coordinate time by proper time.
Breaking the convention, as we will do in Section 10, results in a new
Lorentz group which is experimentally distinguishable from the standard
one. Rewriting (58) in space, rather than velocity, notation (2) – (3), it takes
the form ∥∥∥∥

(
τ
x

)∥∥∥∥ = τ (59)

x = vτ∈R3, τ > 0.

Comparing (58) with (24) we see that our choice of the spacetime norm
(58) determines the cocyclic map

ρ(v) = 1 (60)

for all v ∈ R3. The resulting trivial cocyclic map is legitimate since it,
trivially, satisfies the conditions (19) and (20).

i) Realizing the gyrocommutative gyrogroup binary operation⊕ by the proper
velocity addition⊕U in step 1), and

ii) selecting a spacetime norm that realizes the abstract cocyclic mapρ(v),
v∈G, by the concrete, legitimate cocyclic mapρ(v) = 1,v∈R3, in step 2),
we can now realize the boost application to spacetime, (28), obtaining

Bp(u)
(

τ
v

)
=

(
τ

u⊕Uv

)
. (61)
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Translating (61) from velocity to space notation of spacetime, (2) – (3), and noting
thatx = vτ , we have

Bp(u)
(

τ
x

)
=

(
τ

(u⊕Uv)τ

)
=




τ

(u + v)τ +
( βu

1 + βu

u·vτ

c2
+

1− βv

βv
τ
)
u




=




τ

x +
1

1 +
√

1 + u2/c2

u·x
c2

u +
√

1 + v2/c2 uτ


 (62)

=




τ

x +
1

1 +
√

1 + u2/c2

u·x
c2

u +
√

τ2 + ‖x‖2/c2 u


 =

(
τ ′

x′

)

which is the proper-time Lorentz boost of the special theory of relativity, that
takes spacetime coordinates(τ,x)t into spacetime coordinates(τ ′,x′)t. Unlike
the standard, coordinate-time Lorentz boost, the proper-time Lorentz boost is non-
linear.

In order to extend the proper-time Lorentz boost to the proper-time Lorentz trans-
formation we note that the groupSO(3) of all rotations of the Euclidean 3-space
R3 about its origin forms a subgroup of the automorphism groupAut(R3,⊕U) that
contains all the gyroautomorphisms of the proper velocity gyrogroup(R3,⊕U).
We, accordingly, realize the abstract automorphism subgroupAut0(G,⊕) by the
3-space rotation groupAut0(R3,⊕U) = SO(3). This realization of the abstract
Lorentz boost and the abstract automorphism subgroup of the abstract Lorentz
group gives the proper-time Lorentz group which, in space notation takes the form

Lp(u, U)
(

τ
x

)
= Bp(u)E(U)

(
τ
x

)
=

(
τ

(u⊕UUv)τ

)

(63)

=




τ

Ux +
1

1 +
√

1 + u2/c2

u·Ux
c2

u +
√

τ2 + ‖x‖2/c2 u




u,x∈R3, U∈SO(3), τ > 0.

Finally, being a realization of the abstract Lorentz transformation (39), the proper-
time Lorentz transformation (63) possesses the group composition law (40)

Lp(u, U)Lp(v, V ) = Lp(u⊕EUv, Gyr[u, Uv]UV ) (64)
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for all u,v∈R3 andU, V ∈SO(3).
This composition law represents the proper-time Lorentz group as the gyrosemidi-
rect product of

1) a gyrogroup of boostsBp(v),v ∈ R3, isomorphic to the proper velocity
gyrogroup(R3,⊕U) of relativistic proper velocities, and

2) the groupSO(3).

10. Realizing The Abstract Lorentz Group – Example III:
A Lorentz Group With Euclidean Spacetime Norm

We now present a third example of realizing the abstract Lorentz group. Following
Montanus [16, 17] we use the proper-timeτ rather than coordinate timet and
select the spacetime invariant of the Lorentz group that we seek to be the four
dimensional Euclidean metric

√
τ2 + ‖x‖2/c2 (65)

x ∈ R3, τ > 0.

Selectingτ , rather than (65), as an invariant of the proper-time Lorentz group
that we seek is a matter of experimental fact that results from the convention of
replacing coordinate time by proper time. This matter of experimental fact is
compatible with the standard, coordinate-time Lorentz group.

Similarly, Montanus’ selection of the four dimensional Euclidean metric (65)
along with his selection of proper time rather than coordinate time is a matter
of experimental fact rather than convention. This matter of experimental fact,
however, is not compatible with the standard Lorentz group, as Gersten notes [7].
Hence, the Lorentz group that we uncover in this section as a realization of the ab-
stract Lorentz group is experimentally distinguishable from the standard Lorentz
group.

As in Section 9, we select the proper-velocity gyrogroup(R3,⊕U) as our real-
ization of the abstract gyrocommutative gyrogroup(G,⊕). Conforming with the
standard Lorentz group would force us to construct a Lorentz group that keeps the
proper time invariant, as we did in Section 9. In this section, however, we select
a different norm (65), to obtain a nonlinear Lorentz transformation group that is
experimentally distinguishable from the standard Lorentz group.

To uncover this nonstandard Lorentz group from the abstract Lorentz group
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1) we realize the abstract gyrocommutative gyrogroup(G,⊕) by the proper-
velocity gyrogroup(R3,⊕U), where proper velocity addition⊕U in the Eu-
clidean 3-spaceR3 is given by (56). Furthermore,

2) we realize the abstract spacetime norm (24) by
∥∥∥∥
(

τ
v

)∥∥∥∥ =
τ

βv
(66)

v∈R3, τ > 0, whereβv is the beta factor. Rewriting (66) in space, rather
than velocity, notation, it takes the form

∥∥∥∥
(

τ
x

)∥∥∥∥ =
τ

βv
=

√
τ2 +

‖x‖2

c2
(67)

x = vτ∈R3, τ > 0, thus resulting in the standard four-dimensional Euclid-
ean norm for spacetime.

Comparing (66) with (24) we see that our choice of the spacetime norm
(66) determines the cocyclic map

ρ(v) = βv (68)

for all v∈R3. The resulting cocyclic map is legitimate since it satisfies the
conditions (19) and (20).

i) Realizing the gyrocommutative gyrogroup binary operation⊕ by the proper
velocity addition⊕U in step 1), and

ii) selecting a spacetime norm that realizes the abstract cocyclic mapρ(v), v∈
G, by the concrete, legitimate cocyclic mapρ(v) = βv,v∈R3, in step 2),
we can now realize the boost application to spacetime, (28), obtaining

Bs(u)
(

τ
v

)
=




βu⊕Uv

βv
τ

u⊕Uv


 =




βu

1 + βuβvu·v/c2
τ

u⊕Uv


 (69)

where we employ the beta identity (57).

Translating (69) from velocity to space notation of spacetime, (2) – (3), and noting
thatx = vτ , we can find that while the semi-Euclidean Lorentz boost keeps the
Euclidean norm (67) invariant, it is too complicated. Hence, the passage from
the relativistic norm (42) to the Euclidean norm (67) results in a complicated
nonlinear boost that is experimentally distinguishable from the standard Lorentz
boost.
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11. Realizing The Abstract Lorentz Group – Example IV:
The Galilean Group

We now present a fourth example of realizing the abstract Lorentz group in which
we use the coordinate time,t, and select the spacetime invariant of the “Lorentz
group” that we seek to bet, as in Galilean relativity. Furthermore, we select the
velocity “gyrogroup”(R3,+) as our realization of the abstract gyrocommutative
gyrogroup(G,⊕), where+ is the ordinary vector addition inR3. Clearly, the
gyrogroup(R3, +) is, in fact, a group and, accordingly, all its gyrations are trivial.

To uncover the resulting concrete example of a “Lorentz group”

1) we realize the abstract gyrocommutative gyrogroup(G,⊕) by the New-
tonian velocity group(R3, +) (we may note that a group is a special gy-
rogroup all the gyrations of which are trivial); and

2) we realize the abstract spacetime norm (24) by

∥∥∥∥
(

t
v

)∥∥∥∥ = t (70)

v ∈ R3, t ∈ R3. Rewriting (70) in space, rather than velocity, notation
(2) – (3), it takes the form ∥∥∥∥

(
t
x

)∥∥∥∥ = t (71)

x = vt∈R3, t∈R3.

Comparing (70) with (24) we see that our choice of the spacetime norm
(70) determines the cocyclic map

ρ(v) = 1 (72)

for all v∈R3. The resulting trivial cocyclic map is legitimate since it triv-
ially satisfies the conditions (19) and (20).

i) Realizing the gyrocommutative gyrogroup binary operation⊕ by the ordi-
nary vector addition+ in step 1), and

ii) selecting a spacetime norm that realizes the abstract cocyclic mapρ(v),
v∈G, by the concrete, legitimate cocyclic mapρ(v) = 1,v∈R3, in step 2),
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we can now realize the boost application to spacetime, (28), obtaining

Bg(u)
(

t
v

)
=




ρu+v

ρv

t

u + v


 =

(
t

u + v

)
. (73)

Translating (73) from velocity to space notation of spacetime, (2) – (3), and noting
thatx = vt, we have

Bg(u)
(

t
x

)
=

(
t

(u + v)t

)
=

(
t

x + ut

)
(74)

thus recovering the Galilei boost of Galilean relativity as a concrete example of
the abstract Lorentz group.

12. Conclusion

Employing either coordinate time or proper time in relativity physics is a matter
of convention. Proper time is an important parameter in relativity physics. Yet,
the corresponding proper-time Lorentz transformation that are found in the lite-
rature is experimentally not equivalent to the standard, coordinate-time Lorentz
transformation group and, therefore, must be erroneous.

In order to unambiguously determine the proper-time Lorentz transformation
group, which must remain experimentally equivalent to the standard Lorentz
group, one must understand the algebraic structure of the Lorentz group. Once
understood, one can translate the standard Lorentz group into the non-standard,
but experimentally equivalent, proper-time Lorentz group, as well as into other
Lorentz groups that need not be experimentally equivalent to the standard one.

Having the standard (homogeneous, proper, orthochronous) Lorentz group in hand,
one is able to generate concrete Lorentz groups by realizing the abstract one in var-
ious ways. The abstract Lorentz transformation group is presented in Section 6,
following which four examples of concrete realizations of the abstract Lorentz
transformation group are presented in Sections 7 – 11.

1) In Section 7 the standard Lorentz group is recovered as a concrete example
of the abstract Lorentz group.

2) In Section 9 the proper-time Lorentz transformation group is uncovered as
a concrete example of the abstract Lorentz group.
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3) In Section 10 a Lorentz group that keeps invariant a four-dimensional Euclid-
ean norm of spacetime is constructed. As expected, it is not experimentally
equivalent to the standard Lorentz group.

4) In section 11 the Galilean transformation group is recovered as a concrete
example of the abstract Lorentz group.

The goal of this paper is to present the abstract Lorentz group and to uncover
the proper-time Lorentz group, Section 9, as a concrete realization. The other
examples of concrete realizations of the abstract Lorentz group in Sections 7, 10,
and 11 are presented only in order to demonstrate the use of the abstract Lorentz
group for the construction of various concrete Lorentz groups.

The power and elegance of gyrogroup theoretic techniques for uncovering the
proper-time Lorentz group have thus been demonstrated. This extraordinary power
and elegance is not limited to gyrogroups. Some gyrocommutative gyrogroups
admit scalar product, giving rise to gyrovector spaces. The latter, in turn, are
useful in analytic hyperbolic geometry [28] and its applications in special relativ-
ity theory [26]. Further extension gives rise to Lie gyrovector spaces, studied by
Kasparian and Ungar in [12].
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