
JGSP4 (2005) 1–18

POISSON-LIE STRUCTURE ON THE TANGENT
BUNDLE OF A POISSON-LIE GROUP,
AND POISSON ACTION LIFTING

MOHAMED BOUMAIZA AND NADHEM ZAALANI

Communicated by Charles-Michel Marle

Abstract. We show in this paper that the tangent bundleTG, of a Poisson-Lie
groupG has a Poisson-Lie group structure given by the canonical lifting of that
of G. We determine the dual group ofTG, its Lie bialgebra and its double Lie
algebra.

We also show that any Poisson action ofG on a Poisson manifoldP is lifted on a
Poisson action ofTG on the tanget bundleTP .

1. Introduction

Poisson-Lie group theory was first introduced by Drinfel’d [1] [2] and Semenov-
Tian-Shansky [11]. Semenov and Kosmann-Schwarzbach [4] used Poisson-Lie
groups to understand the Hamiltonian structure of the group of dressing transfor-
mations of certain integrable systems. These Poisson-Lie groups play the role of
symmetry groups. Theory of Poisson-Lie groups was remarkably developed by
Weinstein [9] [13], Drinfel’d [3] and Jiang-Hua Lu [6] [7].

Let (G,ω) be a Poisson-Lie group with Lie algebraG and multiplication
m : G×G −→ G.

We assume that the tangent bundleTG is equipped with the Poisson structure
ΩTG introduced by Sanchez de Alvarez in [10]. In this case,TG has a Poisson-
Lie group structure with dual Poisson-Lie group(TG∗, ΩTG∗) and Lie bialgebra
(G a G,G∗ ` G∗), whereG∗ is the dual ofG, G a G is the semi-direct product
Lie algebra with bracket

[(x, y), (x′, y′)] = ([x, x′], [x, y′] + [y, x′]), where(x, y), (x′, y′) ∈ G × G
andG∗ ` G∗ is the semi-direct product Lie algebra with bracket

[(α, β), (α′, β′)] = ([α, β′] + [β, α′], [β, β′]), where(α, β), (α′, β′) ∈ G∗ × G∗.
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The double Lie algebrǎD = (G a G) ⊕ (G∗ ` G∗), of the Poisson-Lie group
(TG, ΩTG) is isomorphic to the semi-direct product Lie algebraD a D, where
D = G ⊕ G∗ is the double Lie algebra of(G,ω).
Let H be a Poisson-Lie subgroup of(G, ω). Then the tangent bundleTH is also
a Poisson-Lie subgroup of(TG,ΩTG).
Let P be a Poisson manifold andφ : G× P −→ P , be a Poisson action ofG on
P . Thenφ has a lifted Poisson action of the Poisson Lie groupTG on the Poisson
manifoldTP . As example of Poisson action we consider the dressing action [7].
In this case we show that the lifted action of the left dressing action ofG∗ onG is
also the left dressing action ofTG∗ onTG.

2. Poisson-Lie Structure on the Tangent Bundle of
a Poisson-Lie Group

The notion of a Poisson-Lie group is due to Drinfiel’d [1]. Let us recall its defini-
tion and some properties.

Definition 1. A Poisson-Lie group is a Lie groupG, equipped with a Poisson
structureω such that the product

m : G×G −→ G : (g, h) 7−→ m(g, h) = gh

is a Poisson map, whereG×G is equipped with the product Poisson structure.

The Poisson tensorω of a Poisson-Lie groupG vanishes at the unit elemente of
G. Its derivative,deω ∈ G ∧ G, at that point is a 1-cocycle ofG relative to the
adjoint representation ofG onG ∧G. Then, there exists a Lie bracket onG∗ given
by

〈[α, β]ω, x〉 = deω(x)(α, β)

wherex ∈ TeG = G, α andβ ∈ T ∗e G = G∗.
The connected and simply connected Lie groupG∗ with Lie algebraG∗ is called
the dual group of the Poisson-Lie groupG. It has, too, a structure of Poisson-Lie
group.

This dual groupG∗ acted onG by the (dressing action), whose orbits determine
the symplectic leaves ofG.

In this section, we give for every Poisson-Lie groupG a structure of Poisson Lie
group on the tangent bundleTG. The Poisson structure onTG is that given by
Sanchez de Alvarez [10]. Let us recall it in the case of a Poisson manifoldP .
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Theorem 2. [10]. Let P be a Poisson manifold with Poisson bracket{ , }
P

.
We denote byτ the canonical projection fromTP onP . For all ϕ ∈ C∞(P ), we
denoteϕ̂ = ϕ ◦ τ andϕ̇ the tangent map ofϕ.
ThenTP has a unique Poisson structure, denoted by{ , }

TP
such that:

i) {ϕ̂, ψ̂}TP = 0

ii) {ϕ̂, ψ̇}TP = {ϕ̇, ψ̂}TP = {ϕ,ψ}̂P

iii) {ϕ̇, ψ̇}TP = {ϕ,ψ}·P , for all ϕ, ψ ∈ C∞(P ).

Remark 3. [10]. Let (xi), i = 1, ..., n are local coordinates ofP , such that the
bracket ofP is given by{xi, xj} = ωij(x). In the local coordinates(xi, ẋi) of
TP, the bracket{ , }

TP
is given by:

i) {xi, xj}TP = 0

ii) {ẋi, xj}TP = {xi, ẋj}TP = {xi, xj} = ωij(x)

iii) {ẋi, ẋj}TP = {xi, xj }̇P = ω̇ij(ẋ) =
∑

k

∂ωij

∂xk
(x)ẋk.

Proposition 4. Let G be a Lie group with Lie algebraG. We assume thatTG is
equipped with the map

m̌ : TG× TG −→ TG : (Xg, Yh) 7−→ Lg∗Yh + Rh∗Xg.

ThenTG is a Lie group with Lie algebra the semi-direct product of Lie algebras
G a G, where the bracket is given by

[(x, y), (x′, y′)] = ([x, x′], [x, y′] + [y, x′]).

It is clear thatTG is isomorphic to the semi-direct product Lie groupsG a G,
associated to the adjoint action ofG on the abelian Lie groupG. Then the Lie
algebra ofTG is the semi-direct product Lie algebraG a G.

With this preparation, we can give the main result of this section.

Theorem 5. Let (G,ω) be a Poisson-Lie group. We assume thatTG is equipped
with the multiplication

Xg.Yh = Lg∗Yh + Rh∗Xg

and with the Poisson structure{ , }
TG

. Then(TG, { , }
TG

) is a Poisson-Lie
group.
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Proof: According to Definition 1, we have to show that

{F1, F2}(Xg.Yh) = {F1Xg , F2Xg}(Yh) + {F1Yh
, F2Yh

}(Xg)

for all F1, F2 ∈ C∞(TG), Xg ∈ TgG andYh ∈ ThG.

By Theorem 2, it is sufficient to consider the functions of typeϕ̇ and ϕ̂, where
ϕ ∈ C∞(P ).
Let ϕ, ψ ∈ C∞(P ). We have

{ϕ̂, ψ̂}(Xg.Yh) = {ϕ̂Xg , ψ̂Xg}(Yh) + {ϕ̂Yh
, ψ̂Yh

}(Xg) = 0.

By a simple calculation, we get

{ϕ̂Xg , ψ̇Xg}(Yh) + {ϕ̂Yh
, ψ̇Yh

}(Xg) ={(ϕ ◦ Lg )̂, (ψ ◦ Lg )̇ + α̂}(Yh)

+ {(ϕ ◦Rh)̂, (ψ ◦Rh)̇ + β̂}(Xg)

={ϕ̂, ψ̇}(Xg.Yh)

whereα(h) = (ϕ ◦Rh)̇(Xg) andβ(h) = (ψ ◦Rh)̇(Xg).
For the last bracket we have

{ϕ̇, ψ̇}(Xg.Yh) = {ϕ,ψ}̇(Lg∗Yh + Rh∗Xg)

= ({ϕ, ψ} ◦ Lg )̇(Yh) + ({ϕ, ψ} ◦Rh)̇(Xg).

If we takeXg = σx(g) = Rg∗x andYh = σy(h), wherex, y ∈ G andσx is the
fundamental vector field associated to the left translation ofG, we get

({ϕ,ψ} ◦ Lg )̇(σy(h)) = {ϕ ◦ Lg, ψ ◦ Lg}̇(σy(h))

+
d
dt
{ϕ ◦Rexp ty.h, ψ ◦Rexp ty.h}(g)t=0

= {ϕ ◦ Lg, ψ ◦ Lg}̇(σy(h)) + {yl(ϕ ◦Rh), ψ ◦Rh}(g)

+ {ϕ ◦Rh, yl(ψ ◦Rh)}(g)

whereyl is the left invariant vector field whose value ate is y.

On the other hand, we have

({ϕ,ψ} ◦Rh)̇(σx(g)) = {ϕ ◦Rh, ψ ◦Rh}̇(σx(g))

+
d
dt
{ϕ ◦ Lexp tx.g, ψ ◦ Lexp tx.g}t=o(h)

= {ϕ ◦Rh, ψ ◦Rh}̇(σx(g)) + {ϕ̇(σx ◦ Lg), ψ ◦ Lg}(h)

+ {ϕ ◦ Lg, ψ̇(σx ◦ Lg)}(h).



Poisson-Lie Structure on the Tangent Bundle of a Poisson-Lie Group, and... 5

Furthermore, it is easy to verify that

ϕ̇σx(g)(σy(h)) = (ϕ ◦ Lg)·(σy(h) + α̂(σy(h))

ϕ̇σy(h)(σx(g)) = (ϕ ◦Rh)̇(σx(g)) + α̂′(σx(g))

whereα′(g) = (ϕ ◦ Lg )̇(σy(h)).
Then

{ϕ̇σx(g), ψ̇σx(g)}(σy(h)) + {ϕ̇σy(h), ψ̇σy(h)}(σx(g))

={(ϕ ◦ Lg)·+α̂, (ψ ◦ Lg)·+β̂}(σy(h))+{(ϕ ◦Rh)·+α̂′, (ψ ◦Rh)·+β̂′}(σx(g))

={ϕ ◦ Lg, ψ ◦ Lg}·(σy(h)) + {(ϕ ◦ Lg)·, β̂}(σy(h)) + {α̂, (ψ ◦ Lg)·}(σy(h))

+ {ϕ ◦Rh, ψ ◦Rh}·(σx(g))+{α̂′, (ψ ◦Rh)·}(σx(g))+{(ϕ ◦Rh)·, β̂′}(σx(g))

={ϕ ◦ Lg, ψ ◦ Lg}̇(σy(h)) + {ϕ ◦ Lg, β}(h) + {α,ψ ◦ Lg}(h)

+ {ϕ ◦Rh, ψ ◦Rh}̇(σx(g)) + {α′, ψ ◦Rh}(g) + {ϕ ◦Rh, β′}(g).

It suffices to verify the following expressions

α(h) = ϕ·(σx ◦ Lg)(h)

β(h) = ψ̇(σx ◦ Lg)(h)

α′(g) = yl(ϕ ◦Rh)(g)

β′(g) = yl(ψ ◦Rh)(g).

We replaceα, α′, β and β′ by these expressions we get

{ϕ̇, ψ̇}(σx(g).σy(h)) = {ϕ̇σx(g), ψ̇σx(g)}(σy(h)) + {ϕ̇σy(h), ψ̇σy(h)}(σx(g)).

This concludes the proof. ut

Example 6. LetG be a Lie algebra. We assume thatG∗ is equipped with its linear
Poisson-Lie structure given, for allϕ, ψ ∈ C∞(G∗), by

{ϕ, ψ}(x) = 〈x, [dϕ(x), dψ(x)]〉.
In local coordinates(xi) of G∗, this structure is expressed by

{xi, xj} =
∑

k

ck
ijxk

whereck
ij are the structure constants ofG.
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The linear Poisson structure ofG∗ × G∗ associated to the semi-direct product
G a G is given by

{F,G}(x, y) = 〈x, [
dF

dx
,
dG

dx
]〉+ 〈y, [

dF

dx
,
dG

dy
]〉+ 〈y, [

dF

dy
,
dG

dx
]〉

for all F, G ∈ C∞(G∗ × G∗), x, y ∈ G∗.
The local coordinates(xi) induce local coordinates(xi, yj) onG∗×G∗, such that

{yi, yj}(x, y) = 0

{yi, xj}(x, y) =
∑

k

Ck
ijyk = ωij(y)

{xi, xj}(x, y) =
∑

k

Ck
ijxk = ω̇ij(x).

According to Remark 3, for the local coordinates(ẋi, xj) of TG∗, this bracket
coincides with that ofTG∗ .

Hence, the Poisson-Lie groupTG∗ is isomorphic to the Abelien Poisson-Lie group
(G a G)∗ associated to the semi-direct product Lie algebraG a G.

3. Bialgebra and Dual of the Poisson-Lie GroupTG

In this section, we study the infinitesimal version of the Poisson-Lie groupTG,
namely that of Lie bialgebra and double Lie algebra ofTG.

Definition 7. [12] LetG be a Lie algebra with dual spaceG∗. We say that(G,G∗)
form a Lie bialgebra if there is given a Lie bracket onG∗ such that

〈[α, β], [x, y]〉 = −[ad∗xα, β](y)− [α, ad∗xβ](y) + [ad∗yα, β](x) + [α, ad∗yβ](x).

By Drinfel’d [1], if (G,ω) is a Poisson-Lie group, then the derivative ofω at
e defines a Lie algebra structure onG∗, such that(G,G∗) form a Lie bialgebra.
Conversely ifG is connected and simply connected, then every structure of Lie
bialgebra(G,G∗) defines a unique Poisson-Lie structure onG.

On the vector spaceD = G ⊕G∗, there is a natural Lie algebra structure such that
G andG∗ are Lie subalgebras, whose bracket is

[x, α] = ad∗xα− ad∗αx

wherex ∈ G andα ∈ G∗. With that structure,D is called the double Lie algebra
of (G,ω).
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For example, letG be a Lie algebra. Its dual spaceG∗ is an Abelian Poisson-Lie
group, where the Poisson bracket is

{ϕ,ψ}(x) = 〈x, [dϕ(x),dψ(x)]〉
for all ϕ , ψ ∈ C∞(G∗). The Lie bialgebra of the Poisson-Lie groupG∗ is (G∗,G),
where the bracket ofG∗ is zero.

Proposition 8. Let(G,ω) be a Poisson-Lie group with Lie bialgebra(G,G∗). Let
G a G andG∗ ` G∗ are the semi-direct products Lie algebras given above. Then
(G a G,G∗ ` G∗) has the structure of a Lie bialgebra.

Proof: By a simple calculation, we get

ad∗(x,y)(α, β) = (ad∗xα + ad∗yβ, ad∗xβ).

We need only to prove the relation of definition 7. Let(x, y), (x′, y′) ∈ G×G and
(α, β) ∈ G∗ × G∗. Since(G,G∗) is a Lie bialgebra we have

〈[(x, y),(x′, y′)], [(α, β), (α′, β′)]〉
=〈([x, x′], [x, y′] + [y, x′]), ([α, β′] + [β, α′], [β, β′])〉
=〈[x, x′], [α, β′]〉+ 〈[x, x′], [β, α′]〉+ 〈[x, y′], [β, β′]〉+ 〈[y, x′], [β, β′]〉
=− [ad∗xα, β′](x′)− [α, ad∗xβ′](x′) + [ad∗x′α, β′](x) + [α, ad∗x′β

′](x)
− [ad∗xβ, α′]x′)− [β, ad∗xα′](x′) + [ad∗x′β, α′](x) + [β, ad∗x′α

′](x)
− [ad∗xβ, β′](y′)− [β, ad∗xβ′](y′) + [ad∗y′β, β′](x) + [β, ad∗y′β

′](x)

− [ad∗yβ, β′](x′)− [β, ad∗yβ
′](x′) + [ad∗x′β, β′](y) + [β, ad∗x′β

′](y)

=− [ad∗(x,y)(α, β), (α′, β′)](x′, y′)− [(α, β), ad∗(x,y)(α
′, β′)](x′, y′)

+ [ad∗(x′,y′)(α, β), (α′, β′)](x, y) + [(α, β), [ad∗(x,y)(α, β), (α′, β′)](x, y).

Then(G a G,G∗ ` G∗) is a Lie bialgebra. ut

Definition 9. . Let (G1, ω1) and (G2, ω2), be two Poisson-Lie groups with Lie
bialgebras(G1,G∗1) and(G2,G∗2). A Lie group morphismϕ : G1 −→ G2 is called
a Poisson-Lie group morphism if it is also a Poisson map.

A Lie algebra morphismf : G1 −→ G2 defines a Lie bialgebra morphism from
(G1,G∗1) to (G2,G∗2), if its transposed map is also a Lie algebra morphism.

Let ϕ : (G1, ω1) −→ (G2, ω2) be a Poisson-Lie group morphism. Then the
tangent mapϕ∗(e) : G1 −→ G2 induces a Lie bialgebra morphism from(G1,G∗1)
to (G2,G∗2).
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Proposition 10. Let (G,ω) be a Poisson-Lie group with Lie bialgebra(G,G∗).
Then(G a G,G∗ ` G∗) is the Lie bialgebra of the Poisson-Lie group(TG, ΩTG).

Proof: The projection

τG : TG −→ G : Xg 7−→ g

is a Poisson-Lie group morphism, where the Poisson structure ofG is zero. Then
τG induces a Lie bialgebra morphism

τG∗(e) : G a G −→ G : (x, y) 7−→ x

where the bracket ofG∗ is also zero.

Hence, we have

[(α, 0), (β, 0)] = (0, 0)

for all α, β ∈ G∗.
Let

ι : G −→ TG : x 7−→ (e, x)

where(e, x) ∈ TeG is regarded as element ofG. It is clear thatι is a Poisson-Lie
group morphism fromG to TG, whereG is the linear Poisson-Lie group associ-
ated to the Lie algebraG∗. Then

ι∗(0) : G −→ G × G : x 7−→ (0, x)

induces a Lie bialgebra morphism from(G,G∗) to (G a G,G∗ ` G∗).
Then, for allα, β ∈ G∗, we have

[(0, α), (0, β)] = (0, [α, β]).

For the last bracket[(α, 0), (0, β)], we need the following lemma.

Lemma 11. [12]. Let (G,ω) be a Poisson-Lie group and(xi) are local coordi-
nates ofG in a neighborhood ofe. For all α , β ∈ G∗ andx ∈ G we have

[α, β]ω(x) =
∑∂ωij

∂xk
(e)αiβjxk

whereα = Σαidxi andβ = Σβidxi.
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We turn to the proof of the lemma. Let(xi) are local coordinates ofG in a
neighborhood ofe and(xi, yj) = (xi, ẋj), the correspondent local coordinates
of TG, in a neighberhood of(e, o). By Remark 3, the Poisson bivector ofTG is
expressed by

Ω(g, x) =
∑

ij

ωij(g)
∂

∂xi
∧ ∂

∂yj
+ ω̇ij(x)

∂

∂yi
∧ ∂

∂yj
.

Let α = (αi) andβ = (βj) be elements ofG∗. We write

(α, 0) =
∑

i

αidxi and (0, β) =
∑

j

βjdyj .

It follows from the lemma that

[(α, 0), (0, β)](x, y) =
∑

i,j,k

∂ωij(e)
∂xk

αiβjxk = [α, β](x)

for all (x, y) ∈ G × G.

Hence
[(α, 0), (0, β)] = ([α, β], 0).

This concludes the proof of the proposition. ut

Corollary 12. Let (G,ω) be a Poisson-Lie group with dual groupG∗. ThenTG∗

is the dual group of the Poisson-Lie group(TG,ΩTG), i.e.,(TG)∗=T (G∗).

Proof: It is clear that the map

ρ : G∗ × G∗ −→ G∗×G∗, ρ(α, β) 7−→ (β, α)

is a Lie bialgebra isomorphism from(G∗ a G∗,G ` G) to (G∗ ` G∗,G a G).
According to Proposition 10,(G∗ a G∗,G ` G) is the Lie bialgebra ofTG∗. Since
TG∗ is connected and simply connected,ρ can be integrated to an isomorphism
of Poisson Lie groups fromTG∗ to the dual of(TG, ΩTG). ut

Proposition 13. LetD = G ⊕ G∗ be the double Lie algebra associated to(G,ω)
and D̃ = (G a G) ⊕ (G∗ ` G∗) be the double Lie algebra associated to the
Poisson-Lie group(TG,ΩTG). ThenD̃ is isomorphic to the semi-direct product
Lie algebraD a D.
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Proof: We consider the map

f : (G a G)⊕ (G∗ ` G∗) −→ (G ⊕ G∗)× (G ⊕ G∗)
(x, y) + (α, β) 7−→ (x + β, y + α).

It suffices to show thatf is an isomorphism of Lie algebras from̃D toD a D.

In fact, we have

f([(x, y), (α, β)]Ď) = f(ad∗(x,y)(α, β)− ad∗(α,β)(x, y))

= f((−ad∗βx,−ad∗αx− ad∗β(y)) + (ad∗xα + ad∗yβ, ad∗xβ))

= (ad∗xβ − ad∗βx, ad∗xα− ad∗αx + ad∗yβ − ad∗βy)

= ([x, β], [x, α] + [y, β]) = [(x, y), (β, α)]DaD
= [f(x, y), f(α, β)]DaD

for all x and y ∈ G, α and β ∈ G∗.
Similarly, we get

f([(x, y), (x′, y′)]D̃) = [f(x, y), f(x′, y′)]DaD,

f([(α, β), (α′, β′)]D̃) = [f(α, β), f(α′, β′)]DaD.

ut

Proposition 14. Let H be a Poisson-Lie subgroup of(G,ω). ThenTH is also a
Poisson-Lie subgroup ofTG.

Proof: By definition, a Poisson-Lie subgroup ofG is a Lie subgroupH of G,
such that the injection mapι : H −→ G, is a Poisson morphism.

It is clear that the tangent mapTι is a Lie group morphism fromTH to TG.
Furthemore, by theorem 2, the injection mapTι is also a Poisson map. Hence
TH is a Poisson-Lie subgroup ofTG. ut

4. The Exact Case

Now, we shall discuss an important example of Poisson Lie groups, which is the
exact case. Throughout this section, we suppose thatG is connected.

A Poisson-Lie group(G,ω) is said to be exact, if the cocycledeω is a coboundary;
i.e: there existsr ∈ G ∧ G such thatdeω(x) = adx(r), for all x ∈ G.
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Let r ∈ G ∧ G, we define a bivector field onG by

ω(g) = Lg∗r −Rg∗r, for all g ∈ G.

By Drinfel’d [1] [2], (G, ω) is a Poisson-Lie group if and only if the algebraic
Schouten bracket [r,r] is invariant under the adjoint action ofG onG ∧ G ∧ G.

Proposition 15. Let (G,ω) be an exact Poisson-Lie group with coboundary
deω(x) = adx(r), where

r =
∑

ij

rijri ∧ rj ∈ G ∧ G.

Then(TG,ΩTG) is also an exact Poisson-Lie group with coboundary

d(e,0)Ω(x, y) = ad(x,y)(ř)

where

ř =
∑

ij

rij((ri, 0) ∧ (0, rj) + (0, ri) ∧ (rj , 0) ∈ G × G ∧ G × G.

Proof: We setε(x) = deω(x), so that

ε(x)(α, β) = [α, β](x) = adx(r)(α, β) = r(ad∗xα, β) + r(α, ad∗xβ).

We also seťε(x, y) = d(e,0)Ω(x, y).
Let r = r1 ∧ r2, for all α, β, α′, β′ ∈ G∗ andx, y ∈ G, we have

ε̌(x, y)((α, β), (α′, β′)) = [(α, β), (α′, β′)](x, y)

= [α, β](x) + [β, α′](x) + [β, β′](y) = r1 ∧ r2((ad∗xα, β′) + (α, ad∗xβ′))

+ r1 ∧ r2((ad∗xβ, α′) + (β, (ad∗xα′)) + r1 ∧ r2(((ad∗yβ, β′) + (β, (ad∗yβ
′))

= r1(ad∗xα)r2(β′)− r2(ad∗xα)r1(β′) + r1(α)r2(ad∗xβ′)− r2(α)r1(ad∗xβ′)

+ r1(ad∗xβ)r2(α′)− r2(ad∗xβ)r1(α′) + r1(β)r2(ad∗xα′)− r2(β)r1(ad∗xα′)

+ r1(ad∗yβ)r2(β′)− r1(β′)r2(ad∗yβ) + r1(β)r2(ad∗yβ
′)

− r2(β)r1(ad∗yβ
′) = r1(ad∗xα + ad∗yβ)r2(β′)− r1(α′)r2(ad∗xβ)

+ r1(α)r2(ad∗xβ′)− r2(β)r1(ad∗xα′ + ad∗yβ
′) + r1(ad∗xβ)r2(α′)

− r1(β′)r2(ad∗xα + ad∗yβ) + r2(ad∗xα′ + ad∗yβ
′)r1(β)− r2(α)r1(ad∗xβ′)

= (r1, 0) ∧ (0, r2)((ad∗xα + ad∗yβ, ad∗xβ), (α′, β′))
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+ (r1, 0) ∧ (0, r2)((α, β), (ad∗xα′ + ad∗yβ
′, ad∗xβ′))

+ (0, r1) ∧ (r2, 0)((ad∗xα + ad∗yβ, ad∗xβ), (α′, β′))

+ (0, r1) ∧ (r2, 0)((α, β), (ad∗xα′ + ad∗yβ
′, ad∗xβ′))

= ((r1, 0) ∧ (0, r2) + (0, r1) ∧ (r2, 0))((ad∗(x,y)(α, β), (α′, β′))

+ ((α, β), ad∗(x,y)(α
′, β′)) = ad(x,y)(ř)((α, β), (α′, β′))

where

ř = (r1, 0) ∧ (0, r2) + (0, r1) ∧ (r2, 0) ∈ (G × G) ∧ (G × G).

For the general case:r =
∑

ij rijri ∧ rj , we get

ř =
∑

ij

rij((ri, 0) ∧ (0, rj) + (0, ri) ∧ (rj , 0)).

ut

Remark 16. If G is connected and simply connected, the bivectorω is of the form

ω(g) = Lg∗r −Rg∗r

where[r, r] is AdG-invariant. SinceTG is also connected and simply connected,
and asε̌ is exact, the bivectorΩTG is given by

Ω(Xg) = LXg∗ř −RXg∗ř.

Furthermore[ř, ř] is AdTG-invariant.

5. Poisson Action Lifting

One of the fundamental notions related to Poisson-Lie groups is that of Poisson
action. The famous example of dressing action [7], plays an important role for the
description of the Poisson structure ofG.

In this section, we will be interested in the lifting of Poisson actions.

Definition 17. A left actionφ : G×P −→ P of a Poisson-Lie group(G,ω) on a
Poisson manifoldP is called a Poisson action, if it is a Poisson map with respect
to the product Poisson structure onG× P .
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Let φ : G×P −→ P be a Poisson action ofG onP . Naturally, we have to regard
the lifted action ofG onTP given by

φ̌ : G× TP −→ TP : (g, up) 7−→ φg∗(up).

In the particular case, whenG is equipped with the trivial Poisson structure,φ is
just an action ofG onP by Poisson morphisms. Theňφ is also an action ofG on
TP by Poisson morphisms. SinceG is trivial, φ̌ is a Poisson action.

In the general case, this is not true. In fact, ifφ is the left translation ofG, for all
ϕ,ψ ∈ C∞(G), g, h ∈ G andXh ∈ ThG we have

{ϕ̂g, ψ̂g}(Xh)+{φ̂Xh
, ψ̂Xh

}(g) = {(ϕ◦Lg )̂, (ψ◦Lg )̂}(Xh)+{ϕ◦Rh, ψ◦Rh}(g).

Since{ϕ̂, ψ̂}(Lg∗Xh) = 0, φ̌ is a Poisson action if and only if

{ϕ ◦Rh, ψ ◦Rh} = 0

for all ϕ,ψ ∈ C∞(G), i.e. G is trivial.

For this reason, we will be interested in an other lifted action, that ofTG onTP .

Theorem 18. Letφ : G×P −→ P be a Poisson action of the Poisson-Lie group
(G, ω) on a Poisson manifoldP . We assume thatTP is equipped with the Poisson
structure given in Theorem 2. Let

Φ : TG× TP −→ TP : (Xg, up) 7−→ Tg,pφ(Xg, up) = φg∗up + φp∗Xg.

Then,Φ is a Poisson action of the Poisson-Lie group(TG,ΩTG) on the Poisson
manifold(TP, ΩTP ).

Proof: We know that the tangent mapTφ : T (G × P ) −→ TP is a Poisson
morphism. It suffices to show that the canonical bundle isomorphism

ρ : T (G× P ) −→ TG× TP

X 7−→ (π1∗X, π2∗X)

is a Poisson morphism, whereπ1 andπ2 are respectively the canonical projections
from G× P onG andP .

Let (xi) be local coordinates onG and (yj) be local coordinates on P. Thenρ
sends the local coordinates(xi, yj , ẋi, ẏj) of T (G × P ) to the local coordinates
((xi, ẋi), (yj , ẏj)) of TG× TP .
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According to Remark 2 and Remark 3 and using the definition of direct Poisson
structure, we have the following equalities:

{xi, xj}T (G×P ) = {yi, yj}T (G×P ) = {xi, yj}T (G×P ) = 0

{xi, ẋj}T (G×P ) = {xi, xj}G×P = {xi, xj}G = ωij(x)

{yi, ẏj}T (G×P ) = {yi, yj}G×P = {yi, yj}P = tij(y)

{xi, ẏj}T (G×P ) = {xi, ẏj}G×P = 0

{ẋi, ẋj}T (G×P ) = {xi, xj }̇G×P = ω̇ij(ẋ)

{ẏi, ẏj}T (G×P ) = {yi, yj }̇G×P = ṫij(ẏ)

{ẋi, ẏj}T (G×P ) = {xi, yj }̇G×P = 0.

Similarly, we get

{xi, xj}TG×TP = {yi, yj}TG×TP = {xi, yj}TG×TP = 0
{xi, ẋj}TG×TP = {xi, ẋj}TG = {xi, xj}G = ωij(x)
{yi, ẏj}TG×TP = {yi, ẏj}TP = {yi, yj}P = tij(y)
{xi, ẏj}TG×TP = 0

{ẋi, ẋj}TG×TP = {ẋi, ẋj}TG = {xi, xj }̇G = ω̇ij(ẋ)

{ẏi, ẏj}TG×TP = {ẏi, ẏj}TP = {yi, yj }̇P = ṫij(ẏ)
{ẋi, ẏj}TG×TP = 0.

The proof is completed. ut

Remark 19. If we consider the case of the left action ofG on itself we can deduce
Theorem5.

Example 20. Let

φ : G× G∗ −→ G∗ : (g, ξ) 7−→ Ad∗gξ

be the coadjoint action ofG on g∗. It is a Poisson action, whenG is equipped
with the trivial Poisson structure andG∗ with the linear Poisson structure.

We have

Φ : TG× TG∗ −→ TG∗
(Xg, (ξ, η)) 7−→ (φg(ξ), φg∗(η) + φξ∗Xg).
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Then

Φ : (G× G)× (G∗ × G∗) −→ G∗ × G∗
((g, x), (ξ, η)) 7−→ (Ad∗gξ, Ad∗gη + φξ∗(Rg∗x)).

On the other hand, we have:

(φξ ◦Rg)(h) = Ad∗gh(ξ) = Ad∗h(Ad∗gξ)

(φξ ◦Rg)∗(x) = −ad∗x(Ad∗gξ).

Consider the semi-direct productG a G. By duality and transposition, we obtain
the following formula for the coadjoint action, which is valid for allg ∈ G, x ∈
G, ξ ∈ G andη ∈ G∗

Ad(g,x)(ξ,η) = (Ad∗gξ − ad∗x(Ad∗g), Ad∗gη).

Corresponding to Example6, TG∗ is identified with(G a G)∗ by

TG∗ −→ G∗ × G∗ : (ξ, η) 7−→ (η, ξ).

SinceG a G is also equipped with the null Poisson structure and sinceΦ is the
coadjoint action associated to the semi productG a G, the mapΦ is a Poisson
action.

6. Dressing Actions

Example 20 is a particular case of dressing actions [5,7]. Let us recall this notion.

In the following, we assume that(G,ω) is a simply connected Poisson-Lie group,
with dual groupG∗. Let D be the simply connected Lie group, with Lie algebra
D = G ⊕ G∗. By [7], the map

ψ : G×G∗ −→ D : (g, u) 7−→ gu

is a local diffeomorphism. When it is a global diffeomorphism,D is called a
double Lie group. In this case, letg ∈ G andu ∈ G∗, the productug can be
uniquely written as :ug = guug, wheregu ∈ G andug ∈ G∗. This define a left
action ofG∗ onG by

φ : G∗ ×G −→ G : (g, u) 7−→ gu

and a right action ofG onG∗ by

φ′ : G∗ ×G −→ G : (g, u) 7−→ ug.

These actions are called dressing actions, they are Poisson actions. The orbits of
φ andφ′ are respectively the symplectic leaves ofG andG∗.
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Proposition 21.

i) Assume thatD is a double Lie group. ThenTD is a double Lie group.
ii) Let

φ : G∗ ×G −→ G : (g, u) 7−→ gu

be the left dressing action ofG∗ onG. Then the lifted action

Φ : TG∗ × TG −→ TG : (Xu, Yg) −→ φu∗Yg + φg∗Xu

is exactly the left dressing action ofTG∗ onTG.

Proof:

i) SinceD is a double Lie group, then

Tψ : TG× TG∗ −→ TD : (Xg, Yu) 7−→ Lg∗Yu + Ru∗Xg

is a vector bundle isomorphism. Furthermore for allXg, Yu ∈ TD we have

XgYu = Lg∗Yu + Ru∗Xg.

HenceTD is a double Lie group associated to the Poisson-Lie groupTG.
ii) By definition

Φ : TG∗ × TG −→ TG : (Xu, Yg) −→ (gu, φu∗Yg + φg∗Xu).

On the other hand,
ug = guug = φu(g).φ′u(g).

Then, we have

Lu∗Yg = Lgu∗φ′u∗Yg + Rug∗φu∗Yg.

Similarly, we have

Rg∗Xu = Lgu∗φ′g∗(Xu) + Rug∗φg∗(Xu).

Hence

XuYg = Lu∗Yg + Rg∗Xu

= Lgu∗(φ′u∗Yg + φ′g∗Xu) + Rug∗(φu∗Yg + φg∗Xu)

= (gu, φu∗Yg + φg∗Xu)(ug, φ′u∗Yg + φ′g∗Xu).

Then the left dressing action ofTG∗ onTG is given by

TG∗ × TG −→ TG : (Xu, Yg) −→ (gu, φu∗Yg + φg∗Xu).

This conclued the proof. ut
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