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Abstract. We extend well-known results in group theory to gyrogroups, especially

the isomorphism theorems. We prove that an arbitrary gyrogroup G induces the

gyrogroup structure on the symmetric group of G so that Cayley’s Theorem is ob-

tained. Introducing the notion of L-subgyrogroups, we show that an L-subgyrogroup

partitions G into left cosets. Consequently, if H is an L-subgyrogroup of a finite

gyrogroup G, then the order of H divides the order of G.
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1. Introduction

Let c be a positive constant representing the speed of light in vacuum and let R3
c de-

note the c-ball of relativistically admissible velocities, R3
c = {v ∈ R

3 ; ‖v‖ < c}.

In [13], Einstein velocity addition ⊕E in the c-ball is given by the equation

u⊕E v =
1

1 + 〈u,v〉
c2

{
u+

1

γu
v +

1

c2
γu

1 + γu
〈u,v〉u

}
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where γu is the Lorentz factor given by γu =
1√

1− ‖u‖2
c2

·

The system (R3
c ,⊕E) does not form a group since ⊕E is neither associative nor

commutative. Nevertheless, Ungar showed that (R3
c ,⊕E) is rich in structure and

encodes a group-like structure, namely the gyrogroup structure. He introduced

space rotations gyr[u,v], called gyroautomorphisms, to repair the breakdown of

associativity in (R3
c ,⊕E)

u⊕E (v ⊕E w) = (u⊕E v)⊕E gyr[u,v]w

(u⊕E v)⊕E w = u⊕E (v ⊕E gyr[v,u]w)

for all u,v,w ∈ R
3
c . The resulting system forms a gyrocommutative gyrogroup,

called the Einstein gyrogroup, which has been intensively studied in [3,5,9,11,13,

14, 16, 17].

There are close connections between the Einstein gyrogroup and the Lorentz trans-

formations, as described in [14, Chapter 11] and [12]. A Lorentz transformation

without rotation is called a Lorentz boost. Let L(u) and L(v) denote Lorentz

boosts parameterized by u and v in R
3
c . The composite of two Lorentz boosts is

not a pure Lorentz boost, but a Lorentz boost followed by a space rotation

L(u) ◦ L(v) = L(u⊕E v) ◦Gyr[u,v] (1)

where Gyr[u,v] is a rotation of spacetime coordinates induced by the Einstein

gyroautomorphism gyr[u,v]. In this paper, we present an abstract version of the

composition law (1) of Lorentz boosts.

Another example of a gyrogroup is the Möbius gyrogroup, which consists of the

complex unit disk D = {z ∈ C ; |z| < 1} with Möbius addition

a⊕M b =
a+ b

1 + āb
(2)

for a, b ∈ D. The Möbius gyroautomorphisms are given by

gyr[a, b]z =
1 + ab̄

1 + āb
z, z ∈ D. (3)

Let B denote the open unit ball of n-dimensional Euclidean space R
n (or more

generally of a real inner product space). In [15], Ungar extended Möbius addition

from the complex unit disk to the unit ball

u⊕M v =
(1 + 2〈u,v〉+ ‖v‖2)u+ (1− ‖u‖2)v

1 + 2〈u,v〉+ ‖u‖2‖v‖2 (4)
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for u,v ∈ B. The unit ball together with Möbius addition forms a gyrocommuta-

tive gyrogroup, which has been intensively studied in [1, 4, 6, 7, 14–16].

The factorization of Möbius gyrogroups was comprehensively studied by Ferreira

and Ren in [1, 4], in which they showed that any Möbius subgyrogroup partitions

the Möbius gyrogroup into left cosets. The fact that any subgyrogroup of an arbi-

trary gyrogroup partitions the gyrogroup is not stated in the literature, and this is

indeed the case, as shown in Theorem 15. This result leads to the introduction of

L-subgyrogroups. We prove that an L-subgyrogroup partitions the gyrogroup into

left cosets and consequently obtain a portion of Lagrange’s Theorem: if H is an

L-subgyrogroup of a finite gyrogroup G, then the order of H divides the order of

G. We also prove the isomorphism theorems for gyrogroups, in full analogy with

their group counterparts.

2. Basic Properties of Gyrogroups

A pair (G,⊕) consisting of a nonempty set G and a binary operation ⊕ on G is

called a magma. Let (G,⊕) be a magma. A bijection from G to itself is called

an automorphism of G if ϕ(a ⊕ b) = ϕ(a) ⊕ ϕ(b) for all a, b ∈ G. The set of

all automorphisms of G is denoted by Aut (G,⊕). Ungar formulated the formal

definition of a gyrogroup as follows.

Definition 1 ([14]) A magma (G,⊕) is a gyrogroup if its binary operation satisfies
the following axioms

(G1) there is an element 0 in G such that for all elements a in G, 0⊕ a = a

(G2) for each element a in G, there is an element b in G such that, b⊕ a = 0

(G3) For all a,b in G, there is gyr[a, b] in Aut(G,+) such that for each c in G

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c

(G4) for all a, b ∈ G, gyr[a, b] = gyr[a⊕ b, b].

The axioms in Definition 1 imply the right counterparts.

Theorem 2 ([14]) A magma (G,⊕) forms a gyrogroup if and only if it satisfies the
following properties:

(g1) there is an element 0 in G such that for every a in G,0⊕a = a and a⊕0 = a
(two-sided identity)
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(g2) or each a in G, there is an element b in G such that b⊕ a = 0 and a⊕ b = 0
(two-sided inverse)

For a, b, c ∈ G, define

gyr[a, b]c = �(a⊕ b)⊕ (a⊕ (b⊕ c)) (gyrator identity)

then

(g3) gyr[a, b] ∈ Aut (G,⊕) (gyroautomorphism)

(g3a) a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c (left gyroassociative law)

(g3b) (a⊕ b)⊕ c = a⊕ (b⊕ gyr[b, a]c) (right gyroassociative law)

(g4a) gyr[a, b] = gyr[a⊕ b, b] (left loop property)

(g4b) gyr[a, b] = gyr[a, b⊕ a] (right loop property).

The map gyr[a, b] is called the gyroautomorphism generated by the group elements
a and b. By Theorem 2, any gyroautomorphism is completely determined by its

generators via the gyrator identity. A gyrogroup G having the additional property

that

a⊕ b = gyr[a, b](b⊕ a) (gyrocommutative law)

for all a, b ∈ G is called a gyrocommutative gyrogroup.

Many of group theoretic theorems are generalized to the gyrogroup case with the

aid of gyroautomorphisms, see [11, 14] for more details. Some theorems are listed

here for easy reference. To shorten notation, we write a� b instead of a⊕ (�b).

Theorem 3 ([11], Theorem 2.11) Let G be a gyrogroup. Then

(�a⊕ b)⊕ gyr[�a, b](�b⊕ c) = �a⊕ c (5)

for all a, b, c ∈ G.

Theorem 4 ([11], Theorem 2.25) For any two elements a and b of a gyrogroup

�(a⊕ b) = gyr[a, b](�b� a). (6)

Theorem 5 ([11], Theorem 2.27) The gyroautomorphisms of any gyrogroup G are
even

gyr[�a,�b] = gyr[a, b] (7)

and inversive symmetric
gyr−1[a, b] = gyr[b, a] (8)

for all a, b ∈ G.
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Using Theorem 5, one can prove the following proposition.

Proposition 6. Let G be a gyrogroup and let X ⊆ G. Then the following are
equivalent

1) gyr[a, b](X) ⊆ X for all a, b ∈ G

2) gyr[a, b](X) = X for all a, b ∈ G.

The gyrogroup cooperation � is defined by the equation

a� b = a⊕ gyr[a,�b]b, a, b ∈ G. (9)

Like groups, every linear equation in a gyrogroup G has a unique solution in G.

Theorem 7 ([11], Theorem 2.15) Let G be a gyrogroup and let a, b ∈ G. The
unique solution of the equation a⊕ x = b in G for the unknown x is x = �a⊕ b,
and the unique solution of the equation x ⊕ a = b in G for the unknown x is
x = b� (�a).

The following cancellation laws in gyrogroups are derived as a consequence of

Theorem 7.

Theorem 8 ([11]) Let G be a gyrogroup. For all a, b, c ∈ G

1) a⊕ b = a⊕ c implies b = c (general left cancellation law)

2) �a⊕ (a⊕ b) = b (left cancellation law)

3) (b� a)� a = b (right cancellation law I)

4) (b� (�a))⊕ a = b (right cancellation law II).

It is known in the literature that every gyrogroup forms a left Bol loop with the

A�-property, where the gyroautomorphisms correspond to left inner mappings or

precession maps. In fact, gyrogroups and left Bol loops with the A�-property are

equivalent, see for instance [8].

To prove an analog of Cayley’s theorem for gyrogroups, we will make use of the

following theorem

Theorem 9 ([2], Theorem 1) Let G be a gyrogroup, let X be an arbitrary set,
and let φ : X → G be a bijection. Then X endowed with the induced operation
a⊕X b := φ−1(φ(a)⊕ φ(b)) for a, b ∈ X becomes a gyrogroup.
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3. Cayley’s Theorem

Recall that for a ∈ D, the map τa that sends a complex number z to a ⊕M z
defines a Möbius transformation or conformal mapping on D, known as a Möbius
translation. In the literature, the following composition law of Möbius translations

is known

τa ◦ τb = τa⊕M b ◦ gyr[a, b] (10)

for all a, b ∈ D. In this section, we extend the composition law (10) to an arbitrary

gyrogroup G. We also show that the symmetric group of G admits the gyrogroup

structure induced by G, thus obtaining an analog of Cayley’s theorem for gyro-

groups.

Throughout this section, G and H are arbitrary gyrogroups.

For each a ∈ G, the left gyrotranslation by a and the right gyrotranslation by a are

defined on G by

La : x �→ a⊕ x and Ra : x �→ x⊕ a. (11)

Theorem 10. Let G be a gyrogroup.

(1) The left gyrotranslations are permutations of G.

(2) Denote the set of all left gyrotranslations of G by G. The map ψ : G → G
defined by ψ(a) = La is bijective. The inverse map φ := ψ−1 fulfills the
condition in Theorem 9. In this case, the induced operation ⊕G is given by

La ⊕G Lb = La⊕b

for all a, b ∈ G.

(3) For all a, b, c ∈ G

La ◦ Lb = La⊕b ◦ gyr[a, b] (12)

and
gyrG[La, Lb]Lc = Lgyr[a,b]c. (13)

Proof: Let a, b ∈ G.

(1) That La is injective follows from the general left cancellation law. That La is

surjective follows from Theorem 7.

(2) That ψ is bijective is clear. By Theorem 9, the induced operation is given by

La ⊕G Lb = ψ(ψ−1(La)⊕ ψ−1(Lb)) = ψ(a⊕ b) = La⊕b.
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(3) By the left cancellation law, L−1
a = L�a. By the gyrator identity, gyr[a, b] =

L�(a⊕b) ◦La ◦Lb and hence gyr[a, b] = L−1
a⊕b ◦La ◦Lb. It follows that La ◦Lb =

La⊕b ◦ gyr[a, b]. Equation (13) follows from the gyrator identity. �

Let Stab (0) denote the set of permutations of G leaving the gyrogroup identity

fixed

Stab (0) = {ρ ∈ Sym (G) ; ρ(0) = 0}.
It is clear that Stab (0) is a subgroup of the symmetric group, Sym (G), and we

have the following inclusions

{gyr[a, b] ; a, b ∈ G} ⊆ Aut (G) � Stab (0) � Sym (G).

The next theorem enables us to introduce a binary operation ⊕ on the symmetric

group of G so that Sym (G) equipped with ⊕ becomes a gyrogroup containing an

isomorphic copy of G.

Theorem 11. For each σ ∈ Sym (G), σ can be written uniquely as σ = La ◦ ρ,
where a ∈ G and ρ ∈ Stab (0).

Proof: Suppose that La ◦ ρ = Lb ◦ η, where a, b ∈ G and ρ, η ∈ Stab (0). Then

a = (La ◦ ρ)(0) = (Lb ◦ η)(0) = b, which implies La = Lb and so ρ = η. This

proves the uniqueness of factorization. Let σ be an arbitrary permutation of G.

Choose a = σ(0) and set ρ = L�a ◦ σ. Note that ρ(0) = L�a(a) = �a⊕ a = 0.

Hence, ρ ∈ Stab (0). Since L�a = L−1
a , σ = La ◦ ρ. This proves the existence of

factorization. �

The following commutation relation determines how to commute a left gyrotrans-

lation and an automorphism of G

ρ ◦ La = Lρ(a) ◦ ρ (14)

whenever ρ is an automorphism of G.

Let σ and τ be permutations of G. By Theorem 11, σ and τ have factorizations

σ = La ◦ γ and τ = Lb ◦ δ, where a, b ∈ G and γ, δ ∈ Stab (0). Define an

operation ⊕ on Sym (G) by

σ ⊕ τ = La⊕b ◦ (γ ◦ δ). (15)

Because of the uniqueness of factorization, ⊕ is a binary operation on Sym (G).
In fact, (Sym (G),⊕) forms a gyrogroup.

Theorem 12. Sym (G) is a gyrogroup under the operation defined by (15), and

La ⊕ Lb = La ⊕G Lb = La⊕b
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for all a, b ∈ G. In particular, the map a �→ La defines an injective gyrogroup
homomorphism from G into Sym (G).

Proof: Suppose that σ = La ◦ γ, τ = Lb ◦ δ and ρ = Lc ◦ λ, where a, b, c ∈ G
and γ, δ, λ ∈ Stab (0). The identity map Id (G) acts as a left identity of Sym (G)
and L�a ◦ γ−1 is a left inverse of σ with respect to ⊕. The gyroautomorphisms of

Sym (G) are given by

gyr[σ, τ ]ρ = (gyr[La, Lb]Lc) ◦ λ = Lgyr[a,b]c ◦ λ.

Since G satisfies the left gyroassociative law and the left loop property, so does

Sym (G). �

By Theorem 12, the following version of Cayley’s theorem for gyrogroups is

immediate.

Corollary 13 (Cayley’s Theorem) Every gyrogroup is isomorphic to a subgyro-
group of the gyrogroup of permutations.

Proof: The map a �→ La defines a gyrogroup isomorphism from G onto G and G
is a subgyrogroup of Sym (G). �

4. L-Subgyrogroups

Throughout this section, G is an arbitrary gyrogroup.

A nonempty subset H of G is a subgyrogroup if H forms a gyrogroup under the

operation inherited from G and the restriction of gyr[a, b] to H is an automorphism

of H for all a, b ∈ H . If H is a subgyrogroup of G, then we write H � G as in

the group case.

Proposition 14 (The Subgyrogroup Criterion) A nonempty subset H of G is a
subgyrogroup if and only if �a ∈ H and a⊕ b ∈ H for all a, b ∈ H .

Proof: Axioms (G1), (G2), (G4) hold trivially. Let a, b ∈ H . By the gyrator

identity, gyr[a, b](H) ⊆ H . Since the gyroautomorphisms are inversive symmetric

(Theorem 5), we also have the reverse inclusion. Thus, the restriction of gyr[a, b]
to H is an automorphism of H and so axiom (G3) holds. �

Let H be a subgyrogroup of G. In contrast to groups, the relation

a ∼ b if and only if � a⊕ b ∈ H (16)
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does not, in general, define an equivalence relation on G. Nevertheless, we can

modify (16) to obtain an equivalence relation on G. From this point of view, any

subgyrogroup of G partitions G. This leads to the introduction of L-subgyrogroups.

Let H be a subgyrogroup of G. Define a relation ∼H on G by letting

a ∼H b if and only if � a⊕ b ∈ H and gyr[�a, b](H) = H. (17)

Theorem 15. The relation ∼H defined by (17) is an equivalence relation on G.

Proof: Let a, b, c ∈ G. Since �a⊕ a = 0 ∈ H and gyr[�a, a] = Id (G), a ∼H a.

Hence, ∼H is reflexive. Suppose that a ∼H b. By Theorem 4 gyr[�a, b](�b⊕ a) =
�(�a⊕b). Hence, �b⊕a = gyr−1[�a, b](�(�a⊕ b)), which implies �b⊕ a ∈ H
since gyr−1[�a, b](H) = H . By Theorem 5

gyr[�a, b] = gyr[�a,�(�b)] = gyr[a,�b] = gyr−1[�b, a].

Hence, gyr[�b, a] = gyr−1[�a, b]. Since gyr[�a, b](H) = H , gyr[�b, a](H) =
H as well. This proves b ∼H a and so ∼H is symmetric. Suppose that a ∼H b
and b ∼H c. By Theorem 3, �a ⊕ c = (�a ⊕ b) ⊕ gyr[�a, b](�b⊕ c) and so

�a ⊕ c ∈ H . Using the composition law (12) and the commutation relation (14),

we have gyr[�a, c] = gyr[�a⊕ b, gyr[�a, b](�b⊕ c)] ◦ gyr[�a, b] ◦ gyr[�b, c].
This implies gyr[�a, c](H) = H and so a ∼H c. This proves ∼H is transitive. �

Let a ∈ G. Let [a] denote the equivalence class of a determined by ∼H . Theorem

15 says that {[a] ; a ∈ G} is a partition of G. Set a ⊕ H := {a⊕ h ; h ∈ H},

called the left coset of H induced by a.

Proposition 16. For each a ∈ G, [a] ⊆ a⊕H .

Proof: If x ∈ [a], by (17), �a⊕ x ∈ H . Hence, x = a⊕ (�a⊕ x) ∈ a⊕H . �

Proposition 16 leads to the notion of L-subgyrogroups

Definition 17. A subgyrogroup H of G is said to be an L-subgyrogroup, denoted
by H �L G, if gyr[a, h](H) = H for all a ∈ G and h ∈ H .

Example 18. In [10, p. 41], Ungar exhibited the gyrogroup K16 whose addition
table is presented in Table 1. In K16, there is only one nonidentity gyroauto-
morphism, denoted by A, whose transformation is given in cyclic notation by

A = (8 9)(10 11)(12 13)(14 15). (18)

The gyration table for K16 is presented in Table 2. According to (18), H1 = {0, 1},
H2 = {0, 1, 2, 3}, and H3 = {0, 1, . . . , 7} are easily seen to be L-subgyrogroups
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of K16. In contrast, H4 = {0, 8} forms a non-L-subgyrogroup of K16 since
gyr[4, 8](H4) �= H4.

⊕ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

2 2 3 1 0 6 7 5 4 11 10 8 9 15 14 12 13

3 3 2 0 1 7 6 4 5 10 11 9 8 14 15 13 12

4 4 5 6 7 3 2 0 1 15 14 12 13 9 8 11 10

5 5 4 7 6 2 3 1 0 14 15 13 12 8 9 10 11

6 6 7 5 4 0 1 2 3 13 12 15 14 10 11 9 8

7 7 6 4 5 1 0 3 2 12 13 14 15 11 10 8 9

8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 10 11 9 8 14 15 13 12 3 2 0 1 7 6 4 5

11 11 10 8 9 15 14 12 13 2 3 1 0 6 7 5 4

12 12 13 14 15 11 10 8 9 6 7 5 4 0 1 2 3

13 13 12 15 14 10 11 9 8 7 6 4 5 1 0 3 2

14 14 15 13 12 8 9 10 11 4 5 6 7 3 2 0 1

15 15 14 12 13 9 8 11 10 5 4 7 6 2 3 1 0

Table 1. Addition table for the gyrogroup K16, (cf [10]).

The importance of L-subgyrogroups lies in the following results.

Proposition 19. If H �L G, then [a] = a⊕H for all a ∈ G.

Proof: Assume that H �L G. By Proposition 16, [a] ⊆ a ⊕H . If x = a ⊕ h for

some h ∈ H , then �a⊕ x = h is in H . The left and right loop properties together

imply gyr[�a, x] = gyr[h, a] = gyr−1[a, h]. By assumption, gyr[a, h](H) = H ,

which implies gyr[�a, x](H) = gyr−1[a, h](H) = H . Hence, a ∼H x and so

x ∈ [a]. This establishes the reverse inclusion. �

Theorem 20. If H is an L-subgyrogroup of a gyrogroup G, then the set

{a⊕H ; a ∈ G}

forms a disjoint partition of G.
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gyr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 I I I I I I I I I I I I I I I I
1 I I I I I I I I I I I I I I I I
2 I I I I I I I I I I I I I I I I
3 I I I I I I I I I I I I I I I I
4 I I I I I I I I A A A A A A A A
5 I I I I I I I I A A A A A A A A
6 I I I I I I I I A A A A A A A A
7 I I I I I I I I A A A A A A A A
8 I I I I A A A A I I I I A A A A
9 I I I I A A A A I I I I A A A A
10 I I I I A A A A I I I I A A A A
11 I I I I A A A A I I I I A A A A
12 I I I I A A A A A A A A I I I I
13 I I I I A A A A A A A A I I I I
14 I I I I A A A A A A A A I I I I
15 I I I I A A A A A A A A I I I I

Table 2. Gyration table for K16. Here, A is given by (18) and I stands for

the identity transformation, (cf [10]).

Proof: This follows directly from Theorem 15 and Proposition 19. �

In light of Theorem 20, we derive the following version of Lagrange’s theorem for

L-subgyrogroups.

Theorem 21 (Lagrange’s Theorem for L-Subgyrogroups) In a finite gyrogroup
G, if H �L G, then |H| divides |G|.

Proof: Being a finite gyrogroup, G has a finite number of left cosets, namely

a1⊕H , a2⊕H , . . . , an⊕H . Since |ai⊕H| = |H| for i = 1, 2, . . . , n, it follows

that |G| =
∣∣∣ n⋃
i=1

ai ⊕H
∣∣∣ = n∑

i=1

|ai ⊕H| = n|H|, which completes the proof. �

Let us denote by [G : H] the number of left cosets of H in G.

Corollary 22. In a finite gyrogroup G, if H �L G, then |G| = [G : H]|H|.

For a non-L-subgyrogroup K of G, it is no longer true that the left cosets of K
partition G. Moreover, the formula |G| = [G : K]|K| is not true, in general.
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5. Isomorphism Theorems

A map ϕ : G → H between gyrogroups is called a gyrogroup homomorphism if

ϕ(a⊕ b) = ϕ(a)⊕ϕ(b) for all a, b ∈ G. A bijective gyrogroup homomorphism is

called a gyrogroup isomorphism. We say that G and H are isomorphic gyrogroups,

written G ∼= H , if there exists a gyrogroup isomorphism from G to H . The next

proposition lists basic properties of gyrogroup homomorphisms.

Proposition 23. Let ϕ : G → H be a homomorphism of gyrogroups.

(1) ϕ(0) = 0

(2) ϕ(�a) = �ϕ(a) for all a ∈ G

(3) ϕ(gyr[a, b]c) = gyr[ϕ(a), ϕ(b)]ϕ(c) for all a, b, c ∈ G

(4) ϕ(a� b) = ϕ(a)� ϕ(b) for all a, b ∈ G.

The proof of the following two propositions is routine, using the subgyrogroup

criterion and the definition of an L-subgyrogroup.

Proposition 24. Let ϕ : G → H be a gyrogroup homomorphism. If K � G, then
ϕ(K) � H . If K �L G and if ϕ is surjective, then ϕ(K) �L H .

Proposition 25. Let ϕ : G → H be a gyrogroup homomorphism. If K � H , then
ϕ−1(K) � G. If K �L H , then ϕ−1(K) �L G.

Let ϕ : G → H be a gyrogroup homomorphism. The kernel of ϕ is defined to

be the inverse image of the trivial subgyrogroup {0} under ϕ, hence is a subgyro-

group. The kernel of ϕ is invariant under the gyroautomorphisms of G, that is,

gyr[a, b](kerϕ) ⊆ kerϕ for all a, b ∈ G. By Proposition 6, gyr[a, b](kerϕ) =
kerϕ for all a, b ∈ G and so kerϕ is an L-subgyrogroup of G. From this the

relation (17) becomes

a ∼kerϕ b if and only if � a⊕ b ∈ kerϕ (19)

for all a, b ∈ G. More precisely, we have the following proposition.

Proposition 26. Let ϕ : G → H be a gyrogroup homomorphism. For all a, b ∈ G,
the following are equivalent

1) a ∼kerϕ b
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2) �a⊕ b ∈ kerϕ

3) ϕ(a) = ϕ(b)

4) a⊕ kerϕ = b⊕ kerϕ.

In view of Proposition 26, we define a binary operation on the set G/kerϕ of left

cosets of kerϕ in the following natural way

(a⊕ kerϕ)⊕ (b⊕ kerϕ) = (a⊕ b)⊕ kerϕ, a, b ∈ G. (20)

The resulting system forms a gyrogroup, called a quotient gyrogroup.

Theorem 27. If ϕ : G → H is a gyrogroup homomorphism, then G/kerϕ with
operation defined by (20) is a gyrogroup.

Proof: Set K = kerϕ. The coset 0 ⊕ K is a left identity of G/K. The coset

(�a) ⊕K is a left inverse of a ⊕K. For X = a ⊕K,Y = b ⊕K ∈ G/K, the

gyroautomorphism generated by X and Y is given by

gyr[X,Y ](c⊕K) = (gyr[a, b]c)⊕K

for c⊕K ∈ G/K. �

The map Π: G → G/kerϕ given by Π(a) = a ⊕ kerϕ defines a surjective

gyrogroup homomorphism, which will be referred to as the canonical projection.

In light of Theorem 27, the first isomorphism theorem for gyrogroups follows.

Theorem 28 (The First Isomorphism Theorem) If ϕ : G → H is a gyrogroup
homomorphism, then G/kerϕ ∼= ϕ(G) as gyrogroups.

Proof: Set K = kerϕ. Define φ : G/K → ϕ(G) by φ(a ⊕ K) = ϕ(a). By

Proposition 26, φ is well defined and injective. A direct computation shows that φ
is a gyrogroup isomorphism from G/K onto ϕ(G). �

It is known that a subgroup of a group is normal if and only if it is the kernel of

some group homomorphism. This characterization of a normal subgroup allows us

to define a normal subgyrogroup in a similar fashion, as follows. A subgyrogroup

N of a gyrogroup G is normal in G, denoted by N � G, if it is the kernel of a

gyrogroup homomorphism of G.

Lemma 29. Let G be a gyrogroup. If A � G and B �G, then

A⊕B := {a⊕ b ; a ∈ A, b ∈ B}

forms a subgyrogroup of G.
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Proof: By assumption, B = kerφ, where φ is a gyrogroup homomorphism of G.

Using Theorem 7, one can prove that B ⊕ a = a⊕B for all a ∈ G.

Let x = a⊕ b, with a ∈ A, b ∈ B. Since φ(gyr[a, b]�a) = gyr[φ(a), 0]φ(�a) =
φ(�a), we have gyr[a, b]�a = �a ⊕ b1 for some b1 ∈ B. Set b2 = gyr[a, b]�b.
Since b2 ∈ B and B ⊕ (�a) = (�a) ⊕ B, there is an element b3 ∈ B for

which b2 � a = �a⊕ b3. The left and right loop properties together imply �x =
�a⊕ (b3 ⊕ gyr[b3,�a](gyr[b2,�a]b1)), whence �x belongs to A⊕B.

For x, y ∈ A⊕B, we have x = a⊕ b and y = c⊕ d for some a, c ∈ A, b, d ∈ B.

Since φ(b⊕ gyr[b, a](c⊕ d)) = φ(b)⊕ gyr[φ(b), φ(a)](φ(c)⊕ φ(d)) = φ(c), we

have b ⊕ gyr[b, a](c⊕ d) = c ⊕ b1 for some b1 ∈ B. The left and right loop

properties together imply x⊕ y = (a⊕ c)⊕ gyr[a, c]b1, whence x⊕ y belongs to

A⊕B. This proves A⊕B � G. �

Theorem 30 (The Second Isomorphism Theorem) Let G be a gyrogroup and let
A,B � G. If B�G, then A∩B�A and (A⊕B)/B ∼= A/(A∩B) as gyrogroups.

Proof: As in Lemma 29, B = kerφ. Note that A∩B�A since kerφ
∣∣
A
= A∩B.

Hence, A/(A ∩B) admits the quotient gyrogroup structure.

Define ϕ : A⊕B → A/(A∩B) by ϕ(a⊕ b) = a⊕ (A∩B) for a ∈ A and b ∈ B.

To see that ϕ is well defined, suppose that a ⊕ b = a1 ⊕ b1, where a, a1 ∈ A
and b, b1 ∈ B. Note that b1 = �a1 ⊕ (a ⊕ b) = (�a1 ⊕ a) ⊕ gyr[�a1, a]b.
Set b2 = �gyr[�a1, a]b. Then b2 ∈ B and b1 = (�a1 ⊕ a) � b2. The right

cancellation law I gives �a1 ⊕ a = b1 � b2 = b1 ⊕ gyr[b1,�b2]b2, which implies

�a1 ⊕ a ∈ A ∩B. By Proposition 26, a1 ⊕ (A ∩B) = a⊕ (A ∩B).

As we computed in the lemma, if a, c ∈ A and b, d ∈ B, then

(a⊕ b)⊕ (c⊕ d) = (a⊕ c)⊕ gyr[a, c]b̃

for some b̃ ∈ B. Hence, ϕ((a⊕b)⊕(c⊕d)) = (a⊕c)⊕A∩B = ϕ(a⊕b)⊕ϕ(c⊕d).
This proves ϕ : A ⊕ B → A/(A ∩ B) is a surjective gyrogroup homomorphism

whose kernel is {a⊕ b ; a ∈ A, b ∈ B, a ∈ A ∩B} = B. Thus, B � A ⊕ B and

by the first isomorphism theorem, (A⊕B)/B ∼= A/(A ∩B). �

Theorem 31 (The Third Isomorphism Theorem) Let G be a gyrogroup and let
H,K be normal subgyrogroups of G such that H ⊆ K. Then K/H � G/H and
(G/H)/(K/H) ∼= G/K as gyrogroups.

Proof: Let φ and ψ be gyrogroup homomorphisms of G such that kerφ = H and

kerψ = K. Define ϕ : G/H → G/K by ϕ(a ⊕ H) = a ⊕ K for a ∈ G. Note

that ϕ is well defined since H ⊆ K. Furthermore, ϕ is a surjective gyrogroup
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homomorphism such that kerϕ = K/H . Hence, K/H � G/H . By the first

isomorphism theorem, (G/H)/(K/H) ∼= G/K. �

Theorem 32 (The Lattice Isomorphism Theorem) Let G be a gyrogroup and let
N � G. There is a bijection Φ from the set of subgyrogroups of G containing N
onto the set of subgyrogroups of G/N . The bijection Φ has the following properties

1) A ⊆ B if and only if Φ(A) ⊆ Φ(B)

2) A �L G if and only if Φ(A) �L G/N

3) A�G if and only if Φ(A)�G/N

for all subgyrogroups A and B of G containing N .

Proof: Set S = {K ⊆ G ; K � G and N ⊆ K}. Let T denote the set of subgyro-

groups of G/N . Define a map Φ by Φ(K) = K/N for K ∈ S . By Proposition

24, Φ(K) = K/N = Π(K) is a subgyrogroup of G/N , where Π: G → G/N is

the canonical projection. Hence, Φ maps S to T .

Assume that K1/N = K2/N , with K1,K2 in S . For a ∈ K1, a ⊕ N ∈ K2/N
implies a⊕N = b⊕N for some b ∈ K2. Hence, �b ⊕ a ∈ N . Since N ⊆ K2,

�b⊕ a ∈ K2, which implies a = b⊕ (�b⊕ a) ∈ K2. This proves K1 ⊆ K2. By

interchanging the roles of K1 and K2, one obtains similarly that K2 ⊆ K1. Hence,

K1 = K2 and Φ is injective.

Let Y be an arbitrary subgyrogroup of G/N . By Proposition 25

Π−1(Y ) = {a ∈ G ; a⊕N ∈ Y }

is a subgyrogroup of G containing N for a ∈ N implies a ⊕ N = 0 ⊕ N ∈ Y .

Because Φ(Π−1(Y )) = Y , Φ is surjective. This proves Φ defines a bijection from

S onto T .

The proof of Item 32 is straightforward. From Propositions 24 and 25, we have

Item 32. To prove Item 32, suppose that A�G. Then A = kerψ, where ψ : G →
H is a gyrogroup homomorphism. Define ϕ : G/N → H by ϕ(a ⊕ N) = ψ(a).
Since N ⊆ A, ϕ is well defined. Also, ϕ is a gyrogroup homomorphism. Since

kerϕ = A/N , we have A/N�G/N . Suppose conversely that Φ(A)�G/N . Then

A/N = kerφ, where φ is a gyrogroup homomorphism of G/N . Set ϕ = φ ◦ Π.

Thus, ϕ is a gyrogroup homomorphism of G with kernel A and hence A�G. �
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