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Abstract. We derive parametrizations of the Delaunay constant mean curvature

surfaces of revolution that follow directly from parametrizations of the conics that

generate these surfaces via the corresponding roulette. This uniform treatment ex-

ploits the natural geometry of the conic (parabolic, elliptic or hyperbolic) and leads

to simple expressions for the mean and Gaussian curvatures of the surfaces as well

as the construction of new surfaces.

1. Preliminaries

The surfaces of revolution with constant mean curvature (CMC) were introduced

and completely characterized by C. Delaunay more than a century ago [4]. Delau-

nay’s formulation of the problem leads to a non–linear ordinary differential equa-

tion involving the radius of curvature of the plane curve that generates the surface,

which can be also characterized variationally as the surface of revolution having

a minimal lateral area with a fixed volume (see [6]). Delaunay showed that the

above differential equation arises geometrically by rolling a conic along a straight

line without slippage. The curve described by a focus of the conic, the roulette
of the conic, is then the meridian of a surface of revolution with constant mean

curvature, where the straight line is the axis of revolution. These CMC surfaces

of revolution are called Delaunay surfaces. Apart from the elementary cases of

spheres and cylinders, there are three classes of Delaunay surfaces, the catenoids,

the unduloids and the nodoids, corresponding to the choice of conic as a parabola,

an ellipse or a hyperbola, respectively.

Traditionally the roulettes have been characterized using polar coordinates cen-

tered at the focus of the conic [3, 6–8, 10–13]. The methods employed in these

papers are based on solving certain ordinary differential equations that, in one way

or another, depend on the variational characterization of the CMC surfaces. Al-

though reference [3] does suggest the possibility of using the cartesian coordinates

of the roulettes with the tangent to the conic as the abscissa, this idea is never

developed.
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Here we obtain parametrizations of the roulettes, and therefore of the correspond-

ing Delaunay surfaces, directly from the parametrizations of the conics. This leads

directly to concise expressions for all the key differential geometric characteristics

of Delaunay surfaces. In our approach the unduloid is described with trigonomet-

ric functions, whereas the catenoid and the nodoid are described with hyperbolic

functions. This yields simple expressions for the Gaussian curvature, total curva-

ture and mean curvature as well as the length of roulettes. The mean curvature of

an unduloid, in particular, is given by the inverse of the distance between the ver-

tices of the corresponding ellipse, whereas the mean curvature of a nodoid is given

by minus the inverse of the distance between the vertices of the corresponding hy-

perbola. The parametrizations presented here also give rise to a straightforward

construction of nodoids, both when viewed as simple parts (generated by a focus)

or when they are composed of several individual parts or a periodic repetition of

simple parts.

For the sake of completeness, we finish this section by presenting some well-known

results about regular surfaces of revolution, as well as a very simple proof of the

Gauss-Bonett theorem for this class of surfaces.

Let f, g : [t1, t2] −→ R be smooth functions with f > 0, and S the surface of

revolution parametrized by xxxxxxxxxxxxxx : [t1, t2]× [v1, v2] −→ R
3

xxxxxxxxxxxxxx(t, v) =
(
f(t) cos(v), f(t) sin(v), g(t)

)
The coefficients of the first and second fundamental forms of S are given by

E = 〈xxxxxxxxxxxxxxt, xxxxxxxxxxxxxxt〉 = (f ′)2 + (g′)2, F = 〈xxxxxxxxxxxxxxt, xxxxxxxxxxxxxxv〉 = 0, G = 〈xxxxxxxxxxxxxxv, xxxxxxxxxxxxxxv〉 = f2

L = 〈xxxxxxxxxxxxxxtt, nnnnnnnnnnnnnn〉 =
f ′g′′ − f ′′g′(

(f ′)2 + (g′)2
)1/2 , M = 〈xxxxxxxxxxxxxxtv, nnnnnnnnnnnnnn〉 = 0

N = 〈xxxxxxxxxxxxxxvv, nnnnnnnnnnnnnn〉 =
fg′(

(f ′)2 + (g′)2
)1/2

where

nnnnnnnnnnnnnn =
xxxxxxxxxxxxxxt × xxxxxxxxxxxxxxv
|xxxxxxxxxxxxxxt × xxxxxxxxxxxxxxv|

=
1(

(f ′)2 + (g′)2
)1/2(− g′ cos(v),−g′ sin(v), f ′

)
is the unit normal to S. The Gaussian curvature is given by

K =
LN

EG
=

g′
(
f ′g′′ − f ′′g′

)
f
(
(f ′)2 + (g′)2

)2
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whereas the mean curvature, H , is given by

2H = k1 + k2 =
L

E
+

N

G
=

f ′g′′ − f ′′g′(
(f ′)2 + (g′)2

)3/2 +
g′

f
(
(f ′)2 + (g′)2

)1/2
where k1 and k2 are the two principal curvatures.

Now consider a curve α in S parametrized by the arc length s. For any point

p = α(s) we choose a vector uuuuuuuuuuuuuu(s) in the tangent space at p such that {α′(s), uuuuuuuuuuuuuu(s)}
is a positively oriented orthonormal basis of the tangent space at p, i.e., α′(s) ×
uuuuuuuuuuuuuu(s) = nnnnnnnnnnnnnn(α(s)). The geodesic curvature kg(s) of α at s is then given by

kg(s) = 〈α′′(s), uuuuuuuuuuuuuu(s)〉.

If the curve is chosen to be a meridian of S, α(t) = xxxxxxxxxxxxxx(t, v0), then kg = 0, whereas

if it is a parallel, β(v) = xxxxxxxxxxxxxx(t0, v), then its geodesic curvature is given by

kg(t0) =
f ′(t0)

f(t0)
(
(f ′(t0))2 + (g′(t0))2

)1/2 ·
Lemma 1. If C1 and C2 are the boundary parallels of S with the orientation in-
duced by S then ∫

S
Kdσ +

∫
C1

kg(t1)d�+

∫
C2

kg(t2)d� = 0.

Proof: Observe first that kg(t)|xxxxxxxxxxxxxxv| =
f ′(t)(

(f ′(t))2 + (g′(t))2
)1/2 and hence

(
kg|xxxxxxxxxxxxxxv|

)′
=

g′
(
f ′′g′ − f ′g′′

)
(
(f ′)2 + (g′)2

)3/2 = −K|xxxxxxxxxxxxxxt| |xxxxxxxxxxxxxxv|.

On the other hand∫
S
Kdσ =

∫ v2

v1

∫ t2

t1

K|xxxxxxxxxxxxxxt| |xxxxxxxxxxxxxxv|dtdv = −
∫ v2

v1

∫ t2

t1

(
kg|xxxxxxxxxxxxxxv|

)′
dtdv

=

∫ v2

v1

kg(t1)|xxxxxxxxxxxxxxv(t1, v)|dv −
∫ v2

v1

kg(t2)|xxxxxxxxxxxxxxv(t2, v)|dv

= −
∫
C1

kg(t1)d�−
∫
C2

kg(t2)d�.
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In the case of coordinate intervals of surfaces of revolution, using this lemma, we

may conclude the Gauss-Bonnet Theorem ([5], p 274), because if v2 − v1 = 2π,

then the sum of external angles is zero, so S is homeomorphic to an annulus with

null Euler characteristic. Otherwise, it is a simple region whose Euler characteristic

equals 1 and the sum of the external angles at the four boundary vertices, formed

by the tangents to the boundary curves oriented with the orientation induced by S,

equals 2π.

2. The Roulettes of the Conics

When a curve rolls, without slipping, on a fixed curve, each point, associated with

the rolling curve, traces another curve known as a roulette. In Fig. 1 (left), we show

the trace generated by the point F = (F1, F2), associated with a given curve C,

when it rolls on a straight line. The abscissa F1 of the roulette coincides with Q1,

i.e., the length of the arc of the curve from Po to P , minus the value P1−Q1 (where

P1, Q1 are the abscisae of the points P , Q respectively). We can interchange the

roles of the conic and its tangent by considering a fixed conic and a moving tangent.

The locus of the points Q thus obtained is called the pedal curve of C with respect

to F .

Consider the plane curve C given by f(x, y) = 0, the point F = (A,B), the

tangent line of coordinates X,Y at the point P = (x, y) of the curve is

(rT ) :
X

fy
+

Y

fx
− x

fy
− y

fx
= 0

and the perpendicular line to (rT ) passing through F

(r⊥T ) :
X

fx
− Y

fy
− A

fx
+

B

fy
= 0.

Then

d(Q,F ) = d(rT , F ) =
|(A− x)fx + (B − y)fy|√

f2
x + f2

y

d(Q,P ) = d(r⊥T , P ) =
|(B − y)fx + (x−A)fy|√

f2
x + f2

y

·

Here we are interested in the roulettes generated by the conic foci when they roll

over a tangent line. The cartesian and parametric description of the parabola, the
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ellipse and the hyperbola are given respectively by

x− y2

4b
=0, α(t) =

(
b sinh2(t), 2b sinh(t)

)
x2

a2
+

y2

b2
=1, β(t) =

(
a cos(t), b sin(t)

)
x2

a2
− y2

b2
=1, γ(t) =

(
± a cosh(t), b sinh(t)

)
where a, b > 0 and t ∈ [t1, t2] ⊂ R.

In Fig. 1 (right), we show a parabola, with the perpendicular from F onto the

tangent of the parabola at P . This situation is equivalent to the general case and

we apply the same criteria to give a parameterization of this roulette. The focus

with this parameterization is F = (b, 0).

Figure 1. Roulette (left) and Parabola (right).

The arc length of the piece of the parabola from t0 = 0 is s =

∫ t

t0

|α′(u)|du =

b(t+sinh(t) cosh(t)), and the length of the segment PQ is d(Q,P ) =
|y(b+ x)|√
y2 + 4b2

= |b sinh(t) cosh(t)|. Note that, if t < t0, the value of s is negative, and the relative

positions of P and Q in (rT ) are changed. Then the value of the abscissa, that is

the oriented tangent line (rT ), is the signed length s minus the signed length to go

from P to Q, that is

gc(t) = s− b sinh(t) cosh(t) = bt. (1)
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Computing the ordinate fc(t) (that is, the length of the segment FQ), i.e.,

fc(t) = d(Q,F ) =
1

2

√
y2 + 4b2 = b cosh t (2)

we conclude that the roulette associated with the focus of the parabola is the cate-
nary

A(t) = (gc(t), fc(t)) = (bt, b cosh (t)) .

Note also that

|A′(t)| = b cosh(t)

and the arc length is given by

�c(t) =

∫ t

t0

|A′(z)| dz = b sinh(z)
∣∣∣t
t0
.

Figure 2. Ellipse (left) and Hyperbola (right).

For the ellipse, Fig. 2 (left), take b < a and c =
√
a2 − b2. The focus with this

parameterization is F = (c, 0). The arc length from t0 is

s =

∫ t

t0

|β′(z)|dz =

∫ t

t0

√
a2 − c2 cos2(z) dz.

In this case two curves are generated. The first one corresponds to choosing the

focus F closest to the tangent. By computing the length of the segment PQ,
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d(Q,P ) =
|cy(a2 − cx)|√
a4y2 + b4x2

=
|c sin(t)(a− c cos(t))|√

a2 − c2 cos2(t)
, the abscissa of the roulette

is the length s minus the signed length to go from P to Q, that is

gu(t) =

∫ t

t0

√
a2 − c2 cos2(z)dz − c sin(t) (a− c cos(t))√

a2 − c2 cos2(t)
· (3)

In addition, the ordinate is given by the length of the segment FQ, d(Q,F ) =
b2(a2 − cx)√
a4y2 + b4x2

, namely

fu(t) =
b (a− c cos(t))√
a2 − c2 cos2(t)

(4)

and B(t) = (gu(t), fu(t)) is therefore the parametrization of the roulette generated

by the focus of the ellipse. One finds

|B′(t)| = ab

a+ c cos(t)

and the arc length is given by

�u(t) =

∫ t

t0

|B′(z)|dz = 2a arctan

(√
a− c

a+ c
tan
(z
2

))∣∣∣∣t
t0

.

In the same way, if we chooose the other focus F ′ = (−c, 0), it follows after

computing the length of PQ′ that the abscissa is

g̃u(t) =

∫ t

t0

√
a2 − c2 cos2(z)dz − c sin(t) (a+ c cos(t))√

a2 − c2 cos2(t)
(5)

and the ordinate is the length of the segment F ′Q′, namely

f̃u(t) =
b (a+ c cos(t))√
a2 − c2 cos2(t)

(6)

and B̃(t) = (g̃u(t), f̃u(t)) is therefore the parametrization of the roulette generated

by the focus F ′. One now finds

|B̃′(t)| = ab

a− c cos(t)

and an arc length

�̃u(t) =

∫ t

t0

|B̃′(z)|dz = 2a arctan

(√
a+ c

a− c
tan
(z
2

))∣∣∣∣t
t0

.



34 Enrique Bendito, Mark J. Bowick and Agustín Medina

Observe in particular that arctan
(√

a+c
a−c

)
+ arctan

(√
a−c
a+c

)
= π/2 and then

the sum of the length of the two curves for t ∈ (−π/2, π/2) is 2πa.

The roulette of the focus of an ellipse is called an undulary. It is clear that we

do not need to consider both foci for an ellipse. Specifically, if we consider the

ellipse described by taking t ∈ [−π, π], the curve generated by the focus F is the

same as the curve that results from joining the two curves generated by both foci

F and F ′ with t ∈ [−π/2, π/2] only. We consider both foci to make manifest the

constructive parallelism between these roulettes and the roulettes of the hyperbola.

Consider now the case of the hyperbola, as shown Fig. 2 (right). Taking c =√
a2 + b2. The focus with this parameterization is F = (c, 0). The arc length from

t0 to t is

s =

∫ t

t0

|γ′(z)|dz =

∫ t

t0

√
c2 cosh2(z)− a2 dz.

For the first roulette we consider the focus F closest to the tangent. By computing

the length of the segment PQ in a similar manner to the preceding cases, it then

follows that the abscissa is

gn(t) =

∫ t

t0

√
c2 cosh2(z)− a2 dz − c sinh(t) (c cosh(t)− a)√

c2 cosh2(t)− a2
(7)

whereas its ordinate is given by the length of FQ, namely

fn(t) =
b (c cosh(t)− a)√
c2 cosh2(t)− a2

(8)

and therefore C(t) = (gn(t), fn(t)) is the parametrization of the roulette generated

by the focus F . One finds

|C ′(t)| = ab

c cosh(t) + a

with arc length given by

�(t) =

∫ t

t0

|C ′(z)|dz = 2a arctan

(√
c− a

c+ a
tanh

(z
2

))]t
t0

.

In particular, the length of C with t ∈ (−∞,∞) is 4a arctan
(√

c−a
c+a

)
.

Taking the focus F ′ = (−c, 0) instead one finds, after computing the length of

PQ′, that the abscissa is

g̃n(t) =

∫ t

t0

√
c2 cosh2(z)− a2 dz − c sinh(t) (c cosh(t) + a)√

c2 cosh2(t)− a2
(9)
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Figure 3. Roulettes B and B̃ (left) and roulettes C and C̃ (right).

and the ordinate is the length of the segment F ′Q′, namely

f̃n(t) =
b (c cosh(t) + a)√
c2 cosh2(t)− a2

(10)

which gives us the parameterization C̃(t) = (g̃n(t), f̃n(t)) of the roulette generated

by the focus F ′. Now

|C̃ ′(t)| = ab

c cosh(t)− a

and the arc length is given by

�̃(t) =

∫ t

t0

|C̃ ′(z)|dz = 2a arctan

(√
c+ a

c− a
tanh

(z
2

))]t
t0

.

The sum of the length of the two branches of the curves for t ∈ (−∞,∞) is again

2πa. The roulette of the focus of a hyperbola is called a nodary.

In Fig. 3 we display the roulettes generated by the foci of the ellipse (left) and the

hyperbola (right). B and C are the curves with increasing slope, while B̃ and C̃
are the curves with decreasing slope.

In Fig. 4 we display the pedal curves of the ellipse (left) and of the hyperbola

(right). Both are circles of diameter equal to the distance between the vertices of

the conic. It is known that when a curve rolls on a straight line the arc of the roulette

is equal to the corresponding arc of the pedal. Here we can see this directly. If we

consider, for instance, the curve C and denote x = arctan
(√

c−a
c+a

)
, then

sin(2x) =
b

c
, cos(2x) =

a

c

and so

4a arctan

(√
c− a

c+ a

)
= 2a arctan

(
b

a

)
.
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Figure 4. Pedal curves of the ellipse and the hyperbola. Left: arc of the

circle (dash), whose length coincides with the length of the curve B and arc

of the circle, whose length coincides with the length of the curve B̃. Right:

arc of the circle (dash), whose length coincides with the length of the curve

C and arc of the circle whose length coincides with the length of the curve

C̃.

Figure 5. Family of roulettes B ∪ B̃ and C ∪ C̃ of length 2πa.

That is, the length of the curve C coincides with the length of the associated pedal

curve – see Fig. 4 (right).

In Fig. 5 we display a family of roulettes with length 2πa. Each of these roulettes

was generated by a conic with major axis a. The straight segment corresponds

to a curve of type B in the limiting case b = a. This is followed by a set of

elliptical roulettes from b = a until the next limiting case b = 0, corresponding to

a semicircumference of radius 2a. The remaining roulettes correspond to curves of

type C, ranging from the limiting case b = 0, again the same semicircumference,

until b = ∞, which is the circle of radius a shown in the figure.

In Fig. 6 (left) we show the same family of roulettes shown in Fig. 5, but to the

height, with respect to the abscissa axis, at which it has been generated by the focus

of the corresponding conic. Observe that the limiting circumference of radius a
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Figure 6. Left: Location of the roulettes in Fig. 5 with respect to the abscissa

axis. Right: a family of roulettes of type B and C separated by a catenary

(dash).

would have the center at height b = ∞. In Fig. 6 (right) we display the asymptotic

role of the catenary separating two families of curves B and C. In this case the

corresponding conics do not have the parameter a constant, and both families tend

to the catenary as the parameter a grows.

3. The Delaunay Surfaces

In this section we study Delaunay surfaces and derive analytical expressions for

their most important differential geometric properties. The Delaunay surfaces are

surfaces of revolution and therefore the key to their properties lie in their meridians,

which here are the roulettes of the foci of the conics discussed in the previous

section. The Delaunay surfaces are thus the surfaces of revolution generated by

the curves A(t), B(t), B̃(t), C(t) and C̃(t). We next describe the parametrization,

the coefficients of the first and second fundamental forms of each one of these

surfaces and their curvatures. The entire differential structure has a remarkably

transparent dependence on the parameters that characterize each conic.

CATENOID: xxxxxxxxxxxxxx(t, v) =
(
fc(t) cos(v), fc(t) sin(v), gc(t)

)
, where fc and gc are

given in equations (2) and (1) respectively, see Fig. 7. We have

xxxxxxxxxxxxxxt = (b sinh(t) cos(v), b sinh(t) sin(v), b)

xxxxxxxxxxxxxxv = (−b cosh(t) sin(v), b cosh(t) cos(v), 0) .
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The unit normal vector at (t, v) is given by

nnnnnnnnnnnnnnc(t, v) =

(
− cos(v)

cosh(t)
,− sin(v)

cosh(t)
, tanh(t)

)
.

The non–vanishing coeficients of the first and the second fundamental form, and

the principal curvatures, the mean curvature and the Gaussian curvature are

E = b2 cosh2(t), G = b2 cosh2(t), L = − b, N = b

k1 =
−1

b cosh2(t)
, k2 =

1

b cosh2(t)
, H =0, K =

−1

b2 cosh4(t)
·

The geodesic curvature of a parallel is

Figure 7. The catenoid.

kg =
sinh(t)

b cosh2(t)

and the total curvature of the catenoid is∫
xxxxxxxxxxxxxx
Kdσ = −(v2 − v1) tanh(t)

∣∣∣t2
t1
.

UNDULOID: yyyyyyyyyyyyyy(t, v) =
(
fu(t) cos(v), fu(t) sin(v), gu(t)

)
, where fu and gu are

given in equations (4) and (3) respectively, see Fig. 8 (left). Introducing

hu(t) =
ab√

a2 − c2 cos2(t) (a+ c cos(t))
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it follows that

yyyyyyyyyyyyyyt = (c sin(t)hu(t) cos(v), c sin(t)hu(t) sin(v), bhu(t))

yyyyyyyyyyyyyyv = (−fu(t) sin(v), fu(t) cos(v), 0) .

The machinary of the differential geometry [5] in this case produces the unit normal

vector

nnnnnnnnnnnnnnu(t, v) =

(
−b cos(v)√

a2 − c2 cos2(t)
,

−b sin(v)√
a2 − c2 cos2(t)

,
c sin(t)√

a2 − c2 cos2(t)

)
and

E =
a2b2

(a+ c cos(t))2
, G =

b2 (a− c cos(t))

(a+ c cos(t))

L =
−ab2c cos(t)

(a2 − c2 cos2(t)) (a+ c cos(t))
, N =

b2

a+ c cos(t)

k1 =
−c cos(t)

a(a− c cos(t))
, k2 =

1

a− c cos(t)

H =
1

2a
, K =

−c cos(t)

a (a− c cos(t))2
·

Correspondingly, the geodesic curvature of a parallel is

kg =
−c sin(t)

b
(
a− c cos(t)

)
and the total curvature is∫

yyyyyyyyyyyyyy
Kdσ = −c(v2 − v1)

sin(t)√
a2 − c2 cos2(t)

∣∣∣∣∣
t2

t1

.

Clearly one could do the same calculation for the surface generated by B̃ (see Fig 8

(right)), but it is enough consider the proper domain of the parameter t to belong to

one or another part of the unduloid. In fact these surfaces are periodic with period

2π with respect to the parameter t.

We must, however, consider both parts C and C̃ in the construction of the nodoids,

because each roulette has its domain in �.

NODOID1: zzzzzzzzzzzzzz1(t, v) =
(
fn(t) cos(v), fn(t) sin(v), gn(t)

)
, where fn and gn are

given in equations (8) and (7) respectively, see Fig. 9 (left). We consider

h1(t) =
ab√

c2 cosh2(t)− a2 (c cosh(t) + a)
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Figure 8. Unduloids generated by the revolution of B (left), and B̃ (right).

from which it follows that

(zzzzzzzzzzzzzz1)t =
(
c sinh(t)h1(t) cos(v), c sinh(t)h1(t) sin(v), bh1(t)

)
(zzzzzzzzzzzzzz1)v =

(
− fn(t) sin(v), fn(t) cos(v), 0

)
.

The unit normal vector at (t, v) is given by

nnnnnnnnnnnnnn1(t, v) =

⎛⎝ −b cos(v)√
c2 cosh2(t)− a2

,
−b sin(v)√

c2 cosh2(t)− a2
,

c sinh(t)√
c2 cosh2(t)− a2

⎞⎠ .

Respectively, the fundamental quantities in this case are

E =
a2b2

(c cosh(t) + a)2
, G =

b2 (c cosh(t)− a)

c cosh(t) + a

L =
−ab2c cosh(t)(

c2 cosh2(t)− a2
)
(c cosh(t) + a)

, N =
b2

c cosh(t) + a

k1 =
−c cosh(t)

a(c cosh(t)− a)
, k2 =

1

c cosh(t)− a

H =
−1

2a
, K =

−c cosh(t)

a (c cosh(t)− a)2
·

The geodesic curvature of a parallel is

kg =
c sinh(t)

b
(
c cosh(t)− a

)
and the total curvature is∫

zzzzzzzzzzzzzz1

Kdσ = −c(v2 − v1)
sinh(t)√

c2 cosh2(t)− a2

∣∣∣∣∣∣
t2

t1

.
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Figure 9. Nodoids generated by the revolution of C (left) and C̃ (right).

NODOID2: zzzzzzzzzzzzzz2(t, v) =
(
f̃n(t) cos(v), f̃n(t) sin(v), g̃n(t)

)
, where f̃n and g̃n are

given in equations (10) and (9) respectively, see Fig. 9 (right). Let us introduce

h2(t) =
−ab√

c2 cosh2(t)− a2 (c cosh(t)− a)

from which it follows that

(zzzzzzzzzzzzzz2)t =
(
c sinh(t)h2(t) cos(v)c sinh(t)h2(t) sin(v), bh2(t)

)
(zzzzzzzzzzzzzz2)v =

(
− f̃n(t) sin(v), f̃n(t) cos(v), 0

)
.

This allows to find easily the unit normal vector

nnnnnnnnnnnnnn2(t, v) =

⎛⎝ b cos(v)√
c2 cosh2(t)− a2

,
b sin(v)√

c2 cosh2(t)− a2
,− c sinh(t)√

c2 cosh2(t)− a2

⎞⎠
and

E =
a2b2

(c cosh(t)− a)2
, G =

b2 (c cosh(t) + a)

c cosh(t)− a

L =
−ab2c cosh(t)(

c2 cosh2(t)− a2
)
(c cosh(t)− a)

, N =
−b2

c cosh(t)− a

k1 =
−c cosh(t)

a(c cosh(t) + a)
, k2 =

−1

c cosh(t) + a

H =
−1

2a
, K =

c cosh(t)

a (c cosh(t) + a)2
·

The geodesic curvature of a parallel is

kg =
−c sinh(t)

b
(
c cosh(t) + a

) ·
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The total curvature is

∫
zzzzzzzzzzzzzz2

Kdσ = c(v2 − v1)
sinh(t)√

c2 cosh2(t)− a2

∣∣∣∣∣∣
t2

t1

.

Figure 10. Left: Closed nodoid (compact without boundary), connected

sum of four tori. Right: Connected compact nodoid with boundary.

Fig. 10 illustrates the versatility of the parameterization of nodoids adopted here.

We avoid the periodic extension of nodoids with both positive and negative Gaus-

sian curvature, maintain the orientability, preserve the C∞ class and find new sur-

faces both closed and with boundary.

4. Applications

Comparison between theoretical/numerical predictions and experiments is of great

interest. An experimental system has been developed [9] in which charge-stabilized

emulsions are created in the form of capillary bridges, these are structures in which

a drop of liquid A, immersed in liquid B, spans the gap between two parallel flat

glass surfaces. The surface separating the two liquids has the topology of a cylinder

and necessarily has a constant mean curvature determined by the Laplace pressure

difference between the inside (A) and the outside (B) liquids.

In [1] we analyze and simulate numerically the structure of the crystalline ground

state of particles strictly confined to a Delaunay surface and interacting with a

pairwise-repulsive short-range power law potential. To determine candidate min-

imum energy configurations we use the Forces Method [2] in which we choose a

certain number of particles and an initial configuration for them, then update the

positions of the particles on the surfaces until a minimum energy configuration
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is reached. This occurs when the gradient of the potential energy created by the

particles is orthogonal to the surface.

We are particularly interested in the defect structure of the ground state and how

distinctive defect motifs emerge as the total curvature is varied within one class of

Delaunay surfaces. We also aim to analyze the evolution of defects by tracking

the ground state when the capillary bridge spans between two parallel flat surfaces.

This incompressible movement plays with the most characteristic property of the

Delaunay surfaces of having minimum lateral area.

The simplicity of the parameterization of the Delaunay surfaces presented here,

has made possible to obtain the ground state on these surfaces for a large num-

ber of particles (never addressed before), and are also responsible of been able to

analyze the case of nodoids in depth, never done before, due to the difficulty of

other parametrizations used in their description, as well as obtaining families of

Delaunay surfaces with a given volume.

Figure 11. Planar sections containing the revolution axis of a family of

Delaunay surfaces with constant volume. From the outside-in: cylinder, un-

duloids, catenoid, nodoids, catenoid and unduloids.

In Fig 11 we present planar sections that contain the common axis of revolution

of several Delaunay surfaces with enclosed volume equal to 1 and radius 1 at the

boundaries. Note that the solutions depend on t0.

Here we illustrate the simplicity of our formulation by finding a surface which sat-

isfies these conditions. Consider a plane curve (f(t), g(t)). The volume enclosed

by its surface of revolution is given by π
∫ t1
t0

f2(t)g′(t)dt and the end points by

(f(t0), g(t0)) = (f0, g0) and (f(t1), g(t1)) = (f1, g1).
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Consider for example the symmetric nodoid generated by a roulette C such that

the enclosed volume is 1 and the radius is 1 at the end points ±t0. The equations

to solve for a and b are then

πab4
∫ t0

−t0

(c cosh(t)− a)

(c cosh(t) + a)2
√

c2 cosh2(t)− a2
dt = 1

b (c cosh(t0)− a)√
c2 cosh2(t0)− a2

= 1.

Once known the semiaxis of the underlying conic and the interval of parameter-

ization of a meridian, we have all the ingredients to operate on the surface and

understand its properties.
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