
JGSP 33 (2014) 1–25

ANALYSIS OVER C
∗-ALGEBRAS AND THE OSCILLATORY

REPRESENTATION

SVATOPLUK KRÝSL

Communicated by Vasil V. Tsanov

Abstract. Since the last two decades, several differential operators appeared in

connection with the so-called oscillatory geometry. These operators act on sections

of infinite rank vector bundles. Definitions of the oscillatory representation, meta-

plectic structure, oscillatory Dirac operator, as well as some necessary fundamental

results in the analysis in C∗-Hilbert bundles are recalled here. These results are used

for a description of the kernel of a certain second order differential operator arising

from oscillatory geometry and the cohomology groups of the de Rham complex of

exterior forms with values in the oscillatory representation.
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1. Introduction

In the sixties, when quantizing solutions to the Klein-Gordon equation, Shale

[19] found a non-trivial projective unitary representation of the symplectic group

Sp(V, ω). Short after that, Weil [23] made it a true representation of the meta-

plectic group, the connected double cover of the appropriate symplectic group. In

this paper, this representation is called the oscillatory representation. The under-

lying vector space of this representation is the Hilbert space S = L2(L) of square

Lebesgue integrable functions on a Lagrangian subspace L of the symplectic space

(V, ω). For a suitable class of symplectic manifolds (M,ω), Kostant [13] used this

representation to derive a quantization procedure for Hamiltonian mechanics by in-

troducing the metaplectic structure on M and the oscillatory bundle S → M, often

called the symplectic spinor bundle. The fibers of S are isometrically isomorphic

to the carrier S = L2(L) of the oscillatory representation. Using the oscillatory

connection ∇S on S, which is induced by a symplectic connection ∇ on the un-

derlying manifold, Habermann [8] defined a symplectic analogue of the classical

Dirac operator. This operator, which we denote by D and call it the oscillatory
Dirac operator acts on sections s ∈ Γ(M,S) of the oscillatory bundle S.
One can introduce a further operator by the prescription P = i(D̃D−DD̃), where

D̃ is an orthogonal version of D, defined using a compatible almost complex struc-

ture on (M,ω). This operator, acting on Γ(M,S) as well, is elliptic in the sense

that its symbol is an automorphism of S out of the zero-section of the cotangent

bundle. Already on the two-sphere, the spectrum of P turns out to be unbounded

from both sides, and the kernel of P is infinite dimensional [9]. This is an ex-

actly opposite to what holds for elliptic operators in finite rank vector bundles over

compact manifolds. Since the time of introducing of P, further elliptic operators

appearing in oscillatory geometry were studied and also similar deflections in their

behavior from the behavior of “the classical” elliptic operators were found. By

classical operators we mean the ones acting in finite rank vector bundles. The

base manifolds are supposed to be compact. See, e.g., Cahen et al [2] and Ko-

rman [11, 12] for a study of Dolbeualt type operators acting in sections of the

(infinite rank) oscillatory bundle. They use the trick of Habermann, based on a

splitting of S into certain finite rank unitary bundles, and study spectral properties

of these “deflective” operators using the representation theory of the compact Lie

groups.

We decided to explain the different behavior of these newly appeared operators as

a generalization of the behavior of the classical ones. The structures we use in

order to do this are C∗-algebras, Hilbert C∗-modules and C∗-Hilbert bundles. Our

reference for C∗-algebras is Arveson [1], and for Hilbert C∗-modules the text-book
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of Lance [17]. For the readers convenience, we recall their definitions in this paper

briefly. For the C∗-Hilbert bundles, we refer, e.g., to Solovyov and Troitsky [20].

A Hilbert C∗-bundle is a smooth generalization of the notion of “champs continus

de C∗-algèbres” (see Dixmier [3]).

Differential operators acting between sections of C∗-Hilbert bundles and their el-

lipticity can be defined similarly as in the finite rank case, i.e., by partial deriva-

tives in local coordinates and by symbol maps, respectively. Let us mention, that

Fomenko and Mishchenko proved in [6], that the kernels of extensions of elliptic

operators to certain completions of the space of smooth sections are finitely gen-

erated projective Hilbert C∗-modules if the C∗-Hilbert bundles are finitely gener-

ated and projective. In Krýsl [15], these results were used in the case of elliptic
complexes and smooth sections to prove a generalization of the Hodge theory of

elliptic complexes of operators acting in finite rank vector bundles. In the above

mentioned article, the author proves that under a certain condition on the so-called

associated Laplacians, the cohomology groups of an elliptic complex in finitely

generated projective A-Hilbert bundles over a compact manifold are finitely gen-

erated A-modules and Banach spaces.

As far as we know, these differently behaved operators were studied without a

use of the analysis over C∗-algebras, till yet, and this sort of analysis was not

used in the case of examples of specific complexes for which classical methods

cannot be used. The purpose of this paper is to summarize basic facts on this topic,

and use them for the complex of exterior forms tensored by the oscillatory bundle

and for the operator P. We gain information on the cohomology groups of this

complex and on the kernel of P. Under conditions specified in the text, the kernel

as well as the cohomology groups appear to be finitely generated as C∗-modules

and Banach spaces. Let us notice that we are motivated by the idea of a quantum

theory for fields “displaced in the points of the phase space”, and by deformation

and geometric quantization. See e.g. Kostant [13], Fedosov [4] and Habermann

and Habermann [9] for sources of these ideas.

In the second section, we recall notions from symplectic linear algebra, introduce

the oscillatory representation and show some of its applications within harmonic

analysis (eigenvalues of the Fourier transform) and its connections with quantum

mechanics (harmonic operator). The eigenvalues of the Fourier transform are com-

puted there using basic properties of the oscillatory representation (Theorem 2). In

the third section, we collect information on Fedosov and oscillatory geometry, in-

cluding a definition of the oscillatory Dirac operator. The fourth section is devoted

to a repetition of Hodge theory of elliptic complexes in finite rank bundles. The

fifth part of the text starts by a recollection of results of Habermann on the kernel

of P. In the second part of this chapter, we present some basic definitions from
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the theory of Hilbert C∗-modules and formulate a theorem on elliptic complexes

in finitely generated projective C∗-Hilbert bundles (Theorem 8). In the last part

of the fifth section, we use this theorem to describe the cohomology groups of de

Rham complex with values in the oscillatory representation (Corollary 9) and the

kernel of P (Corollary 11).

2. Symplectic Linear Algebra and the Oscillatory Representation

Let (V, ω) be a real symplectic vector space of dimension 2n. In particular, ω :
V × V → R is a non-degenerate anti-symmetric bilinear form. We will need

the technical notion of a symplectic basis. This is a basis (ei)
2n
i=1 of V for which

ω(ei, ej) = 1 if and only if i = 1, . . . , n and j = i+n, ω(ei, ej) = −1 if and only

if i = n + 1, . . . , 2n and j = i − n and ω(ei, ej) = 0 otherwise. Using a process

similar to the Gram-Schmidt orthogonalization (one just uses a symplectic form

instead of a scalar product), it is possible to prove the existence of a symplectic

basis. We fix such a basis for the rest of this paper and set ωij = ω(ei, ej), i, j =

1, . . . , 2n. The numbers ωij are uniquely defined by the equations
∑2n

k=1 ωikω
jk =

δji , i, j = 1, . . . , 2n. With respect to a symplectic basis

(ωij)i,j=1,...,n =

(
0 1

−1 0

)

where 0 and 1 denote the n × n zero and unit matrix, respectively. In symplectic

linear algebra, the order of indices i, j in ωij and ωij by which we rise or lower

indices of tensors matters. We use the following convention. If Sab...c...d
rs...t...u

is a tensor, we denote by Sab...
i
...d

rs...u
the tensor

∑2n
c=1 ω

icSab...c...d
rs...u, and by

Sab...d
rs...

i
...u the tensor

∑2n
t=1 Sab...c...d

rs...t...uωti.

It is well known that the symplectic group

G = Sp(V, ω) = {A : V → V ; ω(Av,Aw) = ω(v, w) for each v, w ∈ V }

is smoothly retractable onto the unitary group U(n), the homotopy group of which

is Z. Thus, Sp(V, ω) has a non-universal connected double covering, the so-called

metaplectic group G̃ = Mp(V, ω). Let us denote the appropriate covering homo-

morphism by λ : Mp(V, ω) −→ Sp(V, ω). Thanks to this 2 : 1 map, the relation-

ship of the group Mp(2n,R) to the group Sp(2n,R) is similar to the one of the

spin group Spin(m,R) to the special orthogonal group SO(m,R), m ∈ N.
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2.1. The Segal-Shale-Weil or the Oscillatory Representation

Let us set L = L({ei ; i = 1, . . . , n}). In particular, L is a Lagrangian subspace of

(V, ω), i.e., a maximal isotropic subspace of (V, ω). There exists a distinguished

non-trivial unitary representation ρ of Mp(V, ω) which can be realized, for the

chosen Lagrangian space L, as a homomorphism

ρ : G̃ → U(L2(L))

where U(L2(L)) denotes the group of unitary operators on the Hilbert space S =
L2(L). Due to its inventors, this representation is known as the Segal-Shale-Weil

representation. Sometimes, it is called metaplectic, symplectic spinor or oscilla-

tory. We use the name oscillatory representation in this text. It is known that this

representation splits into two irreducible submodules, the spaces of odd and even

complex valued square Lebesgue integrable functions on L (modulo the equiva-

lence of being equal almost everywhere). Declaring the chosen symplectic basis

(ei)
2n
i=1 to be orthonormal defines a scalar product g on V. Further, the equation

g(u, v) = ω(u, Jv) determines a linear map J : V → V due to the non-degeneracy

of ω. Its existence can be proved using the basis (ei)
2n
i=1 by defining the matrix of J

with respect to this basis to be equal to the matrix of ω given above and by check-

ing that the defining equation for J and the identity J 2 = −1|V are satisfied. The

uniqueness of J (for the chosen g) follows from the non-degeneracy of ω.

Lemma 1. Let (V, ω) be a symplectic vector space and J : V → V be an endo-
morphism of V such that J2 = −1|V , and such that g(u, v) = ω(u, Jv) (u, v ∈ V )
defines a non-degenerate bilinear form on V. Then

1) J = −J t

2) J ∈ O(V, g) ∩ Sp(V, ω).

Proof: Following the definitions we can write g(J tu, v) = g(u, Jv) = g(Jv, u) =
ω(Jv, Ju) = −ω(Ju, Jv) = −g(Ju, v) from which, due to the non-degeneracy

of g, we get J = −J t, i.e., J is anti-symmetric.

Further, g(Ju, Jv) = g(u, J tJv) = −g(u, J2v) = g(u, v), thus J is orthog-

onal. Let us compute ω(Ju, Jv) = g(Ju, v) = g(u, J tv) = −g(u, Jv) =
−ω(u, JJv) = ω(u, v) from which J ∈ Sp(V, ω). �

Note that the endomorphisms J satisfying the assumption of Lemma 1 are called

compatible almost complex structures. The compatible almost complex structure

J introduced before Lemma 1 by its matrix representation will be fixed for the rest

of this section. It is known that there exists an element σ ∈ λ−1(J) for which
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σ4 = 1 ∈ Mp(V, ω) and ρ(σ) = F−1, where F : L2(L) → L2(L) is the Fourier

transform on L2(L). For convenience of the reader, we present a prescription for ρ

on other elements of G̃. For any g ∈ Sp(V, ω), let g̃ ∈ Mp(V, ω) denote an element

from the two-point set λ−1(g). Further let A ∈ End(L) be symmetric (At = A)

and B ∈ GL(L). Then with respect to the symplectic basis (ei)
2n
i=1, we have

g1 =

(
1 A
0 1

)
, (ρ(g̃1)f)(x) = e−ig(Ax,x)/2f(x)

g2 =

(
B 0
0 (Bt)−1

)
, (ρ(g̃2)f)(x) =

√
detBf(Btx)

g3 =

(
0 1
−1 0

)
, (ρ(g̃3)f)(x) = ± einπ/4F−1f(x)

where f ∈ S and x ∈ L. The elements of type g1, g2 and g3 above generate

Sp(V, ω) (see, e.g., Folland [5]). The group elements of g2 type should be un-

derstood in the sense that there exists a branch of the square root, such that the

prescription is valid for all f ∈ S and x ∈ L. The sign in infront of g3 depends

on the choice of g̃3 in λ−1(g3). The existence of ρ is connected with the Stone-von

Neumann theorem on unitary representations of the Heisenberg group deeply. See,

e.g., Habermann and Habermann [9] and Kashiwara and Vergne [10] or Weil [23]

for more information. For i = 1, . . . , n, we define the following unbounded oper-

ator ei. : L
2(L) � L2(L) acting on a dense subspace of L2(L). We set

(ei.f)(x) = ixif(x), (ei+n.f)(x) =
∂f

∂xi
(x)

where f ∈ L2(L) and x =
∑n

i=1 x
iei. These relations resemble the canonical

quantization prescription. For a general vector v ∈ V, we set v.s =
∑2n

i=1 v
i(ei.s),

where v =
∑2n

i=1 v
iei, i.e., we extend the canonical quantization prescription lin-

early. This so-called symplectic Clifford multiplication satisfies for all v, w ∈ V
and s ∈ S the relation

v.w.s− w.v.s = −iω(v, w)s

as one can check easily on the basis elements for instance. This relation differs

from the one for the orthonormal Clifford multiplication in anti-symmetry of the

left-hand side, a property forced by the anti-symmetry of ω. Moreover, this multi-

plication (of the oscillatory vectors by the phase space vectors) is also equivariant

with respect to G̃, i.e., ρ(g)(v.s) = (λ(g)v).(ρ(g)s) holds for each v ∈ V, s ∈ S

and g ∈ G̃. (See Lemma 1.4.4. in Habermann and Habermann [9], pp 13, for a

proof of this statement.) Note that the symplectic Clifford algebra sCliff(V, ω), de-

fined as the quotient of the tensor algebra T V =
⊕∞

i=0 V
⊗i by the ideal generated
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by non-homogeneous elements of the form v⊗w−w⊗v+iω(v, w)1, is infinite di-

mensional. We have a canonical isomorphism sCliff(V, ω) ∼=
⊕∞

i=0 S
i(V ) as vec-

tor spaces, where Si(V ) denotes the i-th symmetric power of V. Thus, sCliff(V, ω)
is isomorphic to the space of polynomials on V. However, at the level of alge-

bras, these structures are different since the polynomials are commutative, whereas

sCliff(V, ω) is not.

2.2. Quantum Harmonic Oscillator

Let us form an unbounded operator H : S � S by setting

Hs = −1

2

2n∑
i,j=1

ωij(Jei).ej .s

where s ∈ S ∩ C2(L). Operator H is independent on the choice of an orthogonal

basis. In coordinates, we have

Hs =
1

2

n∑
i=1

(
− ∂2

∂2xi
+ (xi)2

)
s =

1

2
(−	+ ||x||2)s, s ∈ S

where 	 is the Laplace operator on L and | | is the norm on L, both induced by

the scalar product g restricted to L. The operator H is the quantum Hamiltonian

of the n-dimensional isotropic harmonic oscillator (� = ω = m = 1). It is

known to be essentially self-adjoint Teschl [21, page 179, Theorem 8.5]. For α =
(α1, . . . , αn) ∈ N

n
0 , the so-called generalized Hermite function hα : L → C are

defined by

hα(x) = hα1
(x1) . . . hαn(x

n)

where x =
∑n

i=1 x
iei and hk(x) = ex

2/2 dk

dxk (e
−x2

), x ∈ R, is the k-th Hermite

function (in variable x). Notice that usually, one chooses a specific normalization

and only the normalized hk(x) are called Hermite functions. It is known that for

each α ∈ N
n
0 the generalized Hermite function hα is an eigenfunction of H with

eigenvalue |α|+ n
2 , where |(α1, . . . , αn)| =

∑n
i=1 αi.

The next result goes back to Norbert Wiener at least. Using the properties of ρ, its

proof becomes almost trivial. (Of course, the analytic work was done in proving

that ρ as given above is a representation.)

Theorem 2. Each eigenvalue of the Fourier transform belongs to the set {±1,±i}
and the set of its eigenfunctions coincides with the set of generalized Hermite func-
tions.
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Proof: We have F4 = ρ(σ)4 = ρ(σ4) = ρ(1) = 1|S . Thus, each eigenvalue of F
is an element of the set {1, i,−1,−i}. Further, for s ∈ L2(L) ∩ C2(L), we have

−2FHs = ρ(σ)

2n∑
i,j=1

ωij(Jei).ej .s =

2n∑
i,j=1

ωij(λ(σ)Jei).(ρ(σ)(ej .s))

=
2n∑

i,j=1

ωij(JJei).(λ(σ)ej).(ρ(σ)s) = −
2n∑

i,j=1

ωijei.(Jej).(Fs)

= −
2n∑

i,j=1

ωij(−iω(ei, Jej) + (Jej).ei.)(Fs)

= −
2n∑

i,j=1

ωij(−ig(ei, ej) + (Jej).ei.)(Fs) = −
2n∑

i,j=1

ωij(Jej).ei.(Fs)

=
2n∑

i,j=1

ωij(Jei).ej .(Fs) = −2HFs

where we have used the fact that J2 = −1|V . Thus, we see that the Fourier trans-

form and the Hamiltonian H commute. Now, let us consider the case n = 1. De-

noting the eigenvalue (k + 1
2 ) of H corresponding to hk by μk, we have FHhk =

μkFhk = H(Fhk). It is known, that any eigenvector of H is a complex multiple

of some hk with eigenvalue μk. According to the above computation, the vector

Fhk is an eigenfunction of H with eigenvalue μk. Hence, we get Fhk = ckhk for

a complex number ck. For a general n ∈ N and α ∈ N
n
0 , we have

Fhα = F(hα1
hα2

. . . hαn) = (Fx1hα1
) . . . (Fxnhαn)

= cα1
. . . cαnhα1

. . . hαn = chα,

where c = cα1
. . . cαn and Fxi denotes the Fourier transform in the variable xi,

i = 1, . . . , n. The above factorization of the multi-dimensional Fourier transform

is possible due to the shape of the generalized Hermite functions and the Fubini

theorem. Thus, hα are eigenfunctions of F for each α ∈ N
n
0 . Since S equals the

completed (Hilbert) sum
⊕̂∞

k=0(
⊕

α∈Nn
0
,|α|=k Chα), the theorem follows. �

3. Oscillatory Geometry

Let (M,ω) be a symplectic manifold, i.e., for each m ∈ M, the pair (T ∗
mM,ωm) is

a symplectic vector space and dω = 0. Typical examples of symplectic manifolds
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are Kähler manifolds or cotangent bundles. There exist compact symplectic man-

ifolds which are not Kähler. Recall, e.g., the Kodaira-Thurston manifold which is

historically the first known example of a compact non-Kähler symplectic manifold.

Due to a theorem of Darboux, for any point m ∈ M, there exists a neighbor-

hood U 
 m and coordinates (q1, . . . , qn, p1, . . . , pn) on U such that ω|U =∑n
i=1 dpi ∧ dqi. Notice, that in the case of a Riemannian manifold (N, g), a simi-

lar local normalization cannot be done in general. (Of course, due to the quadratic

forms inertia theorem, one can do an appropriate normalization point-wise.)

Definition 1. An affine connection ∇ on a symplectic manifold (M,ω) is called
symplectic if ∇ω = 0, and it is called a Fedosov connection if in addition, ∇ is
torsion-free, i.e., T∇(X,Y ) = ∇XY − ∇Y X − [X,Y ] = 0 for all vector fields
X,Y ∈ X(M).

As for any covariant derivative, the curvature tensor R∇ of a symplectic or Fedosov

connection ∇ is defined by the formula R∇(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ −
∇[X,Y ]Z, where X,Y, Z ∈ X(M). The curvature tensor R∇ of a Fedosov connec-

tion possesses symmetries similar however not identical to the ones of the curvature

tensor of a Riemannian connection. Let us define the tensor coordinates Rijkl by

setting R(ei, ej)ek = Rijk
lel, where (ei)

2n
i=1 is a local symplectic frame. We have

(see, e.g., Habermann and Habermann [9])

Rijkl = −Rjikl, Rijkl = Rijlk, Rijkl +Rlijk +Rklij +Rjkli = 0.

Note that in Vaisman [22], where the symmetry relations for the curvature of a

Fedosov connection are investigated using the representation theory of symplectic

groups, a different convention for the indices ordering in the completely covariant

form of the tensor R∇ is used.

In the case of a Riemannian manifold (N, g) and its Riemann connection ∇g, the

equation R∇g
= 0 holds if and only if N is locally isometric to a Euclidean space.

Let us consider the two-sphere with a fixed metric. Note that its Riemannian con-

nection is also a Fedosov connection for the volume form of the metric as the

symplectic form (see also Example 4 below). We know that the curvature of this

connection is non-zero. However, due to the Darboux theorem, the sphere is locally

isomorphic (symplectomorphic) to the standard symplectic plane. Thus, we cannot

have the same interpretation of the Fedosov connection as of the Riemannian one.

Moreover, it is known that the space of Fedosov connections is isomorphic to the

infinite dimensional affine space modeled on the vector space of symmetric tensor

fields of type (3, 0) on M (see Gelfand, Retakh and Shubin [7]).
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Now, let us concentrate to the oscillatory structures. Let (M 2n, ω) be a symplectic

manifold. For any point m ∈ M, we define

Pm = {b = (e1, . . . , e2n) ; b is a symplectic basis of (T ∗
mM,ωm)}

and set P =
⋃

m∈M Pm for the space of symplectic repères. Let p : P → M
denote the foot-point projection. The topology on P is, by definition, the coarsest

one for which p is continuous. Obviously, P is equipped with an appropriate action

of Sp(V, ω) from the right.

Definition 2. Let q : Q → M be a principal Mp(V, ω)-bundle over M and
Λ : Q → P be a surjective bundle homomorphism. A pair (Q,Λ) is called a
metaplectic structure if the following diagram commutes

Q×Mp(V, ω)

Λ×λ

��

�� Q

Λ

��

q

���
��

��
��

M

P × Sp(V, ω) �� P

p
����������

The horizontal arrows in the diagram represent the actions of the appropriate
groups on the corresponding principal bundles.

It is known that for each symplectic manifold (M,ω), there exists a compatible
almost complex structure J : TM → TM, i.e., a map that satisfies J 2 = −1|TM

and such that g(X,Y ) = ω(X, JY ), X, Y ∈ X(M), is a Riemannian metric on

M. Further, it is known that (M,ω) admits a metaplectic structure if and only if

the first Chern class c1(TM) of the hermitian bundle (TM, J) is an even element

in the Z-module H2(M,Z), i.e., there exists an element a ∈ H2(M,Z) such that

c1(TM) = 2a. Moreover, the Chern class does not depend on the choice of the

compatible almost complex structure J. If a metaplectic structure exists, the ele-

ments of the set of their equivalence classes are parametrized by the cohomology

group H1(M,Z2). Two metaplectic structures (Q,Λ) and (Q̃, Λ̃) are equivalent if

there exists a principal bundle isomorphism φ : Q → Q̃ of the principal Mp(V, ω)-

bundles Q → M and Q̃ → M such that Λ̃ ◦ φ = Λ. See Kostant [13] for results

mentioned in this paragraph.

Remark 3. One can define also a complex metaplectic (or Mpc) structure which
in known to exist on any symplectic manifold. See Robinson and Rawnsley [18].
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Now we want to proceed from the principal bundles to vector bundles. At any point

m ∈ M , we replace Qm = q−1({m}) by S = L2(L), and do it equivariantly with

respect to the representation ρ. Formally, one sets

S = Q×ρ S = (Q× L2(L))/ ∼

where ∼ is an equivalence relation on Q×L2(L) defined by (r, f) ∼ (t, h) if and

only if r = tg and h = ρ(g)f for an element g ∈ Mp(V, ω), (r, h), (t, f) ∈ Q×S.
We call S → M the oscillatory bundle. The topology which we take on S is the

quotient one.

Because the symplectic Clifford multiplication is equivariant (see Section 2.1, it

lifts to the oscillatory bundle. Thus we get a map TM × S → S. Let ∇ be a sym-

plectic connection on (M,ω). This connection induces a principal connection on

the principal Sp(V, ω)-bundle P → M. If (M,ω) possesses a metaplectic struc-

ture, we can lift this connection to a principal connection on Q. Any connection

on a principal bundle induces a connection on its associated bundles. In the case

of the bundle Q → M and the associated bundle S → M, we denote the result-

ing connection by ∇S : Γ(M,S) → Γ(M,T ∗M ⊗ S) and call it the oscillatory
derivative. Its curvature is given by the formula

RS(X,Y )s = ∇S
X∇S

Y s−∇S
Y ∇S

Xs−∇S
[X,Y ]s, X, Y ∈ X(M), s ∈ Γ(M,S).

See Habermann and Habermann [9] for more information on the facts in this para-

graph. The curvature can be computed using the following

Theorem 4. If R∇ is the curvature tensor of a Fedosov connection ∇ of a sym-
plectic manifold (M,ω) admitting a metaplectic structure, then the curvature R

S

of the oscillatory derivative ∇S fulfills locally, on a neighborhood U ⊆ M

RSs =
i

2

2n∑
i,j,k,l=1

Rij
klεi ∧ εj ⊗ ek.el.s

where (εi)
2n
i=1 is the co-frame dual to the symplectic frame (ei)

2n
i=1 on U.

Proof: See Habermann and Habermann [9]. �

3.1. Oscillatory Dirac Operator

For symplectic geometry, we would like to define a differential operator playing

a similar role as the Dirac operator in Riemannian geometry. Unfortunately, we
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cannot expect this operator to have a similar simple interpretation as the Rieman-

nian Dirac operator which can be thought as a square root of the Laplacian, at least

on a plane. The scalar Laplacian in symplectic geometry would be of the local

form
∑2n

i,j=1 ω
ij∂i∂j (with respect to some local Darboux coordinates), which is

the zero map.

A symplectic analogue of the Riemannian Dirac operator was introduced by Haber-

mann in [8] using the oscillatory derivative ∇S . Let us sketch this construction

briefly. Let (M,ω) be a symplectic manifold, ∇ be a symplectic connection and

(Q,Λ), if it exists, be a metaplectic structure on (M,ω). Let S → M denote the

oscillatory bundle and ∇S the oscillatory derivative. Then for s ∈ Γ(M,S), we de-

fine the symplectic spinor or oscillatory Dirac operator D : Γ(M,S) → Γ(M,S)
by the formula D = Y ◦∇S , where Y : Γ(M,T ∗M ⊗S) → Γ(M,S) is given by

Y (α⊗ s) =
∑2n

i,j=1 ω
ij(ιeiα)ej .s, where α⊗ s ∈ Γ(M,T ∗M ⊗S) and ι denotes

the insertion of a vector field into a differential form. Thus, locally, the oscillatory

Dirac operator is given by the formula

Ds =
2n∑

i,j=1

ωijei.∇S
ejs

where U ⊆ M is a neighborhood in M, s ∈ Γ(U,S) and (ei)
2n
i=1 is a local sym-

plectic frame on (U, ω|U ).

Example 1. For the canonical symplectic space (R2n, ω), we have H2(R2n,Z) =
0. Thus necessarily, c1(TR2n) = 0 which is an even element. Due to the universal
coefficient theorem, we have the exact sequence

0 → Ext(H0(R
2n,Z),Z2) → H1(R2n,Z2) → Hom(H1(R

2n,Z),Z2) → 0.

Evaluating the homology and cohomology groups, we get 0 → Ext(Z,Z2) →
H1(R2n,Z2) → Hom(0,Z2) → 0, i.e., 0 → 0 → H1(R2n,Z2) → 0 → 0, which
implies H1(R2n,Z2) = {0}. Thus up to an isomorphism, there is only one meta-
plectic structure, and consequently, it is the product one, i.e., Q = Mp(2n,R) ×
R
2n → R

2n. It follows that S ∼= S×R
2n → R

2n. Thus, any element s ∈ Γ(R2n,S)
can be represented by a function s̃ : R2n×R

n → C by setting s̃(v, x) = (s(v))(x)
for v ∈ R

2n and x ∈ R
n. For n = 1, the oscillatory Dirac operator Ds =

e1.∇e2s− e2.∇e1s thus gains the form

Ds̃(p, q, x) = ix
∂s̃

∂q
(p, q, x)− ∂2s̃

∂x∂p
(p, q, x)

see Habermann and Habermann [9, p 51], for solutions of Ds = 0 in this case.
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4. Elliptic Operators in Finite Rank Bundles

In this section, we recall basic results of Hodge theory for elliptic complexes in

finite rank vector bundles.

Let p : E → M and F → M be two vector bundles over a manifold M. For any

point m ∈ M, we denote the fiber p−1({m}) of E at m by Em. For each differential

operator D : Γ(M, E) → Γ(M,F) of order k ∈ N0, m ∈ M and ξ ∈ T ∗
mM , one

defines a symbol σ(D, ξ)(m) : Em → Fm of D in the following way. Let U be

an open neighborhood of m in M, v ∈ Em, e ∈ Γ(U, E) such that e(m) = v
and g : U → C be a function defined on U such that (dg)m = ξ. The symbol

is defined by [σ(D, ξ)(m)]v = [D( i
k

k!(g − g(m))ke)](m) ∈ Fm. In particular,

σ(D, ξ)(m) : Em → Fm. One can easily show that the symbol σ(D, ξ) : E → F
is a vector bundle homomorphism. If D is a first order differential operator, its

symbol fulfills [σ(D, ξ)(m)]e(m) = i([D, g]e)(m) = i[D(ge) − gDe](m), e ∈
Γ(M, E), ξm = (dg)m.

Example 2. 1) Exterior differentiation. Let d : Ωi(M) → Ωi+1(M), i =
0, . . . , dimM, be the de Rham differential, α ∈ Ωi(M) and g ∈ C∞(M).
Then d(gα)−gd(α) = dg∧α+gdα−gdα = dg∧α. Therefore σ(d, ξ)α =
iξ ∧ α, i.e., the symbol of the de Rham derivative is basically the exterior
multiplication in direction ξ.

2) Laplace-Beltrami operator. Let (M, g) be a Riemannian manifold, and 	g :
C∞(M) → C∞(M) be the Laplace-Beltrami operator associated to it.
Here, the bundle is the trivial line bundle M × R → M. It is known that
σ(	g, ξ)f = −g(ξ�, ξ�)f, f ∈ C∞(M), where ξ� ∈ TM is defined by
g(ξ�, v) = ξ(v), v ∈ TM. This can be computed, e.g., using the for-
mula 	g = d∗d, where d∗ is the adjoint of d with respect to the scalar
products (f, g) =

∫
M fgvolM and (α, β) =

∫
M g(α�, β�)volM , where

f, g ∈ C∞(M), α, β ∈ Ω1(M) and volM is a volume element of (M, g).

3) Dolbeault operator. Let (M,J) be a complex manifold and ∂ : Ωp,q(M) →
Ωp,q+1(M) be the Dolbeault operator, p, q ∈ N0. Then the symbol σ(∂, ξ)
of ∂ is given by σ(∂, ξ)α = iξ(0,1) ∧α, α ∈ Ωp,q(M). See Wells [24, p 117],
for details and notation.

We want to study a more general situation, namely that of complexes of differential

operators. We consider the following data

1) a compact manifold M
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2) a sequence (pi : E i → M)i∈N0
of finite rank vector bundles over M and

3) a co-chain complex D• = (Γ(M, E i), Di)i∈N0
for the differential operators

Di : Γ(M, E i) → Γ(M, E i+1), i ∈ N0.

Recall that the sequence

0 → Γ(M, E0)
D0−→ Γ(M, E1)

D1−→ . . .
Dn−1−→ Γ(M, En)

Dn−→ . . .

is called a co-chain complex if Di+1Di = 0 for all i ∈ N0. Next we use the word

complex only.

Definition 3. The complex

0 → Γ(M, E0)
D0−→ Γ(M, E1)

D1−→ . . .
Dn−1−→ Γ(M, En)

Dn−→ . . .

of differential operators is called elliptic if for any m ∈ M and any non-zero
co-vector ξ ∈ T ∗

mM \{0}, the symbol sequence

0 → (E0)m
σ(D0,ξ)(m)−→ (E1)m

σ(D1,ξ)(m)−→ . . .
σ(Dn−1,ξ)(m)−→ (En)m

σ(Dn,ξ)(m)−→ . . .

is exact.

Recall that a complex is called exact if the kernel of each map in the complex

equals the image of the preceding map. Maps from 0 as well as maps into 0 are

zero homomorphisms.

Remark 5. A single differential operator D : Γ(M, E) → Γ(M,F) is considered

as the complex 0 → Γ(M, E) D−→ Γ(M,F) → 0. Consequently, a differential op-
erator is elliptic iff its symbol is an isomorphism, which coincides with the classical
notion of an elliptic operator. Thus the definition of an elliptic complex extends the
classical one.

Example 3. 1) Using the result of item 2 in Example 2, one finds that the
Laplace-Beltrami operator 	g is elliptic since g is positive definite and since
the multiplication by a non-zero function is a vector bundle isomorphism.

2) The de Rham complex is elliptic because of the following reasons. Since
σ(d, ξ)α = iξ ∧ α, we have σ(d|Ωi+1(M), ξ) ◦ σ(d|Ωi(M), ξ) = 0 proving
imσ(d|Ωi(M), ξ) ⊆ kerσ(d|Ωi+1(M), ξ). For the opposite inclusion, suppose

ξ ∧ β = 0, ξ ∈ T ∗
mM and β ∈ ∧i T ∗

mM, m ∈ M. Applying the insertion
operator ιξ� to both sides of this equation, we get g(ξ�, ξ�)β − ξ ∧ ιξ�β = 0,

i.e., β = (g(ξ�, ξ�))−1ξ ∧ ιξ�β since g(ξ�, ξ�) �= 0 for ξ �= 0. Thus, β ∈
imσ(d, ξ), proving the ellipticity of the de Rham complex.
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2) It can be proved that the Dolbeault complex is elliptic as well. See Wells [24,

page 117, Example 2.6], for instance.

The i-th cohomology group of the complex D• = (Γ(M, E i), Di)i∈N0
is the vector

space

H i(D•,C) =
ker(Di : Γ(M, E i) → Γ(M, E i+1))

im(Di−1 : Γ(M, E i−1) → Γ(M, E i))
·

Notice, that we do not know whether this vector space is a topological vector space

because the denominator is not closed a priori. In particular, H i(D•,C) need not

be a Hausdorff space.

Suppose now, that a compact manifold M equipped with a Riemannian metric g,
and a sequence (pi : E i → M)i∈N0

are given such that for any i ∈ N0, each

fiber of E i is equipped with a scalar product, which varies smoothly when go-

ing through the individual fibers. These metric structures enable us to make ad-

joints of differential operators acting in sections of E i. Therefore to any complex

D• = (Γ(M, E i), Di)i∈N0
of differential operators in vector bundles over M , we

may associate a sequence 	i = Di−1D
∗
i−1 + D∗

iDi of the so-called associated
Laplacians.

Now, we recall the following result, the core of the Hodge theory, on elliptic com-

plexes of operators acting in sections of finite rank vector bundles over compact

manifolds. For a proof, see Wells [24, page 141, Theorem 4.12].

Theorem 6. Let M be a compact manifold, (pi : E i → M)i∈N0
be a sequence

of finite rank vector bundles over M and D• = (Γ(M, E i), Di)i∈N0
be an elliptic

complex of differential operators. Then for each i ∈ N0

1) dim (Ker	i) < +∞ and

2) Hi(D•,C) � Ker	i as vector spaces.

Remark 7. Notice that especially, H i(D•,C) is a Banach space. The property
of being finite dimensional and complete can be seen as inherited from the fibers,
which possess both of these properties.

5. Analysis over C
∗-Algebras

We start by giving a definition of a certain second order elliptic operator acting

in the oscillatory bundle and present some quantitative information on its kernel

computed by Habermann. Despite its ellipticity, its kernel is infinite dimensional.

We follow the presentation in Habermann and Habermann [9].
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Let J be a compatible almost complex structure on a symplectic manifold (M,ω)
and let g denotes the corresponding Riemannian metric on M, i.e., g(X,Y ) =
ω(X, JY ), X, Y ∈ X(M). Suppose that ∇ is a symplectic connection and that

(M,ω) admit a metaplectic structure. Then one can define an operator D̃ by the

following local formula

D̃s = gijei.∇S
ejs

where (ei)
2n
i=1, is a symplectic frame on (U, ω|U ), (g

ij) is the inverse of (gij) =

g(ei, ej), i, j = 1, . . . , 2n, and s ∈ Γ(M,S). We set P = i(D̃D − DD̃). This

operator turns out to be elliptic. Namely, its symbol σ(P, ξ)(m) is the multipli-

cation of elements in Sm by −g(ξ�, ξ�) which is an isomorphism of Sm for any

0 �= ξ ∈ T ∗
mM. For a computation of the symbol, see Habermann and Haber-

mann [9, page 68, Corollary 5.1.4].

Example 4. Let M = S
2 be the two dimensional sphere considered as the complex

projective space CP
1 equipped with the chordal metric h(z) = (1 + |z|2)−2dz2.

The volume form ω (of the chordal metric) is a symplectic form since it is non-
degenerate two-form. Thus, (S2, ω) is a symplectic manifold. Computing the cur-
vature of the Riemannian connection of the chordal metric and using the Weil def-
inition of Chern classes, we get

c1(TM) =

[
i

π(1 + |z|2)2dz ∧ dz

]
∈ H2(M,R)

see Wells [24, p 95] Using polar coordinates, one easily computes that
∫
S2
c1(TM)

= 2 due to which c1(TM) is an even class. For a calculation of the isomor-
phism classes of metaplectic structures on (S2, ω), we use the universal coeffi-
cient theorem as we did in the case of (R2n, ω), getting 0 → H1(S2,Z2) → 0
since H0(S

2,Z) = Z and H1(S
2,Z) = 0. Thus there exists only one metaplec-

tic structure Q on the sphere. For its (homogeneous) realization see Habermann
and Habermann [9]. Associating the oscillatory representation to the principal
Mp(2,R)-bundle of the metaplectic structure, we get S ∼= S × S

2 → S
2.

The Riemannian connection ∇ of the chordal metric is torsion-free and preserves
the symplectic form ω, since ω is a volume form for h. Therefore (S2, ω,∇) is
a Fedosov manifold. The construction of Habermann applies and we have the
oscillatory Dirac operator on D : Γ(S2,S) → Γ(S2,S) and also the operator
P : Γ(S2,S) → Γ(S2,S) at our disposal.

The decomposition L2(R) = S =
⊕̂∞

k=0Chk (mentioned already in Section 2.2)

translates to the bundle level as S =
⊕̂∞

k=0Sk, where Sk denotes the line bundle
corresponding to the vector space Chk. When one restricts the oscillatory repre-
sentation ρ : Mp(2,R) → U(L2(R)) to the λ-preimage of U(1) ⊆ Sp(2,R), S
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decomposes exactly into the spaces Chk, which are irreducible with respect to the
group λ−1(U(1)). Using harmonic analysis for compact groups, Habermann was
able to compute (see Habermann and Habermann [9]) eigenvalues of P. In partic-
ular, she obtained a monotone sequence (li)

∞
i=0 such that kerP ∩ Γ(S2,Sli) �= 0

and dim(kerP ∩ Γ(S2,Sli)) = 2(i + li + 2). Consequently, the kernel of P is
infinite dimensional.

We might say that the infinite dimensionality of the kernel contradicts Theorem 6

if the fibers of S were finite dimensional. Since only the finite rank condition was

not satisfied in the studied example, it is natural to ask how one can modify this

assumption in order to be still able to obtain an information about the cohomology

groups. This will be done in the next section.

5.1. C∗-Algebras and Hilbert C∗-Modules

We generalize Theorem 6 to the case of finitely generated projective A-Hilbert

bundles, where A is a unital C∗-algebra. We keep the compactness assumption on

the underlying manifold. Let us start by a definition of a C∗-algebra.

Definition 4. An associative algebra A over C with a norm | | : A → R
+
0 and a

vector space antihomomorphism ∗ : A → A is called a C∗-algebra if

1) |ab| ≤ |a||b| for all a, b ∈ A

2) ∗ : A → A is an antiinvolution

3) |a|2 = |aa∗| for all a ∈ A, and

4) (A, | |) is a Banach space.

Example 5. 1) Let A = C0
c (X) be the algebra of complex valued functions on

a locally compact Hausdorff space X vanishing at infinity, with the point-
wise multiplication. The involution ∗ : A → A is defined by f ∗(x) = f(x),
x ∈ X, and the norm |f | = sup{|f(x)| ; x ∈ X} is the supremum norm,
f ∈ A. Then A is a (commutative) C∗-algebra.

2) Let H be a Hilbert space and A = End(H) be the algebra of continuous
endomorphisms of H with the product being the composition of maps. The
involution is A∗ = A† (the adjoint of A). In order ∗ is everywhere defined,
we suppose that H is separable. Finally, the norm is given by

|A| = sup{|Af|H|f|H
; f ∈ H, f �= 0}
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where | |H is the norm induced by the scalar product on H. The norm | | is
well defined since any continuous operator in a Hilbert space is bounded.

3) A = Mat(Cn), A∗ = A†, |A| = max{|λ| ; λ is an eigenvalue of A} is a
special case of the preceding example as one learns in courses of functional
analysis.

From now on, we suppose that A contains a unit, 1a = a1 = a. Then for each

element a ∈ A, the spectrum spec(a) of a is defined by

spec(a) = {λ ∈ C ; a− λ1 does not possess an inverse} ⊆ C.

We set A+
0 = {a ∈ A ; a = a∗ and spec(a) ⊆ R

+
0 } (for the set of non-negative

elements in A). Now, let us define a generalization of Hilbert spaces, the Hilbert

C∗-modules.

Definition 5. Let U be a vector space with a left action of a C∗-algebra A. Sup-
pose that there exists a map (· , ·)U : U × U → A such that for each u, v, w ∈ U,
a ∈ A and r ∈ C

1) (u+ rv, w)U = (u,w)U + r(v, w)U

2) (a.u, v)U = a(u, v)U

3) (u, v)U = (v, u)∗U

4) (u, u)U ∈ A+
0 and

5) if (u, u)U = 0 then u = 0.

Then the pair (U, (· , ·)U ) equipped with the topology induced by the norm | |U :

u ∈ U �→ |(u, u)U |1/2A ∈ R
+
0 is called a pre-Hilbert A-module. If this topology is

complete, (U, (· , ·)U ) is called a Hilbert A-module.

Let us notice, that | |A denotes the norm on the C∗-algebra A. The map (· , ·)U :
U × U → A satisfying the conditions above is called an A-product. If (U, (· , ·)U )
is a Hilbert A-module, we call (· , ·)U a Hilbert A-product.

Homomorphisms L : U → V between pre-Hilbert A-modules U, V are supposed

to be A-linear, i.e., for each a ∈ A and u ∈ U, L(a.u) = a.L(u), and con-

tinuous with respect to the topologies induced by | |U and | |V . An adjoint of a

pre-Hilbert A-module homomorphism L : U → V is a map L∗ : V → U satis-

fying (Lu, v)V = (u, L∗v)U for each u ∈ U, v ∈ V. The adjoint of a pre-Hilbert
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A-module homomorphism need not exist. If it exists, it is unique and moreover, it

is a pre-Hilbert module homomorphism. For it, see, e.g., Lance [17, p 8].

When we consider a pre-Hilbert A-submodule V of a pre-Hilbert A-module U, we

suppose that in particular, it is closed in U and the A-product in V is the restriction

of the A-product in U. For any pre-Hilbert A-submodule V ⊆ U, we set V ⊥ =
{u ∈ U ; (u, v)U = 0 for all v ∈ V }. Unfortunately, it is not in general true that

V ⊕ V ⊥ = U. A Hilbert A-module U is called finitely generated projective, if

U ⊕ U⊥ ∼= An, where An is the direct sum of n copies of A. In more detail,

An = A⊕ . . .⊕A︸ ︷︷ ︸
n

as a vector space, the action is given by a.(a1, . . . , an) =

(aa1, . . . , aan) and the Hilbert A-product (· , ·)An is defined by the formula

((a′1, . . . , a
′
n), (a1, . . . , an))An =

n∑
i=1

a′ia
∗
i

where a, ai, a
′
i ∈ A, i = 1, . . . , n.

5.2. Complexes of Differential Operators in C∗-Hilbert Bundles

In the preceding subsection, C∗-algebras and finitely generated projective C∗-

modules were introduced. In this chapter, these two types of objects shall play

a similar role as the field of scalars and finite dimensional vector spaces (over this

field) play in the theory of differential operators acting in finite rank vector bundles.

Let E and F be Banach manifolds modeled on Banach spaces X and Y, respec-

tively. We call a continuous map A : E → F smooth if for each manifold charts

φ : U → X of E , U ⊆ E , and φ′ : V → Y of F , V ⊆ F , the composed mapping

φ ◦ A ◦ φ′−1 : φ′(A−1(V ) ∩ U) → X is smooth, i.e., possess infinitely many

Fréchet derivatives in each point.

Let Z be a Banach space and M be a manifold. We say that p : E → M is a

Banach bundle with typical fiber Z, if

1) E is Banach manifold and p is a smooth submersion of E onto M

2) there exists an open covering (Uα)α∈I of M and for each α ∈ I, we have a

diffeomorphism φα : p−1(Uα) → Uα × Z (called a bundle chart) such that

p1 ◦ φα = p, where p1 : M × Z → M denotes the projection onto the first

component, and

3) for each α, β ∈ I, the map ψαβ : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ) (called a

transition map) defined by ψαβ = φβ ◦ φ−1
α |φα(Uα∩Uβ)

is a smooth homeo-

morphism.
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The transition maps induce mappings ψαβ : Z → Z defined by (m,ψα,β(v)) =
(φβ ◦ φ−1

α )(m, v), m ∈ φα(Uα ∩ Uβ), v ∈ Z.

Definition 6. Let (U, (· , ·)U ) be a Hilbert A-module. A Banach bundle p : E → M
with a bundle atlas A is called an A-Hilbert bundle with typical fiber (U, (· , ·)U )
if

1) for each m ∈ M, the fiber Em = p−1({m}) is equipped with a Hilbert
A-module structure and as such, it is isomorphic to (U, (· , ·)U )

2) for each m ∈ M, the subset topology on Em ⊆ E is equivalent to the norm
topology on (U, | |U ) and

3) the transition maps between the bundle charts of A are maps into the group
AutA(U) of Hilbert A-module automorphisms of U.

Let p : E → M be an A-Hilbert bundle. In the same way as for a smooth Banach

bundle, one defines the space of smooth sections Γ(M, E) for an A-Hilbert bundle.

The space of sections admits a left action A defined by (a.s)(m) = a.(s(m)),
where a ∈ A, s ∈ Γ(M, E) and m ∈ M. Suppose that M is compact. We choose

a Riemannian metric g on M and a volume element volM for this metric. An

A-product on Γ(M, E) is defined by

(s′, s)0 =

∫
m∈M

(s′(m), s(m))m(volM )m

where s′, s ∈ Γ(M, E) and (· , ·)m denotes the Hilbert A-product in fiber p−1({m}).
This makes Γ(M, E) a pre-Hilbert A-module. We denote the completion of the

normed space (Γ(M, E), | |0) by W 0(E) and call it the zeroth Sobolev type com-
pletion. Let us denote the Laplace-Beltrami operator for g by 	g. For each r ∈ N0,
we define an A-product (· , ·)r on Γ(M, E) by

(s′, s)r =

∫
m∈M

(s′(m), (1 +	g)
rs(m))m(volM )m

where s′, s ∈ Γ(M, E). We denote the completion of Γ(M, E) with respect to the

norm | |r induced by (· , ·)r by W r(E) and call it the Sobolev type completion (of

order r). Differential operators in A-Hilbert bundles are defined by local coordi-

nates and partial derivatives with respect to these coordinates in the same way as

in the finite rank bundles. They possess continuous extensions to the Sobolev type

completions, and they as well as their extensions to the Sobolev type completions

are adjointable. Ellipticity is defined as in the finite rank case and is called the
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A-ellipticity in this case. See Solovyov and Troitsky [20] for more details on the

facts in this paragraph.

The announced generalization of the Hodge theory is presented in the next theo-

rem. The order of the Laplacian 	k = Dk−1D
∗
k−1 +D∗

kDk is denoted by rk. The

adjoints are taken with respect to (Γ(M, E i), (· , ·)0).

Theorem 8. Let (pi : E i → M)i∈N0
be a sequence of finitely generated projective

A-Hilbert bundles over a compact manifold M. If D• = (Γ(M, E i), Di)i∈N0
is

an A-elliptic complex of differential operators and for each k ∈ N0, the image of
the rk-th extension of the associated Laplacian 	k to the Sobolev type completion
W rk(Ek) is closed, then for any i ∈ N0

1) H i(D•, A) ∼= ker	i as A-modules

2) H i(D•, A) is a Banach space with respect to | |0, and

3) H i(D•, A) is a finitely generated A-module.

Proof: See Krýsl [15]. �

5.3. De Rham Complex with Values in the Oscillatory Module

As in Section 2, we suppose that (V, ω) is a 2n dimensional symplectic vector

space, J ∈ Sp(V, ω) is a compatible almost complex structure on V, (ei)
2n
i=1 is an

orthonormal basis for the scalar product induced by ω and J, and L = L({ei ; i =
1, . . . , n}) is a Lagrangian space. The ordering of the basis (ei)

2n
i=1 induces volume

forms volV and volL on V and L, respectively.

For i ∈ N0, we set Ei =
∧iV ∗ ⊗ S and consider Ei with the canonical Hilbert

space topology (the space
∧i V ∗ is finite dimensional). Further, we consider the

tensor product representation of G̃ = Mp(V, ω) on Ei, i.e.,

ρ̃(g)(α⊗ s) = λ∗∧i(g)α⊗ ρ(g)s

where α ∈ ∧i V ∗, g ∈ Mp(V, ω) and s ∈ S = L2(L), and extend it to non-

homogeneous elements by linearity. (The decomposition of ρ̃ into irreducible

Mp(V, ω)-modules was computed in Krýsl [14].)

Let A be the algebra of bounded operators on the Hilbert space S = L2(L). As

described in Example 5 item 2) above, A is a C∗-algebra. On spaces Ei, we define

a left A-module structure by setting

a.(α⊗ s) = α⊗ a(s)
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for a ∈ A, s ∈ S, α ∈ ∧i V ∗ and extend it linearly to non-homogeneous elements.

The volume form volV induces a scalar product on
∧• V ∗ =

⊕2n
i=0

∧i V ∗ which

we denote by g̃ (see Krýsl [16] for more details). Now, we can define an A-product

(· , ·)Ei : Ei × Ei → A by setting

(α⊗ s, β ⊗ t)Ei = g̃(α, β)t⊗ s∗

where t⊗ s∗ ∈ A is given by (t⊗ s∗)(h) = (s, h)t, s, t, h ∈ S. In the last formula,

(s, h) =
∫
L shvolL. It is easy to show that the resulting structure (E i, (· , ·)Ei) is a

pre-Hilbert A-module for each i ∈ N0. For a proof that (Ei, (· , ·)Ei) is a finitely

generated projective Hilbert A-module, see Krýsl [16].

Now, let us proceed to the appropriate geometric version. Let (M 2n, ω) be a sym-

plectic manifold admitting a metaplectic structure (Q,Λ) and let ∇ be a flat Fe-

dosov connection on (M,ω). We set E i = Q ×ρ̃ E
i (the bundle of exterior forms

with values in the oscillatory representation). Note that E 0 = S = Q ×ρ S is

the oscillatory bundle. The connection ∇ induces the oscillatory derivative ∇S .
Extending ∇S according to the Leibniz rule, we get exterior covariant derivative

dSi : Γ(M, E i) → Γ(M, E i+1) (see Example 6 below). Gluing these exterior co-

variant derivatives together, we obtain

0 → Γ(M, E0)
dS
0→ Γ(M, E1)

dS
1→ . . .

dSn−1→ Γ(M, En) → 0.

Since any Hilbert bundle (though not any A-Hilbert bundle) over a manifold is

trivial due to the Kuiper theorem, one can choose a bundle atlas for each E i → M
such that its transition maps equal the identity on S. Since 1|S ∈ AutA(S), the

oscillatory bundle is an A-Hilbert bundle.

Example 6. Let (U, x = (x1, . . . , x2n)) ⊆ M be a Darboux coordinate chart,
ei =

∂
∂xi and εi = dxi, i = 1, . . . , 2n. Then, in particular, (ei)2ni=1 is a symplectic

frame and (εi)2ni=1 is its dual co-frame. Because (ei)
2n
i=1 is a coordinate frame,

[ei, ej ] = 0 for each i, j = 1, . . . , 2n. Consequently, R∇(ei, ej) = ∇ei∇ej −
∇ej∇ei . Since εi = dxi, we have dεi = 0. Now, let α ∈ Ωr(U) and s ∈ Γ(U,S).
Using the Einstein summation convention, we get

dSr+1d
S
r (α⊗ s) = dSr+1(dα⊗ s+ εi ∧ α⊗∇S

eis)

= ddα⊗ s+ εi ∧ dα⊗∇S
eis

+(−1)εi ∧ dα⊗∇S
eis

+εj ∧ εi ∧ α⊗∇S
ej∇

S
eis

=
1

2
εj ∧ εi ∧ α⊗ (∇S

ej∇
S
ei −∇S

ei∇
S
ej )s

=
i

4
Rij

klεi ∧ εj ∧ α⊗ ek.el.s



Analysis Over C∗-Algebras and the Oscillatory Representation 23

where we have used Theorem 4 in the last step. In particular, dS•
= (E i, dSi )

2n
i=0

is a complex if the curvature R∇ of ∇ vanishes, i.e., if (M,ω,∇) is a flat Fedosov
manifold.

As a consequence of Theorem 8, we have the following

Corollary 9. Let (M 2n, ω) be a symplectic manifold and ∇ be flat symplectic con-
nection. Suppose that M is compact, admits a metaplectic structure and the exten-
sions of the associated Laplacians 	k to the Sobolev completions W 2(Ek) have
closed images for all k = 0, . . . , 2n. Then for each i = 0, . . . , 2n, the cohomology
group H i(dS

•
, A) is a finitely generated A-module and a Banach space.

Proof: The order of dSk is one and the order of 	k = (dSk )
∗dSk + dSk−1(d

S
k−1)

∗ is

two. Because each Ei is a finitely generated projective Hilbert A-module, dS•
=

(Γ(M, E i), dSi )
2n
i=0 is a sequence of finitely generated projective A-Hilbert bundles.

Since the Fedosov connection ∇ is supposed to be flat, this sequence is a complex

according to Example 6. Now, using Theorem 8 the result follows. �

Remark 10. The condition on the images of the Laplacians seems to be technically
difficult to verify and we would like to focus our attention to this phenomenon in
the future.

Corollary 11. Let (M 2n, ω) be a compact symplectic manifold admitting a meta-
plectic structure and ∇ be a Fedosov connection. Suppose that the extension of P2

to W 2(S) is closed. Then the kernel of P is a finitely generated A-module and a
Banach space.

Proof: Since P is self-adjoint and elliptic the corollary follows from Theorem 8.

�
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