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Abstract. Relativistic hyperbolic geometry is a model of the hyperbolic geometry
of Lobachevsky and Bolyai in which Einstein addition of relativistically admissible
velocities plays the role of vector addition. The adaptation of barycentric coordi-
nates for use in relativistic hyperbolic geometry results in the relativistic barycen-
tric coordinates. The latter are covariant with respect to the Lorentz transformation
group just as the former are covariant with respect to the Galilei transformation
group. Furthermore, the latter give rise to hyperbolically convex sets just as the for-
mer give rise to convex sets in Euclidean geometry. Convexity considerations are
important in non-relativistic quantum mechanics where mixed states are positive
barycentric combinations of pure states and where barycentric coordinates are in-
terpreted as probabilities. In order to set the stage for its application in the geometry
of relativistic quantum states, the notion of the relativistic barycentric coordinates
that relativistic hyperbolic geometry admits is studied.
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1. Introduction

Relativistic hyperbolic geometry is a model of hyperbolic geometry in which Ein-
stein addition plays the role of vector addition. Relativistic hyperbolic geometry
admits the notion of hyperbolic barycentric coordinates, just as Euclidean geome-
try admits the notion of Euclidean barycentric coordinates. The former is poten-
tially useful in the study of the geometry of relativistic quantum states, just as the
latter is useful in the study of the geometry of quantum states in [3].

It is well-known, as emphasized in [3], that Euclidean barycentric coordinates
prove useful in the geometry of quantum states. Barycentric coordinate systems
underlie the study of convex analysis [36], and convexity considerations are impor-
tant in non-relativistic quantum mechanics where mixed states are positive barycen-
tric combinations of pure states, and where barycentric coordinates are interpreted
as probabilities [36, p.11]. The success in [3] and [9] of the study of the geome-
try of quantum states in terms of barycentric coordinates suggests that relativistic
barycentric coordinates can prove useful in the geometry of relativistic quantum
states as well.

In the non-relativistic limit of large speed of light relativistic barycentric coordi-
nates tend to corresponding classical, Euclidean barycentric coordinates. Relativis-
tic barycentric coordinates and classical, Euclidean barycentric coordinates share
remarkable analogies. In particular, they are both covariant. Indeed, relativistic
barycentric coordinate representations are covariant with respect to the Lorentz co-
ordinate transformation group, just as classical, Euclidean barycentric coordinate
representations are covariant with respect to the Galilean coordinate transformation
group. The remarkable analogies suggest that relativistic barycentric coordinates
can prove useful in the study of the geometry of relativistic quantum states, just
as classical barycentric coordinates prove useful in the study of the geometry of
non-relativistic quantum states.

Being neither commutative nor associative, Einstein’s velocity addition law of rela-
tivistically admissible velocities, which Einstein introduced in his 1905 paper [11]
that founded the special theory of relativity, is seemingly structureless. Precisely
because the only justification for Einstein’s velocity addition law appeared to be
its empirical adequacy, it remained for a long time a mystery to be conquered. The
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mystery has been resolved in 1988 [39—42], when the elusive, most elegant alge-
braic structures that Einstein’s velocity addition encodes, gyrogroups and gyrovec-
tor spaces, have been discovered. The emergence of gyrovector spaces, in turn,
paved the way for the appearance of relativistic hyperbolic geometry, in general,
and of the relativistic barycentric coordinates in [56-59], in particular. In order
to set the stage for its application in the geometry of relativistic quantum states,
we study the notion of relativistic barycentric coordinates in relativistic hyperbolic
geometry.

2. Einstein Addition

Let ¢ be an arbitrarily fixed positive constant and let R” = (R", 4+, -) be the Eu-
clidean n-space, n = 1,2,3,..., equipped with the common vector addition, +,
and inner product, -. The home of all n-dimensional Einsteinian velocities is the
c-ball

R? = {v e R" ||v]| < c}. (1)
It is the open ball of radius c, centered at the origin of R™, consisting of all vectors
v in R™ with norm smaller than c.

Einstein addition and scalar multiplication play in the ball R? the role that vector
addition and scalar multiplication play in the Euclidean n-space R™.

Definition 1. Einstein addition is a binary operation, @, in the c-ball R} given by
the equation, [44], [37, Eq. 2.9.2], [26, p.55], [16]

1 1 u
udbv = ut vt -t (u-v)u} ()

1+“'2V{ Yo Eldm
C

Sforallu,v € R, where vy, is the Lorentz gamma factor given by the equation

1
W= T 3)
v
c2
where u-v and ||v|| are the inner product and the norm in the ball, which the ball
R inherits from its space R".

Einstein addition (2) of relativistically admissible velocities, with n = 3, was in-
troduced by Einstein in his 1905 paper [11] [12, p.141] that founded the special
theory of relativity, where the magnitudes of the two sides of Einstein addition (2)
are presented. One has to remember here that the Euclidean three-vector algebra
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was not so widely known in 1905 and, consequently, was not used by Einstein.
Einstein calculated in [11] the behavior of the velocity components parallel and or-
thogonal to the relative velocity between inertial systems, which is as close as one
can get without vectors to the vectorial version (2) of Einstein addition. Einstein
was aware of the nonassociativity of his velocity addition law of relativistically
admissible velocities that need not be collinear. He therefore emphasized in his
1905 paper that his velocity addition law of relativistically admissible collinear
velocities forms a group operation [11, p.907].

A nonempty set with a binary operation is called a groupoid so that, accordingly,
the pair (R?, @) is an Einstein groupoid.

In the Newtonian limit of large ¢, ¢ — oo, the ball R} expands to the whole of
its space R™, as we see from (1), and Einstein addition & in R? reduces to the
ordinary vector addition + in R", as we see from (2) and (3).

In applications to velocity spaces, R" = R? is the Euclidean three-space, which is
the space of all classical, Newtonian velocities, and ]Ri‘ C R3 is the c-ball of R3 of
all relativistically admissible, Einsteinian velocities. The constant ¢ represents in
special relativity the vacuum speed of light. Since we are interested in geometry,
we allow n to be any positive integer and, sometimes, replace c by s.

We naturally use the abbreviation u©v = u®(—v) for Einstein subtraction, so
that, for instance, vov = 0, ©v = 06v = —v. Einstein addition and subtraction
satisfy the identities

o(udv) = cuov “4)

and

oud(udv) =v &)

for all u, v in the ball R?, in full analogy with vector addition and subtraction
in R™. Identity (4) is called the gyroautomorphic inverse property of Einstein
addition, and Identity (5) is called the left cancellation law of Einstein addition.
We may note that Einstein addition does not obey the naive right counterpart of the

left cancellation law (5) since, in general,
(udv)ov # u. (6)

However, this seemingly lack of a right cancellation law of Einstein addition is
repaired, for instance, in [59, §1.9].
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3. Einstein Addition vs Vector Addition

Vector addition, +, in R™ is both commutative and associative, that is,

ut+tv=v-+u Commutative Law

(N

u+(v+w)=(u+v)+w Associative Law

for all u,v,w € R". In contrast, Einstein addition, @, in R is neither commuta-
tive nor associative.

In order to measure the extent to which Einstein addition deviates from associa-
tivity we introduce gyrations, which are self maps of R™ that are trivial in the
special cases when the application of & is associative. For any u, v € R7 the gy-
ration gyr [u, v] is a map of the Einstein groupoid (R?, @) onto itself. Gyrations
gyr [u,v] € Aut(RZ, @), u,v € R?, are defined in terms of Einstein addition by
the equation

gyr [u, vlw = S(udv)o{ud(veow)} ®)

for all u,v,w € R, and they turn out to be automorphisms of the Einstein
groupoid (R7, &).

We recall that an automorphism of a groupoid (.S, @) is a one-to-one map f of S
onto itself that respects the binary operation, that is, f(a®b) = f(a)®f(b) for all
a,b € S. The set of all automorphisms of a groupoid (.S, @) forms a group, denoted
Aut(S, ®). To emphasize that the gyrations of an Einstein gyrogroup (R, &) are
automorphisms of the gyrogroup, gyrations are also called gyroautomorphisms.

A gyration gyr [u, v], u,v € RZ, is trivial if gyr [u,v]w = w for all w € R.
Thus, for instance, the gyrations gyr [0, v], gyr [v, v] and gyr [v, ©v] are trivial
for all v € R7, as we see from (8). In general, however, gyrations are nontrivial
gyroautomorphisms.

Einstein gyrations, which possess their own rich structure, measure the extent to
which Einstein addition deviates from commutativity and from associativity, as we
see from the gyrocommutative and the gyroassociative laws of Einstein addition in
the identities listed in (9) below [44,48,53].
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For all u, v, w € R7, one has

udv = gyr [u, v|(vu) Gyrocommutative Law
ud(vow) = (udv)dgyr [u, vlw  Left Gyroassociative Law
(udv)dw = ud(vegyr [v,u]lw) Right Gyroassociative Law

gyr [udv, v] = gyr [u, v Gyration Left Reduction Property (9)
gyr [u, vu| = gyr [u, v] Gyration Right Reduction Property
gyr [Ou, ov] = gyr [u, V] Gyration Even Property

(gyr[u,v])™t = gyr [v, u] Gyration Inversion Law.

Einstein addition is thus regulated by gyrations to which it gives rise owing to its
nonassociativity, so that Einstein addition and its gyrations are inextricably linked.
The resulting gyrocommutative gyrogroup structure of Einstein addition was dis-
covered in 1988 [39]. Interestingly, gyrations are the mathematical abstraction of
the relativistic effect known as Thomas precession [53, §10.3] [61]. Accordingly,
we prefix a gyro to any term that describes a concept in Euclidean geometry and
in associative algebra to mean the analogous concept in hyperbolic geometry and
nonassociative algebra. Thomas precession, in turn, is related to the mixed state ge-
ometric phase in quantum mechanics, as Lévay discovered in his work [23] which,
according to [23], was motivated by the work of the present author [45].

The gyration left and right reduction properties in (9) trigger a remarkable reduc-
tion of complexity in various gyration identities [48, 53] and, as such, they form
important gyration identities. These two gyration identities are, however, just the
tip of a giant iceberg. The identities in (9) and many other useful gyration identities
are studied in [34,35,44,48,53,55, 58,59, 63]. Related explorations are found, for
instance, in [4] and [50].

Einstein addition, &, in R, which is gyrocommutative, is associated with a dual
binary operation, H, in R, which is commutative. The mutually dual binary oper-
ations @ and H in R are both necessary in order to capture analogies with classical
results, as demonstrated in [43] and in [51].

4. From Einstein Addition to Gyrogroups

Taking the key features of the Einstein groupoid (R, @) as axioms, and guided
by analogies with groups, we are led to the formal gyrogroup definition in which
gyrogroups turn out to form a most natural generalization of groups.



Hyperbolic Geometry 67

Definition 2. (Gyrogroups [53, p.17]). A groupoid (G,®) is a gyrogroup if its
binary operation satisfies the following axioms. In G there is at least one element,
0, called a left identity, satisfying

(GI) 0ba = a

forall a € G. There is an element 0 € G satisfying axiom (G1) such that for each
a € G there is an element ©a € G, called a left inverse of a, satisfying

(G2) Sada =0.

Moreover, for any a,b,c € G there exists a unique element gyr [a,blc € G such
that the binary operation obeys the left gyroassociative law

(G3) a®(bdc) = (adb)dgyr [a, blc.

The map gyr [a,b] : G — G given by ¢ — gyr |a, b|c is an automorphism of the
groupoid (G, ®), that is

(G4) gyr [a,b] € Aut(G, @)

and the automorphism gyr |a,b] of G is called the gyroautomorphism, or the gy-
ration, of G generated by a,b € G. The operator gyr : G X G — Aut(G,®) is
called the gyrator of G. Finally, the gyroautomorphism gyr [a, b| generated by any
a,b € G possesses the left reduction property

(G5) gyr [a, b] = gyr [a®b, b] .
The gyrogroup axioms (G1)—(Gb) in Definition 2 are classified into three classes:

1. The first pair of axioms, (G1) and (G2), is a reminiscent of the group ax-
ioms.

2. The last pair of axioms, (G4) and (G5), presents the gyrator axioms.

3. The middle axiom, (G3), is a hybrid axiom linking the two pairs of axioms
in (G1) and (G2).

As in group theory, we use the notation a©b = a®(Sb) in gyrogroup theory as
well. In full analogy with groups, gyrogroups are classified into gyrocommutative
and non-gyrocommutative gyrogroups.

Definition 3. (Gyrocommutative Gyrogroups). A gyrogroup (G, ®) is gyrocom-
mutative if its binary operation obeys the gyrocommutative law

(G6) a b= gyr[a,b(b & a)

forall a,b € G.

Gyrogroup theorems asserting, for instance, that a gyrogroup identity 0 and a gy-

rogroup inverse ©a (both left and right) uniquely exist, are found in [44,48,53,55,
58,59].
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It was the study of Einstein’s velocity addition law and its associated Lorentz trans-
formation group of special relativity theory that led to the discovery of the gy-
rogroup structure in 1988 [39]. However, gyrogroups are not peculiar to Einstein
addition [54]. Rather, they are abound in the theory of groups [13-15, 17, 18],
loops [19], quasigroup [20, 22], and Lie groups [21]. Other related interesting
results are found, for instance, in [46], [47] and [52]. The path from Mobius to
gyrogroups is described in [54].

5. Einstein Scalar Multiplication

The rich structure of Einstein addition is not limited to its gyrocommutative gy-
rogroup structure. Indeed, Einstein addition admits scalar multiplication, giving
rise to the Einstein gyrovector space. Remarkably, the resulting Einstein gyrovec-
tor spaces form the setting for the relativistic hyperbolic geometry (also known as
the Cartesian-Beltrami-Klein ball model of hyperbolic geometry), just as vector
spaces form the setting for the standard Cartesian model of Euclidean geometry, as
demonstrated in [34,35,44,48,53,55,58,59,63] and as indicated in the sequel.

Let k®v be the Einstein addition of k copies of v € R, as shown in the first
equation in (12) below. Then, for k =1,2,3,...

ey
C C Vv (10)
V=¢C % AT
(1), (1 BA) T
C C

The definition of scalar multiplication in an Einstein gyrovector space requires
analytically continuing k off the positive integers, thus obtaining from (10) the
following

Definition 4. (Einstein Scalar Multiplication). The Einstein gyrovector space (R?,
@, ®) can be introduced as an Einstein gyrogroup (R?, @) with scalar multiplica-
tion ® given by

v

) o) |
i 5 = stanh(r tanh ™! ) —

T s
(1+ ) (1= YN s IV
S S

where 1 is any real number, v € R, v € RY, v # 0, and r®0 = 0, and with which
we use the notation vQr — r@Qv.

an
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Einstein gyrovector spaces are studied in [44, 48, 53, 55, 58, 59]. Einstein scalar
multiplication does not distribute over Einstein addition, but it possesses other
properties of vector spaces. For any positive integer k, and for all real numbers
r,r,,r, € Rand v € RY, we have

kQv =vD...0v k terms
(r, +7,)®Vv =1, Qvor,Qv Scalar Distributive Law (12)
(r,r,)®v =1 ,Q(r,QVv) Scalar Associative Law

in any Einstein gyrovector space (R”, @, ®).

Additionally, Einstein gyrovector spaces possess the scaling property

Ir|®a a

lrsall ~ Tal -
ac Rl a#0, reR, r#0, the gyroautomorphism property
gyr [u, v](r®@a) = regyr [u, v]a (14)
a,u,v € R?, r € R, and the identity gyroautomorphism
gyr[r,@v,r,@v] =1 (15)

r,r, € R, veRl.

Any Einstein gyrovector space (R?, @, ®) inherits an inner product and a norm

from its vector space R™. These turn out to be invariant under gyrations, that is,
gyr [a, blu-gyr [a,b]v =uv

(16)
lgyr [a, bv]| = [v]]

foralla,b,u,v € R7.

6. From Einstein Scalar Multiplication to Gyrovector Spaces

Taking the key features of Einstein scalar multiplication as axioms, and guided by
analogies with vector spaces, we are led to the formal gyrovector space definition
in which gyrovector spaces turn out to form a most natural generalization of vector
spaces.

Definition 5. (Real Inner Product Gyrovector Spaces [53, p.154]). A real inner
product gyrovector space (G, @, ®) (gyrovector space, in short) is a gyrocommu-
tative gyrogroup (G, @) that obeys the following axioms:
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(1) G is a subset of a real inner product vector space V called the carrier of G,

G C 'V, from which it inherits its inner product, - , and norm, ||-||, which are
invariant under gyroautomorphisms, that is
(V1) gyr[u,v]a-gyru,vlb=ab Inner Product Gyroinvariance

for all points a,b,u,v € G.

(2) G admits a scalar multiplication, ®, possessing the following properties.
For all real numbers r,r1,1r2 € R and all points a € G

(V2) 1®a=a Identity Scalar Multiplication
(V3) (r, +r,)®a=r ®adr,®a Scalar Distributive Law
V4) (r,r,)®a=r ®(r,®a) Scalar Associative Law
rl®a _ a .
V) ——=—, a#0,7r#0 Scaling Property
[reall  [la

(V6) gyr[u,v]|(r®a) = regyr [u,v]a Gyroautomorphism Property
V7 gyr[r,@v,r,@v] =1 Identity Gyroautomorphism.

(3) Real, one-dimensional vector space structure (|G|, B, ®) for the set ||G||
of one-dimensional “vectors”

(V8) |IG||={tllall;acG}CR Vector Space
with vector addition & and scalar multiplication ®, such that for all r € R
and a,b € G,

(V9) |real| = |r|e||al| Homogeneity Property

(V10) |la®b|| < ||la/|®||b]| Gyrotriangle Inequality.

Einstein addition and scalar multiplication in RY thus give rise to the Einstein
gyrovector spaces (R”, @, ®), n > 2.

7. Gyrolines — The Hyperbolic Lines

Let A, B € R? be two distinct points of the Einstein gyrovector space (R?, ®, ®),
and let ¢ € R be a real parameter. Then, the graph of the set of all points

A®(6ADB)®t (17)
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"A,B

m, , = AB(CADDB)®3

d(A,B) = [[AeB|

d(A,m, 5) =d(B,m, )

d(A, P)&d(P, B) = d(A, B)

‘LAB = A@(eA@B)@m‘

—o0<t< o

Figure 1. Gyrolines, the hyperbolic lines L4z in Einstein gyrovector spaces,
are fully analogous to lines in Euclidean spaces.

t € R, in the Einstein gyrovector space (R”, @, ®) is a chord of the ball R”. As
such, it is a geodesic line of the Beltrami-Klein ball model of hyperbolic geometry,
shown in Fig. 1 for n = 2. The geodesic line (17) is the unique gyroline that
passes through the points A and B. It passes through the point A when t = 0
and, owing to the left cancellation law, (5), it passes through the point B when
t = 1. Furthermore, it passes through the midpoint m 4 5 of A and B when
t = 1/2. Accordingly, the gyrosegment AB that joins the points A and B in Fig. 1
is obtained from gyroline (17) by restricting the gyroline parameter ¢ to the unit
interval 0 < ¢ < 1.

Gyrolines (17) are the geodesics of relativistic hyperbolic geometry. Similarly,
gyrolines (17) with Einstein addition @ replaced by Mobius addition ,, are the
geodesics of the Poincaré ball model of hyperbolic geometry. These interesting
results are established by methods of differential geometry in [49].

Each point of (17) with 0 < ¢ < 1 is said to lie between A and B. Thus, for
instance, the point P in Fig. 1 lies between the points A and B. As such, the points
A, P and B obey the (degenerate gyrotriangle inequality, that is, the) gyrotriangle
equality, according to which

d(A, P)®d(P,B) = d(A, B) (18)
in full analogy with Euclidean geometry. Here, as shown in Fig. 1

d(A, B) = |cAaB|| (19)
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A, B € R2, is the Einstein gyrodistance function, also called the Einstein gyromet-
ric. This gyrodistance function in Einstein gyrovector spaces corresponds bijec-
tively to a standard hyperbolic distance function, as demonstrated in [53, §6.19],
and it gives rise to the well-known Riemannian line element of the Beltrami-Klein
ball model of hyperbolic geometry, as demonstrated in [49].

8. Euclidean and Relativistic-Hyperbolic Barycentric Coordinates

In order to set the stage for the presentation of relativistic-hyperbolic barycentric
coordinates, we present the Euclidean barycentric coordinates in the following two
definitions.

Definition 6. (Barycentric Independence). Some set S of N > 2 points S =
{A1,..., AN} in R", n > N — 1, is barycentrically independent if the N — 1
vectors — A1 + Ay, k = 2,..., N, are linearly independent in R™.

Definition 7. (Euclidean Barycentric Coordinates). Let S = {A1,...,An} be a
set of N barycentrically independent points in R™, n > N — 1. Then, the real
numbers mq, ..., mpy, satisfying

N
> mg #£0 (20)
k=1
are barycentric coordinates of a point PER™ with respect to the set S if
N
A
D k=1 Mk

Equation (21) is said to be a barycentric representation of P with respect to the
set S = {Al, ce ,AN}.

Barycentric coordinates are homogeneous in the sense that the barycentric co-
ordinates (my,...,my) of the point P in (21) are equivalent to the barycentric
coordinates (Amyq, ..., A\my) for any real nonzero number A € R, A\ # 0. Since
in barycentric coordinates only ratios of coordinates are relevant, the barycentric
coordinates (my, ..., my) are also written as (my: ... :my) so that

(ml:mgz...:mN):()\mlz)\mgz...:)\mN) (22)

for any real A # 0.
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In a classical mechanical interpretation of (21), i) my > 0 is the (Newtonian) mass
of the k-th particle, k = 1,..., N, of a particle system of IV particles, ii) Ay, is the
velocity of the k-th particle relative to a given inertial rest frame, and iii) P is the
center of momentum of the particle system.

It is easy to see from (21) that barycentric coordinates are independent of the choice
of the origin of their vector space, that is

Zgzl mp(X + Ag)
E;cvzl mg

for all X € R™. The trivial proof that (23) follows from (21) rests on the result
that scalar multiplication in vector spaces distributes over vector addition. Inter-
estingly, however, the hyperbolic counterpart, (27) below, of (23) is far away from
being trivial because it involves both ordinary vector addition, + (implicit in the >
notation for vector summation), and Einstein vector addition, .

X+P=

(23)

It follows from (23) that the barycentric representation (21) of a point P is covari-
ant with respect to translations of R" in the sense that the point P and the points
Ag, k =1,..., N, of its generating set S = {A1,..., Ay} vary in (23) together
under translations.

Hyperbolic barycentric coordinates in Einstein gyrovector spaces, fully analogous
to Euclidean barycentric coordinates, are called gyrobarycentric coordinates. These
are defined in the following two definitions.

Definition 8. (Gyrobarycentric Independence). A set S of N > 2 points S =
{A1,..., AN} inR?, n > N — 1, is gyrobarycentrically independent if the N — 1
gyrovectors in R}, 6A1®A, k = 2,..., N, considered as vectors in R", are
linearly independent in R™.

Definition 9. (Gyrobarycentric Coordinates in Einstein Gyrovector Spaces [58,
p-179] [59, p.89] [62]). Let S = {Ai,...,An} be a gyrobarycentrically inde-
pendent set of N > 2 points in an Einstein gyrovector space (R}, @, ®), n >
N — 1. The N real numbers my, ..., my are gyrobarycentric coordinates of a
point PER?Y with respect to S if

N
> my, #0 (24)

k=1

and

N
Zk:1 mk’YAk Ay

P = 25)
Zévz1 MUY o,



74 Abraham A. Ungar

Gyrobarycentric coordinates are homogeneous in the sense that the gyrobarycen-
tric coordinates (my, ..., my) of the point P in (25) are equivalent to the gyro-
barycentric coordinates (Amy, . .., Amy) for any A # 0. Since in gyrobarycentric
coordinates only ratios of coordinates are relevant, the gyrobarycentric coordi-
nates (my, ..., my) are also written as (my:,...,:my) so that

(my:mo: ... :my)=(Amyg:Ama: ... : Amy) (26)

for any real A # 0.

The point P given by (25) is said to be a gyrobarycentric combination of the points
of the set S, possessing the gyrobarycentric representation (25).

In a relativistic mechanical interpretation of (25), i) my~y " > 0 is the relativistic,
velocity dependent mass [60] of the k-th particle, & = 1,..., N, of a particle
system of IV particles, ii) Ay, is the velocity of the k-th particle relative to a given
inertial rest frame, and iii) P is the center of momentum of the particle system.
Surprisingly, the analogies that barycentric coordinates and gyrobarycentric coor-
dinates share include covariance. In full analogy with the covariance under trans-
lations of barycentric coordinates, gyrobarycentric coordinates are covariant under
left gyrotranslations a property called gyrocovariance.

Indeed, if a point P € R possesses the gyrobarycentric representation (25), then
it obeys the identity

N
D k=1 MY x4 (XS AR)

XGP = ~
Zk:1 Mk xga,

27

for any X € R, where the point P and the points Ay, £k = 1,..., N, of its

s
generating set S = {Ay,..., Ay} vary together under left gyrotranslations.

The proof of the gyrocovariance of gyrobarycentric coordinates (27), in a more
general context is based on the linearity of Lorentz transformations, and is found
in [59, Theorem 4.6, p.90] and in [58, §4.3]. The study of gyrobarycentric coordi-
nates along with their use in hyperbolic geometry is presented in [59] for Einstein
gyrovector spaces, and in [58] for both Einstein and Mobius gyrovector spaces.

9. Example I — The Euclidean Segment

The aim of this section, Example I, is to set the stage for the presentation of its
hyperbolic counterpart, Example II, of Section 10.
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Let A, B € R? be two distinct points of the Euclidean plane R2, and let P € R? be
a point on the segment AB that joins A to B. Then, the barycentric representation
of P with respect to the points A and B is

mi + meo

with barycentric coordinates m; and mo satisfying m; > 0, mo > 0 and m; +
meo # 0.

1. If my =0, then P = B.

2. If my =0, then P = A.

3. If m1, mo > 0, then P lies on the interior of segment A B, that is, between
A and B.

Owing to the homogeneity of barycentric coordinates, these can be normalized by
the condition

mi+mg =1 29)
so that, for instance, we can use the notation m; = tand mg =1 —¢, 0 <t < 1.

In that case, the point P possesses the barycentric representation

P=tA+(1-1)B. (30)

Finally, owing to the covariance of barycentric representations with respect to
translations, the barycentric representation (30) of P obeys the identity

X +P=tX+A) +(1-t)(X+B) 31)

for all X € R2. The derivation of Identity (31) from (30) is trivial. However,
identity (31) serves as an illustration of its hyperbolic counterpart in (35) below,
which is far away from being trivial.

10. Example II — The Hyperbolic Segment

The aim of this section, Example I, is to illustrate Definition 9 of gyrobarycentric
coordinates in a form analogous to Example I [38].

Let A, B € R2 be two distinct points of the Einstein gyrovector plane R? =
(R2,®,®), and let P € R? be a point on the gyrosegment AB that joins A to
B, as shown in Fig. 1. Then, the gyrobarycentric representation of P with respect
to the points A and B is

m1y, A+ moyg B
miy, +maypg

P:

(32)
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with gyrobarycentric coordinates m; and mg satisfying m; > 0, ma > 0 and
miy, +mayg # 0.

1. If my =0, then P = B.

2. If mg = 0, then P = A.

3. If mi,my > 0, then P lies on the interior of gyrosegment AB, that is,
between A and B.

Owing to the homogeneity of gyrobarycentric coordinates, these can be normalized
by the condition
mi +mg = 1 (33)

so that, for instance, we can use the notation m; = tand mg =1 —¢, 0 < ¢ < 1.
In that case, the point P possesses the gyrobarycentric representation
ty 4 A 1-1¢ B
tyy +(1—=1)vg
Finally, owing to the gyrocovariance of gyrobarycentric representations with re-
spect to left gyrotranslations, the gyrobarycentric representation (34) of P obeys
the identity

_ Y xeA(XOA) + (1 = t)yxep(XSB)
t’YX@A + (1 - t)'YX@B

forall X € Rg. Unlike its Euclidean counterpart (31), identity (35) is, indeed, far
away from being trivial, and it involves an elegant harmonious interplay between
the two binary operations +, vector addition in R", and @, Einstein addition in RY.

XoP

(35)

11. On the Use of Gyrobarycentric Coordinates

Applying techniques of hyperbolic barycentric (gyrobarycentric) coordinates in
full analogy with the application of classical techniques of barycentric coordinates,
one obtains novel results in relativistic hyperbolic geometry, some of which are
presented in this section while others are found, for instance, in [59] and in [1, 2,
33].

Let A; A2 A3 be a gyrotriangle in an Einstein gyrovector space (R?, &, ®) that pos-
sesses a circumgyrocircle, and let O be the circumgyrocenter of the gyrotriangle,
as shown in Fig. 2. Then O possesses the gyrobarycentric representation

miv,, A+ may,, Ao + msy,, As

0= (36)
miy,, + may,, + msy,,
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—1MEY
D=1 MR,

— _OA1PAy | ©A1DA3
[eAi@Az] [[eAr1®As]|

_ _0A0A | ©ABA3
COS Q2 = [eaa] ToAeAs]

SA30A1 | _©A39A

COS O3 = 64,0 A1 [6A3042]]

Figure 2. The circumgyrocircle, and the circumgyrocenter O, of gyrotriangle
A1 Az Az in an Einstein gyrovector space (R?, @, ®), n = 2, is shown along
with its associated index notation.

with respect to the gyrobarycentrically independent set S = {41, A2, A3}, where
the gyrobarycentric coordinates mi,mo and ms3 are given by (37) in terms of
gamma factors of the gyrotriangle sides

1
mp = 5( Y12+ Y13 — Y23 — D723 — 1)
1
mo = 5( Y12 =Mz + Y23 — V(s — 1) (37
1
mg = 5(—712 + 73+ 723 — D2 — 1).
Here D is given by

D =1+ 2v15713%3 — 7%2 - ’7%3 - 7%3 —2(712 — 1)(713 - 1)(’Y23 -1) (39

and for 1 < 4,5 < 3, we use the convenient notation

Yij = TeAwA; = VedieA;| 39)
In the theorems below we ambiguously use the notation |AB| = ||©A®B| for
points A and B in an Einstein gyrovector space, and |[AB| = || — A + B|| for

points A and B in a Euclidean space.
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ZOAP =1

di = |0A1@P|| = [A1 P
dy = [[©A0P|| = [A2 P
d3 = [|6A3®P|| = |AsP|
dy3 = ||©As®As|| = dzeds
R = |oA4@0|, k=1,2,3

Figure 3. Illustrating the Gyrotangent—Gyrosecant Theorem 10, a gyrotrian-
gle A; A5 A3 in an Einstein gyrovector space (R”, @, ®) is shown for n = 2,
along with its circumgyrocircle and its circumgyrocenter O and circumgyro-
radius R = |OA;| = |60 A, ||.

Theorem 10. (The Gyrotangent—Gyrosecant Theorem). If a gyrotangent of a gy-
rocircle from an external point P meets the gyrocircle at A1, and a gyrosecant from
P meets the gyrocircle at As and As, as shown in Fig. 3, then

2

Vipay [PA = Py | P A2l p gy | P As) (40)

VA2 A3

In the Euclidean limit, s — oo, gyrolengths of gyrosegments tend to lengths
of corresponding segments and gamma factors tend to 1. Hence, in that limit,
the Gyrotangent—Gyrosecant Theorem 10 reduces to the following well-known
Tangent—Secant Theorem of Euclidean geometry

Theorem 11. (The Tangent—Secant Theorem). If a tangent of a circle from an
external point P meets the circle at A1, and a secant from P meets the circle at A
and As, then

|PA1|* = |PAs||PA3| . (41)

As an obvious corollary of the Gyrotangent—Gyrosecant Theorem 10 we have the
following theorem for inter