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Abstract. The idea of wave mechanics leads naturally to assume the

well-known relation E = �ω in the specific form H = �W , where H is

the classical Hamiltonian of a particle and W is the dispersion relation of

the sought-for wave equation. We derive the expression of H in a curved

space-time with an electromagnetic field. Then we derive the Dirac equation

from factorizing the polynomial dispersion equation corresponding with H .

Conversely, summarizing a recent work, we implement the geometrical op-

tics approximation into a canonical form of the Dirac Lagrangian. Euler-

Lagrange equations are thus obtained for the amplitude and phase of the

wave function. From them, one is led to define a four-velocity field which

obeys exactly the classical equation of motion. The complete de Broglie

relations are then derived as exact equations.

1. Introduction

1.1. Context of This Work

The long-standing problem of quantum gravity may mean, of course, that we

should try to better understand gravity and the quantum. More specifically, it may

mean that we should try to better understand the transition between the classical

and the quantum, especially in a curved space-time. Quantum effects in the clas-

sical gravitational field are indeed being observed on neutral particles such as neu-

trons [11, 15, 19] or atoms [13, 18], with the neutrons being spin 1
2 particles. This

together motivates investigating the “classical-quantum correspondence”—the cor-

respondence between a classical Hamiltonian and a quantum wave equation—for

the Dirac equation in a curved space-time.
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1.2. Foregoing Results

In previous work [1], the classical-quantum correspondence was analyzed gen-

erally from an exact mathematical correspondence, observed by Whitham [20],

between a linear wave operator and its dispersion polynomial, and from the de

Broglie-Schrödinger idea according to which a classical Hamiltonian describes the

skeleton of a wave pattern. This analysis led later to deriving the Dirac equa-

tion from the classical Hamiltonian of a relativistic test particle in an electromag-

netic field or in a curved spacetime [2, 3]. In the latter case, this derivation led to

two alternative Dirac equations, in which the Dirac wave function is a complex

four-vector, with the set of the components of the Dirac matrices building a (2, 1)
tensor [2, 3]. (This transformation behaviour may be designated by the acronym

“TRD”: tensor representation of the Dirac fields.) In order to see if that makes

sense physically, the quantum mechanics associated with the Dirac equation was

then investigated in detail.

First, it was found [4] that in a Minkowski space-time in Cartesian coordinates, the

quantum mechanics of the original Dirac equation is the same whether, on a coor-

dinate change, the wave function is transformed as a spinor and the Dirac matrices

are left invariant (which, as is well known, is the standard transformation for this

case), or if alternatively the TRD transformation mode is used. Moreover, the way

in which this equivalence was obtained [4] makes it obvious that this equivalence

holds also with the third transformation mode which can be considered for the

Dirac equation, for which the wave function is left invariant and the set of the four

Dirac matrices is transformed as a four-vector. (This is the transformation mode for

the standard Dirac equation in a gravitational field [9, 10, 16].) Then it was found

that also in a general space-time, the standard equation and the two alternative

equations based on TRD [3] behave similarly, e.g., the same hermiticity condi-

tion for the Hamiltonian holds for these equations [5], and similar non-uniqueness
problems of the Hamiltonian theory occur [5, 6].

1.3. Outline of This Work

In this paper, we intend to summarize the main part of the recent work [8], and

to present a few additional results. Those belong to Section 2, which extends the

former derivation of the Dirac equation from the classical Hamiltonian of a rel-

ativistic test particle [2, 3] to the situation with an electromagnetic field and in a

curved space-time. Then, summarizing the main results of [8], Section 3 we will go

conversely from the Dirac equation to the classical motion through the geometrical

optics approximation.
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2. From Classical Motion to Dirac Equation

2.1. Dispersion Equation of a Wave Equation

Consider a wave equation which is a linear Partial Differential Equation (PDE) of

the second order

Pψ ≡ a0(X)Ψ + aμ1 (X)∂μΨ+ aμν2 (X)∂μ∂νΨ = 0 (1)

where X is the position in the space-time, or more generally in the extended con-

figuration manifold V of a system of particles (V has dimension N+1, where N is

the dimension of the configuration manifold). To be more precise, equation (1) is

the local expression of the intrinsic differential operator P (which acts on smooth

sections ψ of some vector bundle E with base V) in a local chart χ : X 
→ (xμ)
and in a local frame field (ea) on E, with Ψ = (Ψa) the column matrix made with

the components of ψ in the frame field (ea), such that ψ = Ψaea in the domain of

(ea). The time coordinate is t ≡ x0/c.

Let us look for “locally plane-wave” solutions: Ψ(X) = A exp[iθ(X)], with,

at the point X0 ∈ V considered, ∂νKμ(X0) = 0, where Kμ ≡ ∂μθ are the

components of the wave co-vector. Note that K0 = −ω/c, where ω ≡ −∂tθ is

the angular frequency, and that k ∼= (Kj) is the spatial wave co-vector (A latin

index Takes values in the set j = [1, ..., N ], while a Greek one take values in the

set μ = [0, ..., N ].).

This leads [1, 2] to the dispersion equation

ΠX(K) ≡ a0(X) + i aμ1 (X)Kμ + i2aμν2 (X)KμKν = 0. (2)

Substituting Kμ ↪→ ∂μ/i determines the linear operator P uniquely from the func-

tion (X,K) 
→ ΠX(K), which is polynomial in K at fixed X [1, 20]. This is also

true [2, 3] in the case that Ψ(X) ∈ C
m with m > 1 in equation (1), in which case

the coefficients common to P and ΠX are m ×m matrices [2], so that ΠX(K) is

then an m×m matrix, too.

2.2. The Classical-Quantum Correspondence

For any fixed X ∈ V, consider the dispersion equation (2) - ΠX(K) = 0, here

assumed scalar (m = 1). This is a polynomial equation for ω ≡ −cK0. By

following smoothly as a function of X ∈ V a particular root, supposed to be real,

of this equation, we get a dispersion relation(s): ω = W (K, X). (The existence

of such a real root depending smoothly on X ∈ V is equivalent to the existence of
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a definite wave mode for the PDE (1) [20].) As shown by Whitham [20] (see also

reference [1]), the propagation of k obeys a Hamiltonian system

dKj

dt
= −

∂W

∂xj
,

dxj

dt
=

∂W

∂Kj
, j = 1, ..., N. (3)

On the other hand, according to the wave mechanics inaugurated by de Broglie and

Schrödinger, a classical Hamiltonian H(p,x, t) = H(p, X) describes the skeleton

of a wave pattern. Then, the wave equation should give a dispersion W with the

same Hamiltonian trajectories as H . The simplest way to get that is to assume that

H and W are proportional, H = �W . This leads first to the de Broglie relations

in traditional form: E = �ω and p = �k. Then, substitution Kμ ↪→ ∂μ/i, leads

to the correspondence between a classical Hamiltonian and a wave operator. See

references [1, 2] for details. Thus, setting

Pj ≡ pj , j = 1, ..., N and P0 ≡ −
H

c
(4)

we get the de Broglie relations in a condensed form

Pμ = �Kμ, μ = 0, ..., N. (5)

2.3. The Classical-Quantum Correspondence Needs a Connection

The dispersion polynomial ΠX(K) and the condition ∂νKμ(X) = 0 stay invariant

only inside any class of coordinate systems connected by “infinitesimally-linear”

changes [1], i.e., one such that it holds at the considered point X(xμ
0 ) = X(x′ρ0 )

considered
∂2x′ρ

∂xμ∂xν
= 0, μ, ν, ρ = 0, ..., N. (6)

One example [1,2] of such a class is constituted by the locally-geodesic coordinate

systems at X for a pseudo-Riemannian metric g on V, i.e.,

gμν,ρ(X) = 0, μ, ν, ρ = 0, ..., N. (7)

Specifying, at each point X ∈ V, a class CX of coordinate systems valid in a

neighborhood of X , any two of which exchange by a transition map satisfying

(6), is exactly equivalent to choosing a torsionless connection D on the tangent

bundle TV [3]. Given any such connection, one substitutes ∂μ ↪→ Dμ into the

wave equation (1), into the local plane-wave condition which rewrites accordingly

DνKμ(X0) = 0, and into the correspondence from the dispersion equation (2) to

the wave equation. This correspondence allows to writes Kμ ↪→ Dμ/i. It applies
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also to the case where Ψ(X) ∈ C
m with m > 1, provided that the dispersion

equation (2) and the wave equation which are in fact first-order, i.e., aμν2 = 0 [3].

2.4. Hamiltonian of a Particle in a Curved Space-time

In a curved space-time (V, g) with an electromagnetic field of four-potential Vμ,

the world line of a test particle corresponds with an extremum of the generally-

covariant action integral

S =

∫
−mc ds−

e

c
Vμdx

μ (8)

where

ds2 = gλρdx
λdxρ. (9)

It follows that the motion derives from the following Lagrangian

L
(
xμ, u′ν

)
= −mc

√
gμνu′μu′ν − (e/c)Vμu

′μ, u′ν ≡ dxν/dξ (10)

with ξ an arbitrary parameter along the world line of the particle. The canonical

momenta derived from this Lagrangian are

Pμ ≡ ∂L/∂u′μ = −mc
u′μ√

gλρu′λu′ρ
− (e/c)Vμ. (11)

The Lagrangian (10) is an “extended Lagrangian” in the sense of Johns [12].

As shown by Johns [12] (Section 11.9), we may associate with an extended La-

grangian like L a “traditional Lagrangian” L, by setting

L(xj ,
dxk

dx0
, x0) ≡ L(xμ,

dxν

dξ
)
dξ

dx0
· (12)

From the latter, we deduce by Legendre transform a “traditional Hamiltonian”

H ′(pj , xk, x0). The “traditional momenta” pj coincide with the corresponding

“extended momenta” Pμ (for μ = 1, ..., N ), the latter ones being canonically de-

rived from the extended Lagrangian L by equation (11)1 ([12], equation (11.12)).

That is, we have

pj = Pj , j = 1, ..., N. (13)

The traditional Hamiltonian is simply ([12], equation (11.14))

H ′(pj , xk, x0) = −P0(x
μ, u′ν). (14)

At this stage, we can specialize the parameter ξ to be the four-length s, equation

(9). In that case, the vector with components u′μ is the four-velocity, u′μ = uμ ≡
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dxμ/ds. From (9), it verifies gμνuμuν = 1, as is well known. Hence, with ξ = s
the canonical momenta (11) become

Pμ = −mcuμ − (e/c)Vμ. (15)

Again, because gμνuμuν = 1, the canonical momenta verify the energy equation

gμν
(
Pμ +

e

c
Vμ

)(
Pν +

e

c
Vν

)
−m2c2 = 0. (16)

In the expression (14) of the traditional Hamiltonian H ′, the time coordinate x0 is

arbitrary. Let us get H ′ as function of the same momenta pj and the same space

coordinates xk, but with the time coordinate t ≡ x0/c. We do that directly in

Hamilton’s equations for H ′. We must set

H(pj , x
k, t) = cH ′(pj , xk, x0) = −cP0 (x

μ, uν). (17)

Note that equations (13) and (17) are consistent with the definition (4).

2.5. A Variant Derivation of the Dirac Equation

The dispersion equation associated with the energy equation (16) by wave mechan-

ics, i.e., by the de Broglie relations (5), is

gμν
(
�Kμ +

e

c
Vμ

)(
�Kν +

e

c
Vν

)
−m2c2 = 0. (18)

Applying directly the correspondence Kμ ↪→ Dμ/i to the dispersion equation

(18), leads to a specific form of the curved space-time Klein-Gordon equation [3].

Instead, one may try a factorization with matrix coefficient α, β, γμ and ζν

ΠX(K) ≡
[
gμν (Kμ + eVμ) (Kν + eVν)−m2

]
1

=(α+ iγμKμ)(β + iζνKν), � = 1 = c
(19)

Identifying the coefficients (with noncommutative algebra), and substituting Kμ ↪→
Dμ/i, leads to the Dirac equation [2, 3]

(iγμ (Dμ + ieVμ)−m)ψ = 0 (20)

with the anticommutation relation, resulting from the identification with equation

(19)

γμγν + γνγμ = 2gμν 1. (21)
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3. From Dirac Equation to Classical Motion

3.1. General Dirac Lagrangian in a Curved Space-time

The following Lagrangian (density) [6] generalizes the “Dirac Lagrangian” (e.g.

[9, 14]) valid for the standard Dirac equation in a curved space-time

l =
√
−g

i

2

[
Ψγμ(DμΨ)−

(
DμΨ

)
γμΨ+ 2imΨΨ

]
(22)

where Ψ ≡ Ψ†A is the generalized Dirac adjoint of Ψ ≡ (Ψa). The field X 
→
A(X) designates the hermitizing matrix, such that A† = A, (Aγμ)† = Aγμ [4,17].

(Here M † ≡ (M∗)T is the hermitian conjugate of a matrix M .) In a curved

space-time, that matrix becomes indeed generally a field [5]. In the usual Dirac

Lagrangian, the field A is the constant matrix γ�0, there (γ�α) is a set of constant

“flat” Dirac matrices, i.e., ones obeying the anticommutation relation (21) with

the Minkowski metric ηαβ - provided the set (γ�α) is chosen such that γ�0 is a

hermitizing matrix for that set.

The Euler-Lagrange equation for the Lagrangian (22) is the generalized Dirac

equation [5, 6]

γμDμΨ = −imΨ−
1

2
A−1(Dμ(Aγ

μ))Ψ. (23)

This coincides with the usual form iff Dμ(Aγ
μ) = 0. That is always the case [5]

for the standard Dirac equation in a curved space-time (the “Dirac-Fock-Weyl” or

DFW equation). In equations (22) and (23), the covariant derivatives Dμ corre-

spond to an arbitrary connection D defined on the complex vector bundle E, in

which the Dirac wave function ψ is living.1 That vector bundle is assigned to be

a “spinor bundle”, i.e., essentially, one for which it exists a global field γ of Dirac

matrices, consistent with the anticommutation relation (21). See reference [7] for

details.

3.2. Local Similarity (or Gauge) Transformations

Admissible coefficient fields (γμ, A) for the general Dirac equation (23) are ones

such that the anticommutation relation (21) is satisfied and that the field A is her-

mitizing. Given any local similarity transformation S : X 
→ S(X) ∈ GL(4,C),

1 The connection D and the covariant derivatives Dμ extend as usual to the dual bundle
E◦ of E, and to tensor products such as E ⊗ E◦. Moreover, on a tensor product such
as TV ⊗ E ⊗ E◦ (which is the relevant bundle for the Dirac matrices [7]), the relevant
connection is obtained by considering the Levi-Civita connection on the component bundle
TV [5, 7].
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depending smoothly on X ∈ V, other admissible coefficient fields are

γ̃μ = S−1γμS, μ = 0, ..., 3, Ã ≡ S†AS (24)

in the sense that the anticommutation relation (21) remains satisfied (in the same

space-time (V, g)) with the new field of Dirac matrices γ̃μ, and moreover the ma-

trix field Ã is a hermitizing matrix field for γ̃μ [5].

The relevant Hilbert space scalar product is [5]

(Ψ | Φ) ≡

∫
Ψ†Aγ0Φ

√
−g d3x. (25)

It transforms isometrically under the gauge transformation (24), if one transforms

the wave function according to Ψ̃ ≡ S−1Ψ [6].

The Dirac equation (23) is covariant under the similarity (24), if the connection

matrices Γμ, such that Dμ = ∂μ + Γμ, change according to [6, 10]

Γ̃μ = S−1ΓμS + S−1(∂μS). (26)

For the DFW equation, the gauge transformation (24) is restricted to belong to the

spin group: for all X,S(X) ∈ Spin(1, 3). It follows then that the relation (26) is

automatically satisfied [6].

3.3. Reduction of the Dirac Equation to Canonical Form

If Dμ(Aγ
μ) = 0 and the Γμ’s are zero, the Dirac equation (23) writes

γμ∂μΨ = −imΨ. (27)

Theorem 1 ([8]) . In the neighborhood of any event X , the Dirac equation (23)

can be put into the canonical form (27) by a local similarity transformation.

Outline of the proof: i) By Theorem 3 of reference [5] [Section 3.4, equation (54)],

a similarity T defined by equation (24) [with T instead of S] brings the general

Dirac equation (23) to the “normal” form (Dμ(Aγ
μ) = 0), iff

AγμDμT = −(1/2)[Dμ(Aγ
μ)]T . (28)

ii) By Theorem 2 of reference [7] [Section 6.2, equation (65)], a similarity S de-

fined by equation (24) and such that equation (26) is satisfied, brings a normal

Dirac equation to the canonical form (27), iff

Aγμ∂μS = −AγμΓμS. (29)



Classical-Quantum Correspondence and Wave Packet Solutions . . . 85

iii) Due to the hermitizing character of the matrix A, and due to the fact that,

by construction, the Hermitian matrix Aγ0 which defines the scalar product (25) is

positive definite [5], both (28) and (29) are symmetric hyperbolic systems.

3.4. Geometrical Optics Approximation of Dirac Lagrangian

The Lagrangian for the Dirac equation in an electromagnetic (e.m.) field is got

by substituting Dμ ↪→ Dμ + ie
�cVμ, where e is the particle’s electric charge. It

follows that, for the canonical Dirac equation (27), the Lagrangian in an e.m. field

is obtained by

l =
√
−g

i�c

2

[
Ψ†Aγμ(∂μΨ)− (∂μΨ)†AγμΨ+

2imc

�
Ψ†AΨ

]
(30)

−
√
−g (e/c)JμVμ

with ∇μ(Aγ
μ) = 0, where ∇μ is the covariant derivative obtained on the relevant

tensor product bundle (see Footnote 1) if the connection matrices Γμ of the connec-

tion D are zero when D is acting specifically on the bundle E [8]. To implement

the geometrical optics approximation following Whitham [20], we set first

Ψ = χeiθ (31)

where χ = χ(X) is also a complex wave function with four components, and

θ = θ(X) is a real phase. We assume then that χ is slowly changing compared

to the rapidly changing phase θ. That is, the geometrical optics approximation

consists in assuming that

∂μχ � (∂μθ)χ. (32)

Substituting (31) into the Lagrangian (30) with this approximation, yields

l′ = c
√
−g

[(
−�∂μθ −

e

c
Vμ

)
χ†Aγμχ−mcχ†Aχ

]
. (33)

The Euler-Lagrange equations are then [8]

(
−�∂μθ −

e

c
Vμ

)
Aγμχ = mcAχ

(34)
∂μ

(
c
√
−gχ†Aγμχ

)
= 0.
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3.5. Classical Trajectories

Theorem 2 ([8]) . From Ψ = χeiθ, define a four-vector field uμ and a scalar field
J such that

uμ ≡ −
�

mc
∂μθ −

e

mc2
Vμ, uμ ≡ gμν uν , J ≡ c χ†Aχ. (35)

Then the Euler-Lagrange equations (34) imply

∇μ(Ju
μ) = 0 (36)

gμν uμuν = 1 (37)

∇μuν −∇νuμ = −(e/mc2)Fμν . (38)

The first equation is the conservation of the probability current. The two last equa-
tions imply the classical equation of motion for a test particle in an electromagnetic
field in a curved space-time.

3.6. De Broglie Relations

The canonical momenta of a classical particle imply the following equations

Pμ = −mcuμ − (e/c)Vμ. (39)

On the other hand, following a Dirac quantum particle in the geometrical approxi-

mation, we were led to define a four-velocity field uμ from the phase θ of the wave

equation (35).

We saw that the field uμ obeys exactly the classical equations of motion, which

are Hamiltonian equations for which the canonical momenta are given by equation

(39). But, remembering the definition Kμ ≡ ∂μθ of the wave co-vector from the

phase θ of the wave function, we rewrite equation (35) as

−mcuμ − (e/c)Vμ ≡ �Kμ. (40)

That is, we derive exactly the de Broglie relations (5).

4. Conclusion

The Dirac equation in a curved space-time with electromagnetic field may be “de-

rived” from the classical Hamiltonian H of a relativistic test particle. One has

to postulate H = �W (i.e., E = �ω), where W is the dispersion relation of the

sought-for wave equation. Then one factorizes the obtained dispersion polynomial.
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Conversely, to describe “wave packet” motion, we implemented the geometrical

optics approximation into a canonical form of the Dirac Lagrangian. From the

equations thus obtained for the amplitude and phase of the wave function, one is

led to define a four-velocity field which obeys exactly the classical equation of

motion.

The de Broglie relations Pμ = �Kμ are then derived exact equations.
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