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1. Introduction

The present work, devoted to a survey of some topics in Geometric Quantum Me-
chanics (GQM), consists in a written version of a part of the lectures delivered
at the XIII International Conference on Geometry, Integrability and Quantization
held in Varna, from 3rd to 8th June 2011. Our discussion, which will be rather
pedagogical, is mostly based on the papers [17, 18, 115] and the exposition of the
results (essentially all known, possibly up to slight reformulation) will be com-
plemented by comments and brief digressions, when needed, in order to enhance
readability for a wider audience. After recalling some basic facts on symplectic
and Kéhler geometry and on the formalism of geometric quantization, we delve
into the basic framework of GQM, which is actually ordinary quantum mechan-
ics looked upon as a classical dynamical system on a complex projective space,
together with:

o the Kdhler structure of the latter, governing uncertainty of simultaneous
measurements, and

o the geometry of the rautological, or, better, the hyperplane section bun-
dle (see below), manifesting itself in the “universal” geometric phase of
Aharonov-Anandan, the abstract counterpart of Berry’s phase, cropping up
in the context of adiabatic motions.

Subsequently, several implications will be discussed of the above geometric rein-
terpretation of quantum mechanics regarding particular issues such as integrability,
entanglement and quantum measurement. We shall also address more speculative
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items such as a link with hydrodynamics, giving an “Eulerian” counterpart to the
“Lagrangian” view provided by the Schrodinger flow.

2. Preliminary Tools

In this Section we recall some basic notions and notation on symplectic geometry
and geometric quantization needed throughout the paper, without aiming at depth
and completeness, for which we refer to the given bibliography. The reader may
well skip this section at all and refer to it whenever necessary.

2.1. Some Basic Symplectic Geometric Terminology

A symplectic manifold (M, w) is a smooth manifold (necessarily of even dimen-
sion, in the finite-dimensional case) equipped with a closed non-degenerate two-
form w. Important examples are provided e.g. by the cotangent space 7* X asso-
ciated to a manifold X, by Kéhler manifolds, or coadjoint orbits of a Lie group G
(see e.g. [1,6,7,54-57,68,69,77,81,109, 127] for details). The latter live in the
dual space g* of the Lie algebra g of G’ and take the form Oy, = G/Gy,, with
fo € g" and Gy, denoting the stabilizer of fo with respect to the group coadjoint
action Ad*. The (Kirillov) symplectic form B on Oy,, evaluated on two generic
fundamental vector fields induced by £, n € greads, at f € Oy,

By(ad; f,ady f) = (£, 16,1])

(here ad* denotes (Lie algebra) coadjoint action, which dualizes the standard ad-
joint action ad¢n = [£, n]). If the symplectic manifold (A, w) is acted upon (sym-
plectically) by a Lie group G, with Lie algebra g, a G-equivariant moment map
w: M — g* (existing under mild topological assumptions on M and () is char-
acterized by the property

wlg-z) =Ad"(g)u(z), €M, ged.
Such a map yields, for each £ € g, a Hamiltonian A\¢ = A¢(z) := (u(x), §) (duality

pairing), and the set of such functions yields indeed a Lie algebra isomorphic to g,
via the Poisson bracket {-, -} induced by the symplectic form

{Aes Ay} (@) = w(E,nP) () = Mgy ()

(for all 2 € M, with & denoting the fundamental vector field induced by & € g).
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2.2. Complex Polarizations and Kéhler Manifolds

A Kiihler polarization of the symplectic manifold (M, w) consists of an endomor-
phism I € Q°(End T'M) of the tangent bundle 7'M such that

I’=-1d
IIX, 1Y) = [X, Y]+ I[IX, Y]+ I[X,IY]
w(X, 1Y) = —w(IX,Y)

and for which w(-, I-) is positive definite. By virtue of the theorem of Newlander
and Nirenberg the first two conditions give M the structure of a complex manifold
and the last two say that

9(X,)Y) =w(X,JY)

defines a Kihler metric, with Kéhler form w € QU1(M) (cf. [33,53,61]).

2.3. A Digression on Geometric Invariant Theory

Given a Hamiltonian compact Lie group G-action on a Kdhler manifold X (with
Lie algebra g), one extends it to the complexification G, with Lie algebra g© =
g @ ig upon considering vector fields n = J&f, with &% a fundamental vector
field associated to the above action. Obviously, such an extended action does not
preserve the metric any longer. Under fairly general conditions (see [56]) one has
an identification between Marsden-Weinstein and Mumford quotients, respectively

Xo/G = X,/G©

with Xo = p~1(0), X := GC - X, (the stable points in Mumford’s sense, see
e.g. [11,56,71,87]).

2.4. Completely Integrable Hamiltonian Systems

In this subsection we review some basic facts about completely integrable Hamil-
tonian systems. A Hamiltonian system (M, w, h) (h (the Hamiltonian) is a smooth
function on M), with n degrees of freedom, is said to be completely integrable if it
admits n mutually Poisson-commuting first integrals, which are linearly indepen-
dent almost everywhere in M and, restricting to regular fibres, the joint level sets
of the first integrals (which are then Lagrangian, i.e., the restriction of w vanishes
thereon and have maximal dimension, namely n) are compact and connected. The
celebrated Liouville-Arnol’d Theorem (see e.g. [6,7,43]) then says that the latter
are actually n-dimensional tori foliating the manifold, labelled by (locally defined)
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action variables I = (11, I, . .., I,), with angle variables ¢ = (@1, 2, ..., ¢n)
thereon in such a way that the coordinates (I, ) on M are Darboux coordinates,
that is

n
w=>Y_dI; Adg;.
i=1
Thus, geometrically, M is a T"-bundle with Lagrangian fibres. The construction
of the toric principal bundle or, equivalently, the existence of global action-angle
coordinates is only (semi-)local. The quest for globality leads to the major issue of
monodromy (cf. [41-43,89]) which will not be addressed in the present paper.

2.5. A Glimpse at Geometric Quantization

We briefly review the basics of Geometric Quantization (GQ) and we refer to
[28, 54, 56,68,69,77,109, 123, 127] for a complete account. It is a quite elegant
and powerful method, essentially arising from generalizing Dirac’s approach to
the magnetic monopole and casting it into the appropriate mathematical frame-
work of differential geometry and topology of complex line bundles, which allows
for a neat geometrical understanding of important topics such as group represen-
tation theory (e.g. the Borel-Weil theorem and its extensions, see [56,98]) that is
crucial in many modern physical theories such as, among others, integral and frac-
tional quantum Hall effects, conformal field theories and Chern-Simons-Witten
theory [14,73,76,98,126]. We point out [104], [103] for a recent application to
the issue of quantum monodromy. The full range of applications is however enor-
mous, so we confine ourselves to mentioning in addition to the references already
given, [47,83-85, 107] for applications to Kepler-type systems, [21,91-95, 114]
for applications to fluid mechanics and [99,112,117-120, 128] for the geometry of
infinite dimensional Grassmannians and related issues. These topics were indeed
touched upon in the lectures. In the present paper GQ plays an ancillary yet most
important role.

Roughly speaking, GQ aims at manufacturing a quantum Hilbert space from the
geometry of the classical dynamical system, together with a consistent prescrip-
tion for constructing quantum observables. It turns out that the natural candidate,
namely the L?-sections of an appropriate complex line bundle on the classical
phase space, contains “wave functions” which are not physically acceptable: for
instance, in dealing with the classical harmonic oscillator, one would encounter
functions with arbitrarily “small” compact support on phase space, which violates
the Heisenberg Uncertainty Principle. This is the reason why one needs to “po-
larize”, namely, to stick either to wave functions defined solely in terms of posi-
tions or momenta (real polarization - one then abuts at the standard Schrodinger
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representation) or using holomorphic functions (Bargmann’s representation - com-
plex polarization). The first strand leads in particular to the recovery of the Bohr-
Sommerfeld conditions of “old” quantum theory, the “holomorphic way” is crucial
in the above mentioned general theories. In a bit more detail, this goes as follows.

Recall that if (M, w) is a symplectic manifold of (real) dimension 2n such that the
ensuing cohomology class [s-w] € H?(M,Z) (integrality, i.e., the integral of w
over any two-cycle is an integer) then the Weil-Kostant theorem states that there
exists a complex line bundle (L, V, h) over M equipped with a hermitian metric
h and a compatible connection V with curvature F'y = w. Hence [w] = ¢1(L),
the first Chern class of L — M. The results holds in the pre-symplectic case
as well, i.e., one may drop non-degeneracy. The integrality condition stems as a
consistency condition coming from computing, via the Stokes theorem, the parallel
transport of the connection on a loop in M bounded by two different two-chains
building up a two-cycle.

Recall that the first Chern class of a complex line bundle, i.e., the Euler class of the
associated real (oriented) vector bundle, arises as the obstruction to gluing together
fibrewise angular forms on the corresponding principal S'-bundle (cf. [24]). The
connection form (global, when viewed on the total space), restricts fibrewise to the
angular form on the S!-fibres. Its differential is the pull-back of a global two-form
on the base, i.e., the curvature form, equal (cohomologically) to (minus) the Euler
class of the principal S'-bundle P — M canonically associated to L — M, which
is the transgression of the angular form [24]. The Weil-Kostant theorem and the
ensuing transgression interpretation can be generalized to the so-called n-gerbes
(128,39,46,62,97,116]).

The connection V is called a prequantum connection and L — M the prequantum
line bundle. The different choices of L — M and V are parameterized by the first
cohomology group H'(M, S') (see e.g. [127], Ch.8). In particular, if M is simply
connected, this cohomology group it trivial and the connection is unique.

We also recall for completeness that the prequantum connection V allows the con-
struction of the (Hermitian) prequantum observables ((-), acting on the space of
smooth (complex valued) sections I'(L) of L — M via the formula

Q(f) = —iVXf + f= —in — in9 + f
and this fulfils Dirac’s prescription

[Q(f), Q] =iQ({f,9}), QQ1)=1d

(where {, } again denotes the Poisson bracket pertaining to the symplectic struc-
ture, 6 is a (local) symplectic potential, i.e., w = df and we take i = 1). The
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specific expression for Q( f) is natural since it is the lifting to the total space L of
the action of f on the base manifold M via its Hamiltonian vector field X ¢, and
turns out to be closely related to the path integral formalism ([127]). In general
the connection is determined up to a closed one-form, yielding a corresponding
ambiguity in the definition of the quantum observable Q(f) attached to f. This
fact turns out to be important in dealing with quantum monodromy ([104], [103]).

2.6. The Bohr-Sommerfeld Condition

Coming back to the specific geometric quantization setting, consider a Lagrangian
submanifold A of the symplectic manifold M so that, any (semi-local) symplec-
tic potential § becomes a closed form thereon, defining a (semi-local) connection
form pertaining to the restriction of the prequantum connection V and denoted
by the same symbol. The latter is a flat connection and a global covariantly con-
stant section s of the restriction of the prequantum line bundle (namely one has
Vs = 0) exists if and only if it has trivial holonomy, that is, the induced charac-
ter x : m(A) — U(1) is trivial (see e.g. [123, 127]), or, equivalently, that the
Bohr-Sommerfeld condition is fulfilled

[9] € H'(M,R) e, / 0 € 27
2 y

for any closed loop v in A.

Further on we shall discuss this condition in relation with second quantization in
Subsection 4.7.

2.7. Holomorphic Geometric Quantization

Given a Kihler polarization, we can endow the complex line bundle L — M with
the structure of a holomorphic line bundle by considering the differential operator
VOl QO(M, L) — QO1(M, L) defined by

Vol = (1 +iD)V.

Let us remind that the complex forms of type (0, 1) are those acted upon by I via
multiplication by —i. In local terms, this is a differential operator of the form

Z(Sf +6;f) dz

%

and by the Dolbeault lemma, a local solution to the 1.h.s = 0 exists if and only if
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But the Lh.s. is the (0, 2) component of the curvature of V, which, in the present
situation, is the Kéhler form of the manifold, which is then of type (1, 1). Thus the
integrability condition is satisfied and the equation

Vols =0

has local non-vanishing solutions. If s and s’ are two such solutions with s’ = gs,
then one immediately checks that f%% = 0, so g is a holomorphic transition func-
tion for the line bundle L, and this gives rise to its holomorphic structure. The
connection becomes the Chern-Bott one (see also below). Thus, in the Kéhler
case one can perform the so-called holomorphic quantization, whereby one takes
the space of holomorphic sections H°(L,.J) of a holomorphic prequantum line
bundle, provided it is not trivial, (this being achieved by Kodaira vanishing condi-
tions) as the Hilbert space of the theory (J denotes a complex structure on M, see
e.g. [61] for details). As a holomorphic line bundle, L. — M varies with J, whilst
its topological type is fixed. In this case there is a canonically defined connection,
called the Chern, or Chern-Bott connection, compatible with both the hermitian
and the holomorphic structure (cf. [53]). Independence of polarization (i.e., of the
complex structure, in this case) is achieved once one finds a (projectively) flat con-
nection on the vector bundle V' — T with fibre H(L, J) (of constant dimension,
under suitable assumptions provided by the Kodaira vanishing theorem) over the
(Teichmiiller) space of the complex structures 7 (see [61]). The classical theory of
theta-functions and their heat-equation related properties provides a most beautiful
example of this phenomenon (see [14] and [61]). For an application to quantum
monodromy see [104]. See also [110] for an early discussion of the link between
geometric quantization, canonical commutation relations and theta functions.

2.8. A Hydrodynamical Intermezzo

In this section, based on [115], we recall some results valid for Killing vector fields
on a (connected) Riemannian manifold (M, g) (i.e., those generating infinitesimal
isometries which always exist, at least locally). As general references we may
quote [31,48,75]. For hydrodynamics we refer, among others, to [1,8,45,80,121].

The Levi-Civita connection of (M, g) will be denoted by V. We shall employ
the notation (X,Y) := ¢(X,Y), for X, Y € I'(TM) (vector fields on M).
Upon freely using the musical isomorphism notation (f = vector field, b = one-
form, corresponding to index raising and lowering, respectively, so, for instance,
(X°,Y) = (X,Y), with (-,-) being the pairing between one-forms and vector
fields), we first recall the following basic identity (cf. [1], 5.5.8, p.474, or [8], Ch.
IV, p. 202, Theorem 1.17)



Geometric Methods in Quantum Mechanics 9

1
LyY’ = (VyY) + S 4(VY)
(L is the Lie derivative), which easily yields the following

Lemma 1. Let X be a Killing vector field on a Riemannian manifold (M, g). Then

LxX’=0.
Proof: If X is Killing, then for any vector field Y, one has
Lx(Y’) = (LxY)
which yields immediately

Lx(X") =(LxX) =[X,X] =0. m

Recall that the Euler equation on a Riemannian manifold reads, among others, in
the following equivalent guises, in terms of one-forms

X’ )
— X)) =—
5+ (VxX) dp

or

oxX’ 1
ot + ﬁXXb = d(§<X>X> - p)

(p being the pressure) together with divX = 0 (see e.g. [8] or [121], Ch.17, 1.15,
p. 469). One immediately establishes the following

Lemma 2. A divergence-free vector field Y on a (finite dimensional, connected)
Riemannian manifold (M, g) satisfies the stationary Euler equation, with pressure
p = 3(Y.Y) (up to a constant) if and only ifLyY’ = 0.

Let us also notice the general identity, valid for a Killing vector field X
(Lxg)(Y,Z) = (VyX,Z)+(VzX,Y)=0
which implies, setting Z =Y
(Y,VyX)=0

and, setting further ¥ = X
(X,VxX)=0.

The main result of this section is the following
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Theorem 3 ([115]). Let X be a Killing vector field on a finite dimensional, con-
nected Riemannian manifold (M, g). Then

i) the (necessarily divergence-free) vector field X fulfils the stationary Euler
equation, with pressure given by p = %(X , X)) (up to a constant)

i) the vorticity form of the (stationary) Euler equation reads (with w = dX b
the vorticity two-form)
Lxw=0

iii) the (Riemannian) gradient of the pressure, (dp)ﬁ, is orthogonal to X

iv) if v is an integral curve of X starting from a point m € M, then vy is a
geodesic if and only if dp = 0 (at m and hence along ).

Sketch of Proof: The first three assertions are easily established with the aid of the
previous lemmata, so let us comment on iv). Let v : s — 7(s) denote the integral
curve of X starting from a point m. Then, due to the stationary Euler equation
fulfilled by X, one has

(Vs4)" = —dp |(s) -

Thus ~ is a geodesic if and only if dp \7( s)= 0 for all s. On the other hand, p, and
hence dp are invariant under the flow of X, by iii), whence dp |,(s)= 0 for all s if
and only if it holds at m = ~(0), this yielding iv). |

Remark 4. Notice that for one-sided invariant metrics on Lie groups, even in the
finite dimensional case, geodesics do not correspond to one-parameter Lie sub-
groups (see e.g. [48)) so, even ignoring the subtleties of the infinite dimensional
situation, one cannot directly conclude that a divergence-free vector field on a
(compact, say) Riemannian manifold (i.e., an element of the “Lie algebra” of
the group SDiff (M) of measure preserving diffeomorphisms of M) automatically
vields a solution of the (stationary) Euler equation, i.e., a geodesic of the natural
right-invariant (but not bi-invariant) metric induced by the kinetic energy [8], [45].

In this paper, we shall ultimately just treat the simple, yet fundamental example
given by the projective space P(V') - to be presently reviewed - equipped with the
Fubini-Study Kéhler form, whose prequantization bundle is unique and is given by
the hyperplane section bundle O(1) — P(V'), endowed with the Chern-Bott con-
nection (see below, Subsection 3.2). It possesses an extremely rich mathematical
structure at the crossroads of many fields, which is most interesting in itself.
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3. Geometric Quantum Mechanics: the Basic Formalism

We shall mostly refer to [17], but see also [9,25-27,34-38,40,60,63,67,100,111].

The basic idea of the geometric approach to quantum mechanics roughly consists,
in a first instance, in regarding it as a classical mechanics on the projective Hilbert
space associated to the quantum system, considered as given a priori, its dynamics
being governed by a special class of Hamiltonians, namely those arising as mean
values of self-adjoint operators (see Subsection 3.1).

Given such a Hamiltonian (confining ourselves to the finite dimensional and non-
degenerate case), there is a natural toral action leaving it invariant and foliating
the projective space into Lagrangian (or isotropic) tori, thereby yielding complete
integrability of the associated classical mechanical system (Subsection 3.3). The
ensuing action-angle variables receive a natural interpretation, the former being,
in particular, transition probabilities. This has been already shown in greater gen-
erality in [38] using different techniques. Actually, the above theorem (in finite
dimensions) can be also regarded as a consequence of a much more general re-
sult by Thimm [122] stating that U(n)- or O(n)-invariant Hamiltonian systems on
symmetric spaces are completely integrable. Furthermore, projective spaces pro-
vide the basic examples of Hamiltonian toric manifolds (see. e.g. [10], [55] or the
textbooks [57], [13], [81]) and we shall sketch some explicit arguments.

We then discuss the differential geometric properties of the Schiodinger vector
field (showing that a suitable restriction thereof gives rise to a Jacobi field), and we
elaborate on the relationship between uncertainty and curvature (Subsection 3.4).
Also, in Subsection 3.5, still acting within a Riemannian geometrical framework,
we discuss a possibly useful hydrodynamical interpretation recently set forth by
the present author [115]. Our geometric approach is basically finite-dimensional.
However, this is far from being devoid of physical significance: indeed, one of-
ten works with a finite dimensional approximation, namely in quantum chemistry
(Hartree-Fock), see e.g. [57] and another important example is provided by quan-
tum computation, see e.g. [40,72].

3.1. Projective Space and its Symplectic and Kihler Geometry

Throughout the paper we assume A = 1. Let V be a complex Hilbert space of
finite dimension n + 1, for simplicity, with scalar product (-|-), linear in the second
variable. Let P(V') denote its associated projective space, of complex dimension
n, which represents the space of (pure) states in quantum mechanics. We make
free use of Dirac’s bra-ket notation, we can identify a point in P(V'), which is, by
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definition, the ray (i.e., one-dimensional vector space) <v> pertaining to (respec-
tively generated by) a non zero vector v = |v) - and often conveniently denoted by
[v]- with the projection operator onto that line, namely

1

- 2
o]l

(actually, the above identification can be interpreted in terms of the moment map
defined below). For the sequel, we notice that, upon choosing an orthonormal
basis (eg, e1, . ..e,) of V, and setting, for a unit vector v = Z?:o «aje;, the above
projection can be written as a density matrix ([23], [82])

[v)(v] < (@ij)

(with 3% |a;|? = 1). If U(V') denotes the unitary group pertaining to V, with Lie
algebra u(V), consisting of all skew-hermitian endomorphisms of V' which we call
observables, with a slight abuse of language and then the projective space P(V') is
a U(V)-homogeneous Kihler manifold. The isotropy group (stabilizer) of a point
[v] € P(V) is isomorphic to U(V”') x U(1), with V' the orthogonal complement to
<v>in V, the U(1) part coming from phase invariance: [e!*v] = [v]. Hence

P(V) = U(V)/(U(V') x U(1)) = U(n +1)/(U(n) x U(1)).

The fundamental vector field A% associated to A € u(V) reads (evaluated at [v] €
PV), lvll=1)

Al = |0)(Av| + [ Av) (v].
In view of homogeneity, these vectors span the tangent space of P(V') at each point.
The (action of the) complex structure J reads, accordingly

T Ay = o) (1Av] + [1Av)(v].

Next we are going to write down the expression for the natural (i.e., Fubini-Study)
metric g and the Kéhler form w (recalling that, if Tr denotes the trace on End(V),
then clearly Tr(|v)(w|) = (w|v)) which are essentially the real and imaginary part
(respectively) of the hermitian form (dv|dv). Explicitly

910} (A%} B¥ 1) = Re{(Av|Bv) + (v] Av) (v|Bv)}

and
i
Wiy (A* ], B¥)) = 90 (T 1) (A%, B ) = §<UHA, Blv).

Actually, our discussion can be conveniently rephrased in terms of the moment map
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w:P(V) = w(V)* 2uV)

plo]) = —io)(v]
(the last isomorphism coming from the Killing-Cartan metric on u(V') given by
(A,B) := —3Tr(AB), for A, B € u(V)). The Hamiltonian algebra correspond-

ing to u consists, accordingly, of the real smooth functions

pa(lo]) = (1, A4) = L(wlAv), Acu(v)

i.e., up to a constant, the mean values of the observables. It follows immediately
that w emerges as the canonical Kirillov symplectic form pertaining to P(V') looked
upon (via 1 ) as a U(V')-coadjoint orbit (see e.g. [57], [81]). Clearly, A? becomes
the Hamiltonian vector field associated to A € u(V'), i.e., one has

dpa =1 g5w.
The Poisson bracket {-, -} defined by w is of course

{pa, up} = w(A* B*) = 4 p).

We also notice, that with the present conventions (i.e., those of [17]), if A, B €
u(V), then

where the L.h.s. commutator refers to vector fields, the r.h.s. one is the Lie algebraic
one. The latter identity can be directly checked by evaluating both sides on a
Hamiltonian pc.

From this point of view we may characterize Fubini-Study Killing vector fields as
the infinitesimal generators of unitary one-parameter groups, i.e., with the Hamil-
tonian vector fields A? (cf. also [34]).

Let us finally quote the following elementary but important result.

Theorem 5 (cf. [25], [27], [63]). Given two distinct points (quantum states) [£]
and [n] in B(V'), with representative (ket) vectors & and n, and given their respec-
tive orthogonal states [€1] [n] on the projective line [€][n] they determine, then
the cross-ratio k? := ([¢], [n], [n*], [€F]) equals the transition probability between
(€] and [n], namely

L L _M'
Akt b 17D = iy
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Notice that if [¢][n] is regarded as a sphere, then [¢] and [¢], and [5)], [], respec-
tively, become antipodal points thereon.

As a further remark, we may observe that a quantum observable induces a pro-
jective reference frame built from its eigenstates, and a choice of phase of their
representing vectors amounts at fixing its unit point.

3.2. The Chern-Bott Connection

We now wish to compute a (local) symplectic potential ¢ for w, i.e., a one-form
such that d8 = w. The one-form 6 cannot be global since a symplectic form
on a compact manifold cannot be exact: indeed, it generates the one-dimensional
second cohomology group H2(P(V),Z) and gives rise to the first Chern class
of the hyperplane section bundle O(1) — P(V'), whose space of holomorphic
sections is canonically (conjugate linear) isomorphic to V' (see also [53]).

We may take (for || v||= 1)
0 = —i(v|dv).

Up to a constant, 6 is just the canonical (Chern-Bott) connection form (with re-
spect to a hermitian local frame) on O(1), governing the so-called Berry (or, rather
Aharonov-Anandan) phase ([2, 3, 19,40, 53] see also Section 4). Geometrically, it
just represents the infinitesimal angle variation of v (relative to the complex plane
it generates) upon an infinitesimal (norm-preserving) displacement. This will be
crucial for the sequel.

The Chern-Bott connection (actually the covariant derivative) on the hyperplane
section bundle on P(V') can be exhibited in the following slightly sloppy but phys-
ically vivid form (evaluating on the fundamental vector field A* pertaining to
Aeu(V))

V atv) = Alv) = (A)pifv)
that is, one just removes from A|v) its component along the ray [v]. GQ, when

applied to the present setting, yields the so-called Aharonov-Anandan (AA) phase
([2,3,40]) in the form

/ Qrs = ¢aa(C)
D)

@if 9% = (), via the parallel transport of the Chern-Bott connection, showing
the universal character of the latter, since it intrinsically crops up in any quantum
system.

Remark 6. From the preceding observations it is clear that quantum mechanics,
even when looked upon geometrically, cannot be reduced to (a sort of) classical



Geometric Methods in Quantum Mechanics 15

mechanics: the Schrodinger equation involves, in fact, state vectors and non just
states (i.e., rays), imposing, as a consequence, phase evolutions as well. Also,
we have the appearance of the AA-phase (a universal Berry’s phase), due to non
flatness of the Chern-Bott connection and, more precisely, to the non triviality of
the tautological or hyperplane bundle. Thus we may say that quantum mechan-
ics, formally, appears as classical mechanics on a projective space, together with
the geometry and topology of the hyperplane section bundle, equipped with the
Chern-Bott connection (and this requires geometric prequantization applied to the
symplectic manifold (P(V'),wrs)). Also, the Riemannian metric governs uncer-
tainty of outcomes in simultaneous measurements.

In fact, more can be said: the vectors in V' arise as coherent state vectors after the
GQ-reinterpretation, either in the Kéhlerian sense [101] or in the group theoretical
sense [90, 96], the group in question being U(V'). Roughly speaking, it just de-
scribes the quantum Hilbert space via probability amplitudes (|v) — (v| = |w) —
(v|w)). Incidentally, this actually yields compatibility between geometric quan-
tization (applied to P(V')) and geometric quantum mechanics. We do not further
delve into this important topic, referring, among others, to [90,111, 113]. Also no-
tice that obviously h°(O(1)) = n+1 = dim V. When GQ is applied to a classical
n-oscillator system, followed by a reduction to a fixed energy level, it yields its
“traditional” quantization, which can be used, in turn, to produce the “correct” GQ
of the Kepler problem (see [47]) for details. This formal similarity (together with
integrability, see below) can be put to use in interpreting second quantization as a
sort of Bohr-Sommerfeld quantization, see Subsection 4.7 of this paper.

3.3. Toral Actions and Integrability

Let us now consider a non degenerate quantum Hamiltonian

H=> NPi=>Y Xle)el
=0 =0

ie, \; # \j,if i # j, and (e;) is an orthonormal basis of eigenvectors, with P; :=
le;)(e;| being the orthogonal projection operator onto the line <e;>. Without loss
of generality we assume 0 = A\g < A\; < -+ < Ay, so that

H= iAjpj.
j=1

The Schrodinger equation is given by (recall that i = 1)

0 .
oy = =i o)
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inducing its projective space version ([25-27, 63], in which the spinor formalism
is used)

|2 )0l + oh ol = i H ) (o] — o)l

(here ||v]|= 1). Its mean value on a state [v] yields a “classical” Hamiltonian / on
P(V'). With the above notation we have

o) — (v|Hv) _ Z}l:o)\j‘ajP _ - To 2
) = G = S = 3 A

and the last equality holds for ||v||= 1, Ay = 0. Consequently
h([v]) = H(—2iH)-

The critical points of A are given by the zeros of (—iH )* (symplectic gradient) or
equivalently J(—iH)* = H* (Riemannian gradient), and these, in turn correspond
to the states [e;] determined by the eigenvectors e;. This can be seen in various
ways, for instance via the immediately checked formula for the dispersion (vari-
ance) of an observable A € u(V) in a state [v], see also, e.g. [3,36,37,111]

ApA =|| Av — (v] Avyo ||= | A 901 (Af: 4Ly = 17 4]

w) g = B ol g

The nature of the critical point [e;] can be ascertained via the formula (resorting to
normalized vectors and then to obviously defined real coordinates)

—A+Z/\k— \ak\_AJrZ/\k— )(xF + yi)

showing, in particular, that A is a perfect Morse function, i.e., the index of the jth
critical point, namely 27, equals the Betti number by; (P(V)).

Now let v = Z?:o aje;, with aj # 0 for all 5 = 0,...,n. The submanifold
consisting of such [v]’s is open and dense in P(V'). The torus T acts on P(V)
via the position e; +— elf ej, Bj € [0,27), but actually, in view of global phase
arbitrariness this action descends to an effective action of G := T" and this is
clearly seen in the density matrix formalism

(@Z‘ij) — (o‘ziajei(ﬁj_ﬂi))

(we shall resume this particular formalism when discussing quantum measure-
ment). We set 8y = 0 in order to be specific. The generators of the torus action are
the (mutually commuting) operators iPj, j = 1,2, ..., n. Their associated Hamil-
tonians p; := (-|Pj-) = fi(_ip,) give rise to n constants of motion (first integrals)
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in involution, with respect to the Poisson bracket induced by the Fubini-Study
form, which turn out to be the action variables (see below). In the complement we
have a stratification of toral orbits of dimensions £k = 0,1,...,n — 1 (isotropic
tori), but the basic picture persists. Precisely, we may state the following

Theorem 7 ([17]). i) Under the above assumptions, the “classical” Hamiltonian
system (P(V'),w, h) (actually an open dense set thereof) is completely integrable.
The Lagrangian tori are provided by the orbits G - [v] of the n-dimensional torus
G-action above. The action variables I; coincide with the transition probabilities
oy =pi([o]). s = 1,2,...m.

i) Indeed, the full system remains integrable, allowing isotropic tori, and the orbit
space can be identified with the standard n-simplex in the Euclidean space R™.

Proof: Adi). We compute the action variables I;, 7 = 1,2,...,n in the standard
fashion [6].
If 9 is a (local) potential of the symplectic form, they read, upon choosing a ho-
mology basis (v;) for a fixed Lagrangian torus
1
I; = —
27 Jy,

In our case, considering a generic orbit G - [v] (which is topologically an n-
dimensional torus itself and it is clearly Lagrangian, since w G = 0) we may
take as -y; the curves

[0,27) 3 B; = [Y _ anen + ajeie;] € P(V)
h#j

so we easily get

1 2

L

j o [*(—i(eiej|dePre;)) = |ay]>.

:% ;

The Schrodinger evolution reads, in coordinates (taking as before Ay = 0)

n n n
v = E Qe E e Nte, = apeg + E e Nite,
i=0 i=0 i=1

and induces an obvious evolution on the torus G - [v].

Ad ii). The action variables ;, j = 1,2, ..., are globally defined, and collectively
they give rise to the convex polytope (in R"™)

n
OSZIJ':1—‘040’2§1
7=1
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which is actually the standard n-simplex A, in R™. Thus, the orbit space is just
A, the singular k-toral orbits, 0 < k < n corresponding to its k-faces. |

Remarks 8. 1. As we have already pointed out, this result is known in different
guises, though possibly not so directly (cf. [10, 12, 38,55,57,70,71, 81]). This
concerns, in particular, the identification of action variables with transition prob-
abilities, which is important for the sequel, in particular, in our approach to the
quantum measurement problem.

2. The simplest case dimV = 2, i.e, P(V) = P(C?) = S? is already interest-
ing: Schrodinger’s dynamics takes place on parallels (associated to the “poles”
leo] = [0], [e1] = [1]) parameterized by an appropriate transition probability: this
geometric picture has proved to be crucial for establishing a possible link with
elliptic function theory [16, 18]. We shall say a bit more about this in the next
Subsection.

3.4. Uncertainty and Jacobi Fields

In this Subsection we show, closely following [18], that the fundamental vec-
tor field induced by the Schrodinger Hamiltonian, when restricted to a minimal
geodesic connecting two orthogonal eigenstates pertaining to different energy lev-
els is a Jacobi field thereon. We first observe that we may confine ourselves to
the case of a two level system with non degenerate Hamiltonian H = X\(|0)(0| +
A1|1)(1] with Ag < A; and dh := A1 — Ag. The result we are going to discuss
will hold even in the infinite dimensional case, for two different eigenvalues of H
(when present).

Also recall from the preceding Subsection that A, H = || JH : (v ll- The vector
field 7 := JH?, taken along a (minimal) geodesic curve joining two orthogonal
eigenstates of H (this is just a half-meridian in S? = P(C?) viewed as a totally
geodesic submanifold of the full projective space) is perpendicular to it at every
point (see also below).

Theorem 9 ([18]). i) The dispersion A, H equals 6h -y, with ry the radius of
the parallel with colatitude 9 pertaining to the sphere with radius %

ii) The vector field [J is a Jacobi vector field when restricted to a geodesic con-
necting two orthogonal eigenstates corresponding to different energy levels.

Proof: Assertion i) amounts to state that the Fubini-Study metric for P(C?) co-
incides with the standard metric on a sphere of radius 1/2 (whose curvature is
K = 4), however we can directly check our assertion as follows. First one has ry =
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% sind = sin g cos g and then we explicitly compute the dispersion. We have, set-

ting as usual (see below, Remark 2) |v) = 20|0) + 2z;1|1) = cos %|O> + €% sin g|1),
with 9 € [0, 7] the “colatitude” taken along a “meridian” (on the standard S?), and
¢ € [0,2m) the “longitude”

A H = (A = Xo)|z1|(1 = |21]2)2 = 6k (|z1](1 = |z1]2)7) = 6h - 79

as desired, and s = g is then the geodesic parameter along a meridian with respect
to the Fubini-Study metric. Then assertion ii) is also immediate

27

— +4J =0

ds?
which is indeed the Jacobi equation since the sectional curvature of the appropriate
plane is K = 4 (i.e., the constant holomorphic sectional curvature, see [31], [48]).

|

Another quick proof of ii) is the following: a rotation around the “polar axis”
induces a geodesic variation with fixed extremities, which, when infinitesimalized,
gives rise to a Jacobi field (cf. e.g. [74]). In our case, it is immediately verified via
elementary geometry that the Jacobi field is, up to a constant, the one given above.

Remarks 10. 1. We clearly see that the Heisenberg Uncertainty Principle is es-
sentially a manifestation of curvature.

2. Notice that the standard parametrization of S with “half-angles” comes from
stereographic projection, and the inhomogeneous complex variable ¢ := i—; =
ei‘ptang is just the coordinate of the projection onto the “equatorial” plane - taken
from the “south pole” [1] - of the above point [v] on the sphere, having colatitude
Y (i.e., the angle between [0] and [v]) and longitude p, measured from one fixed
meridian. In the projective line picture, [0] is the origin of a projective frame in
which [1] is the point at infinity and [|0) + |1)] is the unit point.

We may call the quantity r§ = A(ShH; the geometrical uncertainty, in view of its
purely geometric origin.

Also recall, in passing, that the quantity 77 = 1/A,H is called the Zeno time and
plays an important role in quantum measurement theory [49].

3.5. Hydrodynamical Aspects of Geometric Quantum Mechanics

We now show that, in the framework of finite dimensional geometric quantum me-
chanics, the Schrodinger velocity field on projective Hilbert space is divergence-
free (being Killing with respect to the Fubini-Study metric) and fulfils the sta-
tionary Euler equation, with pressure proportional to the Hamiltonian uncertainty
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(squared). We explicitly compute the pressure gradient of this “Schrodinger fluid”
and determine its critical points. Its vorticity is also calculated and shown to de-
pend on the spacings of the energy levels.

The vector field X =: (—iH)* is called the Schrodinger vector field on P™ (the
Schrédinger equation reads, of course, 0; |v) = —iH | v)) and is Killing thereon
(hence divergence-free). It is also stationary since the Hamiltonian H is time inde-
pendent.

We shall use the representation P* = P(C"1) = §2n+1 /Gl where S2" 1 is the
2n + 1-dimensional sphere in C"! = R2(+1),

Then Theorem 3 immediately implies part of the following

Theorem 11 ([115]). i) If (M, g) = (P", grs), and X is the Schridinger vector
field pertaining to the Hamiltonian H, then X fulfils the stationary Euler equation
with 2p = (AH)2.

ii) The critical points of the pressure, in the Schrodinger case, are given by the
energy eigenstates (minima, zero pressure) and by the equal probability superpo-
sitions of pairs thereof.

iii) The vorticity two-form w = dX”, evaluated on the geodesic sphere Sij - with
area two-form do and colatitude ¥ - determined by the superpositions of two en-
ergy eigenstates, reads (see below for details)

wls,; = 2(6h)ij cosddo.

Proof: Adi). This is just an application of Theorem 3, i). Of course, the remaining
assertions of that result hold in the present case. As a consistency check (see also
the third remark in the preceding section) observe that, in the projective line (Rie-
mann sphere) case, on the equator one has critical (actually maximal) uncertainty
and the Schrodinger trajectory is a geodesic.

Ad ii). In order to determine the critical points of the quantum mechanical pressure
field explicitly, we proceed as follows.

Set 0? = |o;|? and f = (AH)? as a function of the g;, namely

F=2 Mol —(Q_Ned)’
i=0 i=0

and introduce the constraint g = > ;07 — 1 = 0. Then the critical points of f,
subject to g = 0, are given by the solutions of the (Lagrange) system

df = pdg, g=0
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namely
(A2 — 2 (wHv) \j — p)o; = 0, i=0,..,n.

Upon defining P(\) = A2 — 2(v|Hv) — p, we see that, if we have a solution
with g # 0, then A; must be a root of P. Therefore, since the eigenvalues
are all distinct, there are at most two indices i1, io for which g; # 0, and this
leads to (v|Hv) = Aij0F, + Aiy02, = 3(Ai, + Ai,), whence from it follows that
Q?l = Q% = %, and p1 = —\;, Aj,. The remaining possibility, that only one p; # 0,
yields the eigenstates of H.

Ad iii). In computing the vorticity two-form dX” pertaining to the Schrodinger
velocity one-form X", we first notice that in view of the previous discussion, it is
enough, in order to grasp its physical meaning, to restrict to the (totally) geodesic
spheres S;;, say, determined by superpositions of two energy eigenstates. The
Schrodinger motion is, as already noticed, just a uniform rotation about the axis
whose poles are given by the eigenstates in question. The angular velocity w =
(0h)i; equals A\; — Aj (i > j), the difference of the energy levels. We find (¥ is
the colatitude, measured appropriately, and do is area two-form) that the radius
R= %, cf. [18], [40], and therefore

wls,; = de\gij = d(w R? sin?9dy)
= 2w cos ¥ (R?sin dv A dyp) = 2w cos v do

whence the vorticity vanishes on the equator (maximal uncertainty) and it is max-
imal (with opposite signs) at the poles (zero uncertainty). Notice, as a further

check, that the scalar vorticity function w := 2w cos ¥ does indeed satisfy the
2d-vorticity equation on S;; (obvious notation, cf. [121], Ch.17, p. 470, (1.27))
ow ~
%Jrgradw-X:O. u

Remarks 12. 1. In geometric terms, the critical points are given by the vertices
and the midpoints of the Atiyah - Guillemin-Sternberg convex polytope arising from
the standard moment map.

2. In essence, we provided, as already anticipated, an “Eulerian” counterpart to
the “Lagrangian” portrait inherent to the geometric interpretation of the Schrodin-
ger flow.

3. Notice that the Schrodinger motion itself can be viewed as a coadjoint orbit
motion for the group U(n + 1). On the other hand, the vorticity form of the Euler
equation is a manifestation of a coadjoint orbit motion relative to the group of mea-
sure preserving diffeomorphisms [8], [80]. In our case we deal with a stationary
fluid, and we get the previous equation.
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3.6. Aharonov-Anandan Phase for Mixed States

The whole framework can be extended to the case of mixed states (see e.g. the
textbook [40]). We give a rapid sketch of what is going on, possibly deferring a
fuller discussion elsewhere. This should be compared with the analysis of [32,50].
In the general case the U(V)- coadjoint orbit O, of a density matrix p is a flag
manifold, and in the non-degenerate spectrum situation, it specialises to

0,2Un+1)/(U1) x---xU(1))
(n + 1 factors), having real dimension
dimO,=2(14+2+..+n)+n+1] - (n+1)] =n(n+1).

The orbit O, is equipped with the KKS-symplectic form, which, when integral,
will give rise to a (holomorphic) line bundle equipped with the Chern-Bott con-
nection, with curvature equal to the KKS form itself, and this line bundle is again
the receptacle of a generalised Aharonov-Anandan-Berry phase coming out from
parallel transport. Without invoking the full strength of the Borel-Hirzebruch the-
ory, we just observe that the cohomology group H 2(0m 7) = 7Z"*1, is coming
from transgressing the first cohomology of the fibre in H — G — G/H in the
general homogeneous space picture (see e.g. [22], Ch. 8). This is consistent with
the theory set up in [32] where the Berry phase stemming from the KKS form is
singled out for its naturality among other possible choices.

The Chern-Bott connection has the same expression as before. The complex lines
of the GQ-line bundle sit inside u(n 4 1)©. This provides a quite concrete and
physically relevant manifestation of the Borel-Weil theory. Flag manifolds could
play also a relevant role in quantum measurement (see below).

Remark 13. The following important remark is in order. There are of course vari-
ous non-abelian generalisations of Berry’s phase, e.g. the Wilczek-Zee phase [125]
which has been exploited, via the Riemannian geometry of projective space, in the
so-called holonomic quantum computation, starting from the seminal paper [129]
(see the textbook [40] for further discussion).

4. Some Applications of Geometric Quantum Mechanics

In this section we shall see how geometric quantum mechanics affects (and, in our
opinion, enlightens) the treatment of many important topics in quantum mechan-
ics, such as Berry’s phase, entanglement and the measurement problem. Here is
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an overview of the material. We discuss various implications of integrability [17]
by looking anew at quantum adiabaticity and at the emergence of Berry’s phase
([19], [108]). In view of classical complete integrability we can interpret this prob-
lem both quantum mechanically (Berry [19]) and classical mechanically Hannay
([58] and [86]), showing compatibility of the two pictures. Moreover it is inter-
esting, in view of the statistical interpretation of quantum mechanics, to compute
the partition function of the classical canonical ensemble explicitly (cf. [25-27]).
This can be immediately achieved by resorting to the Duistermaat-Heckman for-
mula ([13, 44,57, 81]) exploiting the toral action. It is also possible to give a di-
rect elementary computation as well (see [17]). In accordance with the sugges-
tion of [25-27], we find that the partition function indeed differs from the stan-
dard quantum mechanical one by certain weights depending on the energy level
spacings and reflecting the topological structure of the projective space as a CW -
complex.

Subsequently (Subsection 4.3), we address quantum entanglement, which is, ac-
tually, the characteristic feature of quantum mechanics [106]. We discuss, in a
geometric fashion via Segre maps, an entanglement criterion (Theorem 8). The va-
riety X of disentangled states emerges as an intersection of quadrics. A recursive
“localization” procedure is devised which produces a (minimal) set of equations
locally cutting out X. This construction can be extended to encompass “partial”
entanglement (see [18]).

Furthermore, in the spirit of [27], we build up (see Theorem 10) a geometrical por-
trait of the two-qubit space and its unitary operators (quantum gat