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Abstract. This is the third part of our series “Quasiclassical and Quantum Sys-

tems of Angular Momentum”. In two previous parts we have discussed the methods

of group algebras in formulation of quantum mechanics and certain quasiclassical

problems. Below we specify to the special case of the group SU(2) and its quotient

SO(3,R), and discuss just our main subject in this series, i.e., angular momentum

problems. To be more precise, this is the purely SU(2)-treatment, so formally this

might also apply to isospin. However. it is rather hard to imagine realistic quasi-

classical isospin problems.
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1. Introduction

In the previous parts of this paper we have investigated some general problems of

the formulation of quantum mechanics based on the H+-algebras. In particular,

we reviewed their important subclass, namely, the associative convolution algebras

of functions on locally compact topological groups, first of all, Lie groups. This

was mainly the subject of Parts I and II [27,28]. In this final Part III below we con-

centrate on the main subject of the series, namely, on the theory of systems with

quantum angular momentum. It is not decided what is the nature of this angular

momentum; it may be either orbital or spin or some their superposition. The nature

of the system as that of angular momentum is specified by using the convolution

algebra of once integrable functions on the group SU(2). We begin with the usual

expressions involving the Pauli matrices and canonical coordinates of the first kind

on SU(2), i.e., components of the rotation vector, admitting the doubled range of

the angle of rotation. We also mention about the projective parametrization based

on the so-called vector of finite rotations, when during the multiplication of ma-

trices some purely algebraic rule of computation of parameters is used. Operators

La, Ra, Aa, introduced previously in Part II [28], i.e., generators of the left and

right multiplicative argument-wise action of SU(2) and its quotient SO(3, R), are

below explicitly expressed in terms of partial differentiation with respect to the

group coordinates on SU(2). Some algebraic formulas for the action of those op-

erators on our configuration space functions and the resulting differential equations

satisfied by the unitary irreducible matrix elements D(j)mn and magnetic multi-

poles Qp
kl are below discussed. As it is well known, there are various objections

against the using the �→ 0 limit transition from the quantum to classical mechan-

ics. In our SU(2)-approach to the theory of angular momentum this problem is

particularly essential because, as a matter of fact, apparently there is no use of the

Planck constant at all. The method of quasi-classical analysis we suggest below

is based on some other limit transition. Namely, instead of the � → 0 proce-

dure, we perform the procedure of eliminating the low quantum numbers in the

group algebra on SU(2). So, the problem is to fix some value of L and to investi-

gate only the sub-algebra of L(SU(2)) obtained as the direct sum of all two-sided

ideals with the value of the angular momentum j > L. And then we perform

the limit transition with L → ∞. After some manipulations one obtains in this

“classical limit” a Poisson system in the Lie co-algebra of SU(2). In the special

case of the usual dipole model, one obtains the traditional classical equations of

motion. If the model is more complicated, one obtains models with Hamiltonians

containing, e.g., higher-order multipole magnetic moments. It is interesting that

when we perform the quasi-classical analysis in this sense, then some classically
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strange maxima/minima of functions on SU(2) for k = 2π approximately cancel

each other for the neighbouring values of large scalar angular moments j, j + 1.

2. Lie Algebra of SU(2) and SO(3, R)

Theory of angular momentum is based on the group SU(2) and its quotient, i.e.,

SO(3, R) = SU(2)/Z2 (see, e.g. [14, 15]).

Theory of angular momentum is based on the group SU(2) and its quotient, i.e.,

SO(3, R) = SU(2)/Z2. The two-element center and maximal normal divisor Z2

of the simply-connected group SU(2) is given by

Z2 = {I2,−I2}
where I2 is the 2× 2 unit matrix.

Let σa, a = 1, 2, 3 denote Pauli matrices in the following convention

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

They are basic traceless Hermitian 2 × 2-matrices. The Lie algebra of SU(2),
su(2), consists of anti-Hermitian traceless matrices. The basic ones are chosen as

ea :=
1

2i
σa. (1)

The corresponding structure constants are given by the Ricci symbol, more pre-

cisely

[ea, eb] = εcabec

where εabc is just the totally antisymmetric Ricci symbol, ε123 = 1, and the rais-

ing/lowering of indices is meant here in the sense of the “Kronecker delta” δab as

the standard metric of R
3. So, this shift of indices is here analytically a purely

“cosmetic” procedure, however we use it to follow the standard convention.

We know that SU(2) is the universal 2 : 1 covering group of SO(3, R), the proper

orthogonal group in R
3. The projection epimorphism

SU(2) � u �→ R = p(u) ∈ SO(3, R)

is given by

uebu
−1 = uebu

+ = eaR
a
b. (2)

With respect to the basis (1) the Killing metric γ has the components

γab = −2δab.
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Its negative definiteness is due to the compactness of the simple algebra/group

su(2)/SU(2). For practical purposes one eliminates the factor (−2) and takes the

metric

Γab = −1

2
γab = δab. (3)

In terms of the canonical coordinates of the first kind

u(k) = e (kaea) = cos
k

2
I2 − i

k
sin

k

2
kaσa (4)

where k denotes the Euclidean length of the vector k ∈ R
3

k =
√

k · k =
√

δabkakb.

Its range is [0, 2π] and the range of the unit vector (versor) n := k/k is the total

unit sphere S2(0, 1) ⊂ R
3. This coordinate system is singular at k = 0, k = 2π,

where

u(0n) = I2, u(2πn) = −I2

for any n ∈ S2(0, 1). Of course, the formula (4) remains meaningful for k > 2π,

however, the “former” elements of SU(2) are then repeated.

Sometimes one denotes

σ0 = I2, e0 =
1

2
I2.

Then (4) may be written down as follows

u = ξμ(k) (2eμ) (5)

where the summation convention is meant over μ = 0, 1, 2, 3(
ξ0
)2

+
(
ξ1
)2

+
(
ξ2
)2

+
(
ξ3
)2

= 1 (6)

and this formula together with the structure of parametrization (4), (5) tells us that

SU(2) is the unit sphere S3(0, 1) in R
4. Roughly speaking, k = 0 is the “north

pole” and k = 2π is the corresponding “south pole”.

This “pseudo-relativistic” notation is rather misleading. The point is that the ma-

trices σμ, eμ above are used to represent linear mappings in C
2, i.e., mixed tensors

in C
2. In the relativistic theory of spinors, e.g., in Lagrangians for (anti)neutrino

fields, σμ are used as matrices of sesqulinear Hermitian forms, thus, twice co-

variant tensors on C
2. The space of such forms carries an intrinsic conformal-

Minkowskian structure (Minkowskian up to the normalization of the scalar prod-

uct). And then σμ form a Lorentz-ruled multiplet. This is seen in the standard
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procedure of using SL(2, C) as the universal covering of the restricted Lorentz

group SO↑(1, 3), namely

aσμa
+ = σνΛ

ν
μ

describes the covering assignment

SL(2, C) � a �→ Λ ∈ SO↑(1, 3).

The four-dimensional quantity
(
ξ0, ξ1, ξ2, ξ3

)
in (5), (6) may be also interpreted in

terms of the group SO(4, R) and its covering group, however, this interpretation is

relatively complicated and must not be confused with the relativistic aspect of the

quadruplet of σμ-matrices as analytical representants of sesquilinear forms.

The Lie algebra of SO(3, R), so(3, R), consists of 3× 3 skew-symmetric matrices

with real entries. The standard choice of basis of so(3, R), adapted to (1) and to

the procedure (2), is given by matrices Ea, a = 1, 2, 3, with entries

(Ea)
b
c := −εa

b
c

where again εabc is the totally antisymmetric Ricci symbol, and indices are “cos-

metically” shifted with the help of the Kronecker symbol. Then, of course

[Ea, Eb] = εcabEc.

In spite of having isomorphic Lie algebras, the groups SU(2) and SO(3, R) �
SU(2)/Z2 are globally different. The main topological distinction is that SU(2) is

simply connected and SO(3, R) is doubly connected.

Using canonical coordinates of the first kind, we have in analogy to (4) the formula

R(k) = e (kaEa) .

Because of the obvious reasons, known from elementary geometry and mechanics,

k is referred to as the rotation vector, k =
√

k · k is the rotation angle, and the unit

vector (versor)

n =
k

k

is the oriented rotation axis. We use the all standard concepts and symbols of the

vector calculus in R
3, in particular, scalar products a · b and vector products a× b.

The rotation angle k runs over the range [0, π] and the antipodal points on the

sphere S2(0, π) ⊂ R
3 are identified, they describe the same rotation

R (πn) = R (−πn) . (7)
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Therefore, this sphere, taken modulo the antipodal identification, is the manifold of

non-trivial square roots of the identity I3 in SO(3, R). It is seen in this picture that

SO(3, R) is doubly connected, because any curve in the ball K2(0, 1) ⊂ R
3 joining

two antipodal points on the boundary S2(0, 1) is closed under this identification,

i.e., it is a loop, but it cannot be continuously contracted into a single point.

It is worth to note that formally the values k > π are admitted, however, they

correspond to rotations by k < π, taken earlier into account. By abuse of language,

in SU(2) the quantities k, k are also referred to as the rotation vector and rotation

angle. But one must “rotate” by 4π to go back to the same situation, not by 2π.

The matrix of R(k) is given by

R
(
k
)a

b = cos kδab +
1

k2
(1− cos k) kakb +

1

k
sin kεabck

c

i.e.,

R
(
k
)
x = cos kx +

1− cos k

k2

(
k · x) k +

sin k

k
k × x

or, symbolically

R(k) ·x = x+k×x+
1

2!
k×(k × x

)
+ · · ·+ 1

n!
k×(k × · · · × (k × x

) · · · )+ . . .

Let us distinguish between two ways of viewing, representing geometry of SU(2)
and SO(3, R) in terms of some subsets in R

3 as the space of rotation vectors k or,

alternatively, in terms of closed submanifolds and their quotients in R
4.

As seen from (6), SU(2) is a unit sphere S3(0, 1) ⊂ R
4, SO(3, R) is obtained

by the antipodal identification. Then SO(3, R) is doubly connected because the

curves on S3(0, 1) joining antipodal points project to the quotient manifold onto

closed loops non-contractible to points in a continuous way. In R
3 the group SU(2)

is represented by the ball K2(0, 2π) and the whole shell S2(0, 2π) represents the

single point −I2 ∈ SU(2). Then SO(3, R) is pictured as the ball K2(0, π) ⊂ R
3

with the antipodal identification of points on the shell S2(0, π), cf. (7). This ex-

hibits the identification of SO(3, R) with the projective space RP
3. The antipodally

identified points on S2(0, π) represent the improper points at infinity in R
3.

For certain reasons, both practical and deeply geometrical, it is convenient to use

also another parametrization of SO(3, R), using so-called vector of finite rotation

κ =
2

k
tg

k

2
k. (8)

One can note that in the neighbourhood of group identity, when k ≈ 0, κ differs

from k by higher-order quantity. The practical advantage of κ is that the com-

position rule and the action of rotations are described by very simple and purely
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algebraic expressions

R (κ1)R (κ2) = R (κ)

where

κ =

(
1− 1

4
κ1 · κ2

)−1(
κ1 + κ2 +

1

2
κ1 × κ2

)
R [κ] x = x +

(
1 +

1

4
κ

2

)−1

κ ×
(

x +
1

2
κ × x

)
.

An important property of this parametrization is that it describes the projective

mapping of SO(3, R) onto the projective space RP
3. The one-parameter subgroups

and their cosets in SO(3, R) are mapped onto straight-lines in R
3. The manifold of

π-rotations (non-trivial square roots of identity) is mapped onto the set of improper

points in RP
3, i.e., it “blows up” to infinity.

The homomorphism (2) of SU(2) onto SO(3, R), u �→ R(u), may be alternatively

described in terms of inner automorphisms of SU(2) and the rotation-vector para-

metrization

uv(k)u−1 = v
(
R(u)k

)
, u ∈ SU(2). (9)

Roughly speaking, inner automorphisms in SU(2) result in rotation of the rotation

vector. The same holds in SO(3, R)

OR(k)O−1 = R
(
Ok
)
, O ∈ SO(3, R).

Therefore, inner automorphisms preserve the length k of the rotation vector k, and

the classes of conjugate elements are characterized by the fixed values of the rota-

tion angle (but all possible oriented rotation axes n). This means that in the above

description they are represented by spheres S2(0, k) ⊂ R
3 in the space of rotation

vectors. There are two one-element singular equivalence classes in SU(2), namely

{I2}, {−I2} corresponding respectively to k = 0, k = 2π. Of course, in SO(3, R)
there is only one singular class {I3}. More precisely, in SO(3, R) the class k = π
is not the sphere, but rather its antipodal quotient, so-called elliptic space. The

idempotents ε(α)/characters χ(α) = ε(α)/n(α) and all central functions of the

group algebras of SU(2) and SO(3, R) are constant on the spheres S2(0, k), i.e.,

depend on k only through the rotation angle k. In many problems it is convenient

to parametrize SU(2) and SO(3, R) with the help of spherical variables k, θ, ϕ in

the space R
3 of the rotation vector k. Historically the most popular parametrization

is that based on the Euler angles (ϕ, ϑ, ψ). It is given by

u[ϕ, ϑ, ψ] = u(0, 0, ϕ)u(0, ϑ, 0)u(0, 0, ψ) (10)

R[ϕ, ϑ, ψ] = R(0, 0, ϕ)R(0, ϑ, 0)R(0, 0, ψ). (11)
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Historically ϕ, ϑ, ψ are referred to respectively as the precession angle, nutation

angle and the rotation angle.

Sometimes one uses u(ϑ, 0, 0), R(ϑ, 0, 0) instead u(0, ϑ, 0), R(0, ϑ, 0) in (10),

(11). The only thing which matters here is that one uses the product of three ele-

ments which belong to two one-parameter subgroups. The Euler angles are practi-

cally important in gyroscopic problems. Canonical parametrization of the second

kind

u(α, β, γ) = u(α, 0, 0)u(0, β, 0)u(0, 0, γ)

are not very popular. One must say, however, that many formulas have the same

form in variables (ϕ, ϑ, ψ) and (α, β, γ).

3. Irreducible Unitary Representations

It is well known that in SU(2) irreducible unitary representations, or rather their

equivalence classes, are labelled by non-negative integers and half-integers,

α = j = 0,
1

2
, 1,

3

2
, . . .

i.e.,

Ω = {0}
⋃ N

2

where N denotes the set of naturals (positive integers). And

n(α) = n(j) = 2j + 1.

On SO(3, R) one uses integers only

α = j = 0, 1, 2, . . . , Ω = {0}
⋃

N.

For any α = j, there is only one irreducible representation of dimension

n(α) = n(j) = 2j + 1

i.e., only one up to equivalence. It is not the case for many practically important

groups, e.g., for SU(3) or for the non-compact group SL(2, C).

Historically, the irreducible representations of SU(2), SO(3, R), SL(2, C), and

SO↑(1, 3) were found in two alternative ways

i) algebraic one, based on taking the tensor products of fundamental represen-

tation (by itself),
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ii) differential one, based on solving differential equations like (39)–(44), (46),

(47) in [28].

The left and right generators La, Ra, i.e., respectively the basic right- and left-

invariant vector fields, are analytically given by

La =
k

2
ctg

k

2

∂

∂ka
+

(
1− k

2
ctg

k

2

)
ka
k

kb

k

∂

∂kb
+

1

2
εab

ckb
∂

∂kc
(12)

Ra =
k

2
ctg

k

2

∂

∂ka
+

(
1− k

2
ctg

k

2

)
ka
k

kb

k

∂

∂kb
− 1

2
εab

ckb
∂

∂kc
(13)

and therefore

Aa = La −Ra = εab
ckb

∂

∂kc
·

In terms of explicitly written components

Lia =
k

2
ctg

k

2
δia +

(
1− k

2
ctg

k

2

)
ka
k

ki

k
+

1

2
εab

ikb

Ria =
k

2
ctg

k

2
δia +

(
1− k

2
ctg

k

2

)
ka
k

ki

k
− 1

2
εab

ikb

Aia = εab
ikb.

The shift of indices is meant here in the Kronecker-delta sense.

The corresponding Cartan one-forms are given by

La =
sin k

k
dka +

(
1− sin k

k

)
ka

k

kb
k

dkb +
2

k2
sin2 k

2
εabck

bdkc

Ra =
sin k

k
dka +

(
1− sin k

k

)
ka

k

kb
k

dkb − 2

k2
sin2 k

2
εabck

bdkc

i.e., in terms of the components

Lai =
sin k

k
δai +

(
1− sin k

k

)
ka

k

ki
k

+
2

k2
sin2 k

2
εabik

b

(14)

Rai =
sin k

k
δai +

(
1− sin k

k

)
ka

k

ki
k
− 2

k2
sin2 k

2
εabik

b.

The central functions on SU(2) and on SO(3, R), in particular the idempotents

ε(j)/characters χ(j) satisfy the obvious differential equations

Aaf = 0, i.e., Laf = Raf, a = 1, 2, 3.
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The analytical formulas (12)-(14) are formally valid both on SU(2) and SO(3, R),
and in general the calculus on SU(2) is simpler than that on SO(3, R). It is con-

venient to rewrite the formulas (12)-(14) so as to express them explicitly in terms

of the angular and radial differential operations in the space of rotation vectors k.

After simple calculations one obtains

La = na
∂

∂k
− 1

2
ctg

k

2
εabcn

bAc +
1

2
Aa

Ra = na
∂

∂k
− 1

2
ctg

k

2
εabcn

bAc − 1

2
Aa

La = nadk + 2 sin2 k

2
εabcn

bdnc + sin kdna

Ra = nadk − 2 sin2 k

2
εabcn

bdnc + sin kdna.

Using the R
3-vector notation, including also the vectors with operator components,

we can denote briefly, without using indices and labels

L = n
∂

∂k
− 1

2
ctg

k

2
n×A+

1

2
A (15)

R = n
∂

∂k
− 1

2
ctg

k

2
n×A− 1

2
A (16)

L = ndk + 2 sin2 k

2
n× dn + sin kdn (17)

R = ndk − 2 sin2 k

2
n× dn + sin kdn (18)

A = k ×∇ (19)

where∇ denotes the Euclidean gradient operator.

Let us note the following interesting and suggestive duality relations

〈dk,Aa〉 = Aak = 0,

〈
dk,

∂

∂k

〉
= 1

〈dna,Ab〉 = Abna = εabcn
c,

〈
dna,

∂

∂k

〉
=

∂na
∂k

= 0.

In R
3, considered as an Abelian group under addition of vectors, the right-invariant

fields coincide with the left-invariant ones, and when using spherical variables we

have then

L = R = ∇ = n
∂

∂r
− 1

r
n×A(r) (20)

L = R = dr = ndr + rdn. (21)
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This is in agreement with the formulas (15)–(19), namely, in a small neighbour-

hood of the group identity I2 ∈ SU(2), i.e., for k ≈ 0, expressions (15)–(19) up to

higher-order terms in k, one obtains

L ≈ R ≈ ∇k = n
∂

∂k
− 1

k
n×A

L ≈ R ≈ dk = ndk + kdn.

The quantities n, dn, A are non-sensitive to the asymptotics k → 0, because they

are purely angular (θ, ϕ) variables, independent of k.

SU(2) is the sphere S3(0, 1) in R
4. Taking the sphere of radius R, S3(0, R) ⊂ R

4,

and performing the limit transition R → ∞, one obtains also the relationships

(20), (21) as an asymptotic limit.

The Killing metric tensor with the modified normalization (3) is given by

gij =
4

k2
sin2 k

2
δij +

(
1− 4

k2
sin2 k

2

)
ki

k

kj

k
(22)

and its contravariant inverse by

gij =
k2

4 sin2 k/2
δij +

(
1− k2

4 sin2 k/2

)
ki

k

kj

k
·

The corresponding metric element may be concisely written as

ds2 = dk2 + 4 sin2 k

2

(
dθ2 + sin2 θdϕ2

)
= dk2 + 4 sin2 k

2
dn · dn (23)

or, in a more sophisticated way

g = dk ⊗ dk + 4 sin2 k

2
δABdnA ⊗ dnA (24)

and, similarly, for the inverse tensor

g−1 =
∂

∂k
⊗ ∂

∂k
+

1

4 sin2 k/2
δABAA ⊗AB.

According to the standard procedure, the volume element on the Riemannian mani-

fold is given by

dμ
(
k
)

=
√
|g|d3k =

√
det
[
gij
(
k
)]

d3k.

It is easy to see that for our normalization of the metric tensor

dμ
(
k
)

= 4 sin2 k

2
sin θdkdθdϕ =

4 sin2 k/2

k2
d3k (25)
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where d3k is the usual volume element in R
3 as the space of rotation vectors k.

This volume element is identical with that given by (25), (26), (27). The reason

is that all these expressions are translationally-invariant and the Haar measure is

unique. We assume here that G is unimodular. In fact, we mean only the compact

semisimple groups and their products with Abelian groups (clearly, in the latter

case it is not the Killing tensor that is meant in the Abelian factor). Nevertheless,

any metric meant there is also assumed translationally-invariant, and so the total

Riemann measure also coincides with (25), (26), (27).

Let us mention that when the Euler angles (ϕ, ϑ, ψ) are used as a parametrization,

then the Riemann metric is given by

ds2 = dϑ2 + dϕ2 + 2 cos ϑdϕdψ + dψ2. (26)

The measure element is then expressed

dμ (ϕ, ϑ, ψ) = sinϑdϑdϕdψ. (27)

The metric element expression (26) may be diagonalized by introducing the new

“angles”

α = ϕ + ψ, β = ϕ− ψ

however, this representation rather is not used practically.

Let us remind that on SU(2) the range of Euler angles is [0, 4π] for ϕ, ψ, and

[0, 2π] for ϑ, on SO(3, R), it is respectively [0, 2π] and [0, π].

In some of earlier formulas we used the convention of the Haar measure on com-

pact groups normalized to unity, μ(G) = 1. When normalized in this way, it will

be denoted as μ1. The label “(1)” will be omitted when the normalization is clear

from the context or when there is no danger of confusion.

After elementary integrations we find that on SU(2) the element of normalized

measure is given by

dμ(1) =
1

4π2
sin2 k

2
sin θdkdθdϕ =

sin2 k/2

4π2k2
d3k.

If we used the normalization (25), the “volume” of SU(2) would be 16π2. With the

same normalization, the volume of SO(3, R) would be 8π2. It is intuitively clear:

SU(2) is “twice larger” than SO(3, R). So, we would have

dμ(1)SO(3,R) =
1

2π2
sin2 k

2
sin θdkdθdϕ =

sin2 k/2

2π2k2
d3k.

However, as mentioned, all formulas will be meant in the covering group sense

SU(2).
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The metric tensor (22), (23) is conformally flat. It is seen when we introduce some

new variables � instead of k, namely

� = |�| = atg
k

4
,

�

�
=

k

k
= n (28)

where a denotes some positive constant. Then (23) becomes

ds2 =
16a2

(a2 + �2)2
(
d�2 + �2

(
dθ2 + sin2 θdϕ2

))
=

16a2

(a2 + �2)2
(
d�2 + �2dn · dn

)
or, using again the “sophisticated” form (24)

g =
16a2

(a2 + �2)2

(
d�⊗ d� + �2δabdna ⊗ dnb

)
.

Apparently, (28) is a conformal mapping of SU(2) onto R
3 with its usual Euclid-

ean metric. The ball K2(0, 2π) “blows up” to the total R
3 and the sphere S2(0, 2π)

“blows up” to infinity. In other words, SU(2) is identified with the one-point com-

pactification of R
3 and the element −I2 ∈ SU(2) becomes just the compactify-

ing point. The ball K2(0, π) corresponding to the manifold of SO(3, R) and its

boundary sphere S2(0, π) (non-trivial square-root of identity) become respectively

K2(0, a) and S2(0, a). If we put a = π, they are mapped onto themselves. From

the conformal point of view the particular choice of the constant a does not matter.

The projective mapping (8) of SO(3, R) onto RP
3 maps geodetics of (23) onto

straight lines in R
3. However, it is neither isometry nor the conformal transforma-

tion, instead we have that

ds2 =
4

4 + κ2

(
4

4 + κ2
dκ

2 + κ
2
(
dθ2 + sin2 θdϕ2

))
.

On SU(2) the formulas (15), (17) in [28] take on the following form

La(u) = R(u)abRb(u), La(u) = Rb(u)R(u)−1b
a

where the dependence

SU(2) � u �→ R(u) ∈ SO(3, R)

is given by (2), (9). In orthonormal coordinates this is the same formula, because

inverses of orthogonal matrices coincide with their transposes. The corresponding

symmetric operators Σa, Σ̂a, denoted respectively by

Sa =
�

i
La, Ŝa =

�

i
Ra (29)
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are interrelated by the same formula

Sa(u) = Ŝb(u)R(u)−1b
a.

When interpreted in terms of action on the wave functions on SU(2), they are

operators of rotational angular momentum (spin) respectively in the spatial and

co-moving representations. The corresponding operators of hyperspin

Δa =
�

i
Aa =

�

i
εab

ckb
∂

∂kc

are given by

Δa = Sa − Ŝa, Aa = La −Ra.
The term “hyper” is used because this quantity tells us “how much” the spatial

components of spin exceed the corresponding laboratory ones. The operators Aa
generate rotations of the rotation vector and this is just the meaning of “hyper”.

According to (14) in [28], the corresponding classical quantities are given by

Sa = pjLja, Ŝa = pjRja = SbR
b
a

Δa = pjΔ
j
a = Sa − Ŝa = εab

ckbpc

where pj denote canonical momenta conjugate to kj or rather to the corresponding

generalized velocities dkj/dt.

Evaluating differential forms on vector tangent to trajectories in the configuration

spaces SU(2), SO(3, R), we obtain the following quantities

ωa = Lai
(
k
) dki

dt
, ω̂a = Rai

(
k
) dki

dt
, ωa (u, u̇) = R(u)abω̂

a (u, u̇) .

They are respectively spatial (ωa) and co-moving (ω̂a) components of angular ve-

locity. They are non-holonomic, i.e., fail to be time derivatives of any generalized

coordinates. The following duality relations are satisfied

saω
a = ŝaω̂

a = pi
dki

dt
·

Let us quote the obvious commutators and Poisson brackets

[La,Lb] =− εab
cLc, [Ra,Rb] = εab

cRc, [La,Rb] = 0

[Aa,Lb] =− εab
cLc, [Aa,Rb] =− εab

cRc, [Aa,Ab] =− εab
cAc

1

i�
[Sa,Sb] = εab

cSc,
1

i�
[Ŝa, Ŝb] = − εab

cŜc,
1

i�
[Sa, Ŝb] = 0

1

i�
[Δa,Sb] = εab

cSc,
1

i�
[Δa, Ŝb] = εab

cŜc,
1

i�
[Δa,Δb] = − εab

cΔc

{Sa, Sb} = εab
cSc, {Ŝa, Ŝb} =− εab

cŜc, {Sa, Ŝb} = 0

{Δa, Sb} = εab
cSc, {Δa, Ŝb} = εab

cŜc, {Δa, Δb} =− εab
cΔc.
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In the enveloping algebras built over Lie algebras of L- and R-operators there

exists only one Casimir invariant, namely, the second-order one

C(L, 2) = C(R, 2) = Δ = δabLaLb = δabRaRb. (30)

In physical expressions like various kinetic energies and so on, one uses their

(−�
2)-multiplies

S2 := C(S, 2) = C
(
Ŝ, 2
)

= −�
2Δ.

There is also only one Casimir in the associative algebra generated by the Lie

algebra of A-operators

A2 := C(A, 2) = δabAaAb, Δ2 := −�
2A2.

After some easy calculations one obtains for (30)

Δ =
∂2

∂k2
+ ctg

k

2

∂

∂k
+

1

4 sin2 k/2
A2.

For obvious reasons, when expressed by the spherical angular variables (θ, ϕ) in

the space of rotation vector k, Δ2 has identical form with the operator of the

squared magnitude of orbital angular momentum. Its spectrum consists of non-

negative numbers �
2l(l+1), where l denotes non-negative integers, l = 0, 1, 2, . . . .

As we saw in (45) in [28], Δ2 = −�
2A2 does commute with the Laplace-Beltrami

Casimir

S2 = −�
2δabLaLb = −�

2δabRaRb
so they have common wave functions. Spectrum of the Laplace-Beltrami operator

consists of non-negative numbers �
2j(j +1), where j runs over non-negative half-

integers and integers

j = 0,
1

2
, 1,

3

2
, . . . , i.e., j ∈ {0}

⋃ N

2

where N denotes the set of naturals and j is just the label of irreducible unitary rep-

resentations of SU(2). When j is fixed, then l runs over the range l = 0, 1, . . . , 2j
for the possible common eigenfunctions of S2 and Δ2. According to (39)–(44),

(46), (47) in [28], we have that

S2D(j) = �
2j(j + 1)D(j), S2ε(j) = �

2j(j + 1)ε(j)

i.e., all matrix elements of the j-th irreducible unitary representation, or, equiva-

lently, all elements of the minimal two-sided ideal M(j), are eigenfunctions of

S2 = δabSaSb = δabŜaŜb = −�
2Δ[g]



74 J. Sławianowski, V. Kovalchuk, A. Martens, B. Gołubowska and E. Rożko

with eigenvalues �
2j(j + 1).

Further, we have the following algebraization of operators

Sa =
�

i
La, Ŝa =

�

i
Ra

in this representation

SaD(j) = S(j)aD(j), ŜaD(j) = D(j)S(j)a (31)

ΔaD(j) = [S(j)a, D(j)] (32)

and similarly for elements of the canonical basis, because, as we saw, there is a

proportionality

ε(j)km = (2j + 1)D(j)km.

Here S(j)a are standard (2j + 1)× (2j + 1) Hermitian matrices of the j-labelled

angular momentum. According to (37), (38) in [28] we have that

D(j)
(
u
(
k
))

= e

(
i

�
kaS(j)a

)
.

This algebraization of differential operators is very convenient because the matri-

ces of angular momentum are standard. Therefore, (50)–(53) in [28], or, alterna-

tively, (54)–(57) in [28], may be used, where the label α to be replaced by j and

the symbols Σ(α)a by S(j)a.

Representations D(j) are irreducible, so, by definition

δabS(j)aS(j)b =
∑
a

S(j)2a = �
2j(j + 1)Id (2j+1).

The only Abelian Lie subgroups of SU(2), SO(3, R) are one-dimensional, just the

one-parameter subgroups. Therefore, one can choose only oneL-type operator and

only one R-type operator to form, together with −�
2Δ[g], the complete system

of eigenequations for the functions ε(j)kl/D(j)kl. Traditionally one chooses for

S(j)a such a representation that S(j)3 are diagonal. Then, of course, one should

choose the operators L3, R3, or in terms of observables S3, Ŝ3. This is certainly

the matter of convention. One could as well take any versor n ∈ R
3 and operators

naLa, naRa (or naSa, naŜa), assuming only that naS(j)a is diagonal for any

j. When we fix the quantum number j, then the eigenvalues of S3, Ŝ3 have the

form �m, where m = −j,−j + 1, . . . , j − 1, j, jumping by one. Therefore,

the matrix labels of D(j)mk, ε(j)mk are not taken as 1, . . . , 2j + 1, but rather as

−j,−j + 1, . . . , j − 1, j. The matrices S(j)3 are then chosen as

S(j)3 = diag(−�j,−�(j − 1), . . . , �(j − 1), �j)

= � diag(−j,−(j − 1), . . . , (j − 1), j).
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Therefore, the basic functions

D(j)mk, ε(j)mk = (2j + 1)D(j)mk

are defined by the following maximal system of compatible eigenequations

S2D(j)mk = �
2j(j + 1)D(j)mk (33)

S3D(j)mk = m�D(j)mk (34)

Ŝ3D(j)mk = k�D(j)mk. (35)

The solution is unique up to normalization and this one is fixed by the first and

third equations in (31), (32) with

n(α) = n(j) = 2j + 1.

Quite independently on the representation theory, the functions D(j)mk as solu-

tions of (33)–(35) were found as basic stationary states of the free symmetric top,

i.e., one with the following Hamiltonian (kinetic energy)

H =
1

2I

(
Ŝ1

)2
+

1

2I

(
Ŝ2

)2
+

1

2K

(
Ŝ3

)2
.

The corresponding energy levels (eigenvalues of energy) are given by

Ej,k =
1

2I
�

2j(j + 1) +

(
1

2K
− 1

2I

)
�

2k2.

Certainly, they are 2(2j + 1)-fold degenerate, i,e, they do not depend on m at all

and they do not distinguish the sign of k. If the top is spherical, K = I , they are

(2j + 1)2-fold degenerate. When the top is completely asymmetric, the energy

levels are (2j + 1)-fold degenerate (independence on the spatial quantum number

m).

Matrix elements D(j)mk of irreducible unitary representations, i.e., equivalently,

elements of the canonical basis

ε(j)mk = (2j + 1)D(j)mk

are common solutions of the system of eigenequations (33)–(35).

There is also another complete system of commuting operators, namely, S2, Δ2,

Δ3. Of course, taking the third component is but just a custom, we could take as

well naΔa, where n is an arbitrary unit vector in R
3. Any common eigenfunction

of Δ2, Δ3 has the following form

ψ
(
k
)

= ψ (k, θ, ϕ) = f(k)Ylm (n (θ, ϕ))
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where f is an arbitrary function of the “rotation angle” k = |k|, Ylm is the standard

symbol of spherical functions, and n is the unit vector of the oriented rotation

axis. The eigenvalues are respectively given by �
2l(l + 1), where l ∈ {0}⋃N

is an arbitrary non-negative integer, and m�, where m runs over the range m =
−l,−l+1, . . . , l−1, l, jumping by one. The well-known system of eigenequations

is satisfied

Δ2ψ = �
2l(l + 1)ψ, Δ3ψ = �mψ. (36)

The function f is arbitrary, because it is transparent for the action of Δ2, Δ3. The

space of solutions of (36) is infinite-dimensional and this infinity is due to the ar-

bitrariness of f . Roughly speaking, for any fixed value of l, such a system of

functions represents an irreducible tensor of the group of automorphisms (9). The

value l = 0 corresponds to scalars, i.e., functions constant on classes of adjoint

elements. They are linear combinations or rather series of idempotents/characters

ε(j)/χ(j). Similarly, all higher-order tensors may be combined from their orthog-

onal projections onto ideals M(j). Those projections are common eigenfunctions

Q{j}lm = fjl(k)Y l
m (n)

of S2, Δ2, Δ3, therefore, the “radial” functions fjl satisfy the following reduced

eigenequation

d2fjl
dk2

+ ctg
k

2

dfjl
dk

+

(
j(j + 1)− l(l + 1)

4 sin2 k/2

)
fjl = 0. (37)

When j is fixed, then l runs over the range

l = 0, 1, . . . , 2j − 1, 2j

i.e., integers from 0 to 2j. It turn, any l-level is (2j + 1)-fold degenerate, thus, for

any fixed j, the number of independent functions Q{j}lm equals

2j∑
l=0

(2l + 1) = (2j + 1)2

just as expected, because dimM(j) = (2j + 1)2.

This is an alternative choice of basis, or rather of orthonormal complete system

in L2 (SU(2)), tensorially ruled by irreducible representations of SO(3, R) as the

automorphism group of SU(2).

The corresponding finite transformation rule reads

Q{j}lm
(
gu
(
k
)
g−1
)

= Q{j}lm
(
u (R(g)) k

)
= Q{j}lm (k, R(g)n)

=
∑
n

Q{j}ln (k, n)D(l)nm (R(g)) .
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Infinitesimally this is expressed as

ΔaQ{j}lm =
∑
n

Q{j}lnS(l)anm.

In terms of the convolution commutator[
�

i
Laδ, Q{j}lm

]
=

[
�

i
Laε(j), Q{j}lm

]
=
∑
n

Q{j}lnS(l)anm.

Of course, the convolution commutator is meant in the sense

[f, g] = f ∗ g − g ∗ f. (38)

The use of spherical functions Y l
m (n) in (36) expresses explicitly the fact that for

a fixed l we are dealing with an irreducible object of the group of inner automor-

phisms. This is so-to-speak a non-redundant description of such objects, with all

its advantages and disadvantages. The obvious disadvantage is that the tensorial

structure is hidden. The point is that Y l
m (n) are independent quantities extracted

from the l-th tensorial power of the unit versor n, ⊗
l
n. Analytically such a sym-

metric tensor is given by the system of components

na1 . . . nal . (39)

The transformation rule under R ∈ SO(3, R)

(Rn)a1 . . . (Rn)al = Ra1
b1 . . . Ral

bln
b1 . . . nbl

is evidently tensorial and preserves the symmetry, however, it is reducible, because

orthogonal transformations preserve all trace operations. Irreducible objects are

obtained from (39) by eliminating all traces, e.g.,

Y(1)a = na (40)

Y(2)ab = nanb − 1

3
δab (41)

Y(3)abc = nanbnc − 1

5

(
naδbc + nbδca + ncδab

)
(42)

Y(4)abcd = nanbncnd − 1

7

(
nanbδcd + nancδbd + nandδbc + nbncδad

(43)

+ nbndδac + ncndδab
)

+
1

35

(
δabδcd + δacδbd + δadδbc

)
and so on. The logic of those tensors is that they are algebraically built of na, δbc,
are completely symmetric and traceless in any pair of indices (trace meant as a

contraction with an appropriate δab).
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AnyY(l) has only (2l+1) independent components, which are linear combinations

of Y l
m, m = −l, . . . , l. Therefore, the representation is very redundant, however,

the tensorial structure is explicitly visible. Instead of functions Q{j}lm one can

use tensorial objects

Q{j, l}a1...al = fjl(k)Y(l) (n)a1...al . (44)

Infinitesimally, the tensorial character of quantities Q{j, l} is represented by the

following relationship

AbQ{j, l}a1...al = [Lbδ, Q{j, l}a1...al ] = −
∑
c

εb
ac
dQ{j, l}a1...ac−1dac+1...al

for example

AbQ{j, 2}km =
[
Lbδ, Q{j, 2}km

]
= −εb

k
dQ{j, 2}dm − εb

m
dQ{j, 2}kd

and so on. Surely, Lbδ in these equations may be replaced by Rbδ and both may

be replaced by Laε(j) = Raε(j). Irreducibility implies that

δabAaAbQ{j, l}a1...al = δab [Laδ, [Lbδ, Q{j, l}a1...al ]]

= δab [Laε(j), [Lbε(j), Q{j, l}a1...al ]]

= −l(l + a)Q{j, l}a1...al

with the (38)-meaning of the convolution commutator.

4. Some Problems Concerning Irreducible Tensors of Automorphism
Group

There are some subtle points concerning irreducible tensors of the automorphism

group, which were partially mentioned earlier in the paper devoted to general Lie

groups [28]. Namely, the tensorial quantities (64) in [28] were introduced there.

They were obtained as convolution monomials of

Qa = Laδ = Raδ or Σa =
�

i
Qa

or rather as symmetrizations of these monomials. The symmetrizations of mono-

mials built of Σa are Hermitian in the sense of group algebra, just as Σa themselves.

However, in general they are not irreducible tensors, just the traces (in the sense of

Killing metric tensor) must be subtracted. The symmetrized monomials are rep-

resented in the Peter-Weyl sense by matrices (63) in [28] alternatively, depending
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on whether the convention (50) or (54) in [28] is used. And an important point is

of course that the monomials (58) in [28] are different from the pointwise prod-

ucts QaQb . . . Qk. In particular, the pointwise products Q(α)aQ(α)b . . . Q(α)k
of M(α)-projections do not belong to M(α), whereas the convolutions Q(α)a ∗
Q(α)b ∗ · · · ∗Q(α)k certainly do.

Let us specialize the problem to SU(2). The distribution Σa = (�/i)Qa, phys-

ically corresponding to the angular momentum, is suggestively expressed by the

operators (29)

Σa = Saδ = Ŝaδ =
�

i
Laδ =

�

i
Raδ (45)

and its projections onto ideals M(j) are given by

Σ(j)a =
�

i
Laε(j) =

�

i
Raε(j). (46)

The above expression (45) is a series built of (46) with all possible values of j =
0, 1/2, 1, 3/2, . . . and the limit is meant in the distribution sense. But of course

Σ(j)a themselves are well-defined smooth functions and

Σ(j)a =
dε(j)

dk

ka
k

= (2j + 1)
dχ(j)

dk
na

because the idempotents ε(j)/characters χ(j) depend only on k. The Peter-Weyl

coefficients of Σa are given by the usual (2j + 1) × (2j + 1) matrices S(j)a
of angular momentum or by their transposes S(j)Ta , depending on which one of

conventions (54) or (50) in [28] is used.

The higher-order Hermitian SO(3, R)-tensors are again given by (64) in [28] and

the corresponding Peter-Weyl matrices (63) in [28] will be denoted by

S(j, l)a1...al
= S(j)(a1

. . . S(j)al)

S(j, l)Ta1...al
= S(j)T(a1

. . . S(j)Tal)
.

They are tensorial and symmetric, nevertheless, just like (39), they are still re-

ducible. To obtain irreducible objects, one must eliminate traces, in analogy to

(40)–(43). The corresponding traceless parts of (matrix-valued) tensors S(j, l),
S(j, l)T will be denoted by

S◦(j, l) = Traceless (S(j, l)) , S◦(j, l)T = Traceless
(
S(j, l)T

)
. (47)

Let us observe that the very literal analogy with (40)–(43) is, nevertheless, mislead-

ing, because in (36), (39), (40)–(43) we are dealing with the pointwise products

nanb . . . nr or kakb . . . kr.
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Because of this the shape factor fjl(k) in (36), (44) must be introduced and sub-

ject to the “radial” Schrödinger-type equation. Unlike this, there is no problem of

“radial” equation when one deals with functions Σ(j, l) on SU(2) with the Peter-

Weyl coefficients (47). Namely, for any fixed half/integer j and any l ≤ 2j, the

following functions on SU(2)

T (j, l)a1...al
= Tr (S◦(j, l)a1...al

ε̂(j)) = Tr (S◦(j, l)a1...al
D(j)(2j + 1)) (48)

are eigenfunctions of S2 = −�
2Δ with the eigenvalue �

2j(j + 1), thus, they are

elements of M(j) and simultaneously are the eigenfunctions of Δ2 = δabΔaΔb

with the eigenvalue �
2l(l + 1). Any element of M(j) may be uniquely expanded

as follows

F =

2j∑
l=0

P (l)a1...alT (j, l)a1...al
(49)

where the tensor P (l) is totally symmetric and traceless.

Its Peter-Weyl matrix of coefficients F̂ in the convention (54) in [28] has the fol-

lowing form

F̂ =

2j∑
l=0

P (l)a1...al S◦(j, l)a1...al
. (50)

Evidently, the function (49) is Hermitian in the sense of group algebra if and only if

the coefficients P (l)a1...al are real, because all the matrices S◦(j, l)a1...al
combined

in (50) are Hermitian.

The above representation is tensorially symmetric, however, informationally re-

dundant. In non-redundant description, based on spherical functions Ylm, we have

instead of (49) the representation

F =

2j∑
l=0

l∑
m=−l

PlmQ{j}lm (51)

where the functions Q{j}lm are given by (36).

The obvious properties of spherical functions, i.e.,

Y l
m(−n) = (−1)lYlm(n), Y

l
m = Y l

−m

imply that F is Hermitian in the sense of group algebra over SU(2) if and only if

P lm = (−1)lPl(−m). (52)

The Hermitian elements of the group algebra of SU(2) given by (48) are assumed

to represent some important physical quantities. They have very suggestive ten-

sorial structure and for l = 1 they represent the angular momentum. Because
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of this there is a natural temptation to interpret them physically in terms of mag-

netic multipole momenta [29]. Although in tensorial representation their system is

redundant, it is convenient to expand with respect to them the density operators.

The corresponding coefficients P (l)a1...al are directly related to the expectation

values of multipoles, and it is reasonable to interpret them physically as magnetic

polarizations of the corresponding order [29]. It is clear that the physical situa-

tions, characterized by the fixed label j of the Casimir invariant, possess multipole

momenta and polarizations of the orders l = 0, 1, . . . , 2j. The algebraically non-

redundant description of these objects is based on (51)–(52).

5. Quasiclassical Asymptotic of “Large Quantum Numbers”

Let us now discuss the quasiclassical limit. By this we mean the limit of “large

quantum numbers” in equations like (36), (37) and others. An important aspect of

this asymptotics is that the corresponding basic solutions are superposed with co-

efficients which are “slowly varying” functions of their arguments in some “wide”

range of their values and practically vanishing outside this range. It is important

that the range is simultaneously “wide” in the sense “much wider than one”, but at

the same time concentrated about some “large” mean value. This enables one to

perform approximate “continuization” of discrete labels/(quantum numbers) and

to replace their summation by integration.

For l = 0 the substitution of

fj0 = A
χj0

sin k/2
, A = const

to (37) leads immediately to the following result

fj0 = A
sin(2j + 1)k/2

sin k/2
·

But

ε(j)(0) = (2j + 1)2

thus, A = 2j + 1, and finally

ε(j)(k) = (2j +1)
sin(2j + 1)k/2

sin k/2
, δ(k) =

∞∑
j=0

(2j +1)
sin(2j + 1)k/2

sin k/2
· (53)

One can easily show that

fj,l+1 =

(
d

dk
− l

2
ctg

k

2

)
fjl (54)
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therefore, iterating this recurrence formula one obtains the explicit formula for the

multipole basis (36)

fjl =
0∏

n=l−1

(
d

dk
− n

2
ctg

k

2

)
ε(j). (55)

Let us discuss the asymptotic expansions of such expressions in a domain [0, a]
where a < 2π. One can show that for continuous functions f on [0, a] the follow-

ing holds

lim
j→∞

∫ a

0
f(k)

(
sin(2j + 1)k/2

sin k/2
− sin(2j + 1)k/2

k/2

)
dk

= lim
j→∞

∫ a

0
f(k)

k/2− sin k/2

(k/2) sin k/2
sin(2j + 1)

k

2
dk = 0. (56)

Incidentally, this statement is true for more general “sufficiently regular” functions

f , i.e., they need not be continuous. The equation (56) means that in the integral

mean-value sense in [0, a] the functions ε(j) with “sufficiently large” j-s may be

asymptotically replaced by

(2j + 1)
sin(2j + 1)k/2

k/2
· (57)

And for “sufficiently large” values of j the functions (57) are essentially concen-

trated about k = 0.

Therefore, for any ε > 0 there exists n0 ∈ N such that for any n > n0 the following

holds ∣∣∣∣∫ a

0
f(k)

sin nk/2

k/2
dk −

∫ ∞

0
f(k)

sin nk/2

k/2
dk

∣∣∣∣ < ε

and

lim
n→∞

∫ a

0
f(k)

sin nk/2

k/2
dk = πf(0)

i.e.,

N � n �→ 1

π

sinnk/2

k/2

is a “Dirac-delta sequence”.

The functions ε(j) = (2j + 1)χ(j) are concentrated about k = 0 and have there

the maxima (2j +1)2. At k = 2π they have the extrema ±(2j +1)2 depending on

whether j is respectively integer (+) or half-integer (−). For j →∞, ε(j) may be

replaced by

ε◦(j) = (2j + 1)
2

k
sin

(2j + 1)k

2
(58)
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Figure 1. Asymptotic behaviour of functions ε(j).

in any interval [0, a], a < 2π. But it is also seen that ε(j) may be replaced by

ε2π(j) = ±(2j + 1)
2

2π − k
sin

(2j + 1)k

2
(59)

in any interval [a, 2π], a > 0. The signs +/− appear respectively for integer/half-

integer values of j. Therefore, globally, in the total SU(2)-range k ∈ [0, 2π], we

have the following asymptotics for j →∞

ε(j) ≈ (2j + 1) sin
(2j + 1)k

2

(
2

k
+ (−1)2j

2

2π − k

)
. (60)

The oscillating, sign-changing extremum at k = 2π is a purely quantum, spinorial

effect. Such an effect does not appear on SO(3, R), when the range of k is given

by [0, π] ⊂ R. However, when the functions ε(j) are superposed with slowly-

varying coefficients concentrated at large values of j, then the subsequent peaks

approximately cancel each other. Nevertheless, for any fixed j, it does not matter

how large one, we have the asymptotic formula (60) with both peaks. We shall

write it symbolically

ε(j) ≈ ε◦(j) + ε2π(j) (61)

where ε0(j), ε2π(j) are concentrated respectively about k = 0 and k = 2π. The

same is true for all other “radial” functions appearing in the multipole expansion

(36).
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Approximate equation for fjl about k = 0 and for large values of j has the follow-

ing form
d2

dk2
f◦
jl +

2

k

d

dk
f◦
jl +

(
j(j + 1)− l(l + 1)

k2

)
f◦
jl = 0. (62)

For ε◦(j) = f◦
j0 one re-obtains the known expression

ε◦(j) = (2j + 1)
sin(2j + 1)k/2

k/2
·

One can easily show that

f◦
j,l+1 =

(
d

dk
− l

k

)
f◦
jl

f◦
jl =

(
0∏

n=l−1

(
d

dk
− n

k

))
ε◦(j)

in a complete analogy to (54), (55).

Another often used approximation for large j is

j(j + 1) �→
(

j +
1

2

)2

.

Then the differential equation (62) becomes approximately

d2

dk2
f◦
jl +

2

k

d

dk
f◦
jl +

((
j +

1

2

)2

− l (l + 1)

k2

)
f◦
jl = 0.

Again one can show that the approximate solutions of rigorous equations for the

large values of j have the following form

fjl = f◦
jl + f2π

jl

where

f◦
jl =

(
0∏

n=l−1

(
d

dk
− n

k

))
ε◦ (j)

f2π
jl =

(
0∏

n=l−1

(
d

dk
− n

2π − k

))
ε2π (j) ≈ − f2π

j+ 1
2
,l
.

One can note that ε(j) in (53) has the profound geometric interpretation of the

generated unit of M(j) and χ(j) = (1/(2j + 1))ε(j) is the character of the j-th



Quasiclassical and Quantum Systems of Angular Momentum. Part III. 85

irreducible unitary representation of SU(2). And seemingly, one might have an

impression that the asymptotic counterpart (58) is something “accidental”, non-

interpretable in geometric terms. However, as a matter of fact, it is an important

object of the Fourier analysis on R
3 � su(2) � so(3, R).

Indeed, it may be easily shown that the Fourier representation of the Dirac delta

distribution on R
3 (as the Fourier transform of unity)

δ (ω) =
1

(2π)3

∫
e (iκω) d3

κ

after performing the integration over angels becomes

δ (ω) =
1

(2π)3

∫ 2π

0
dϕ

∫ ∞

0
dκκ

2

∫ π

0
dϑ cos ϑe (iκω cos ϑ)

where (κ, ϑ, ϕ) are spherical variables in the space R
3 of vectors κ, adapted to the

direction of ω as the “z-axis direction”. After the substitution x = cos ϑ ∈ [1,−1]
and κ = ζ/2 and elementary integrations, one obtains the following formula

δ (ω) =
1

16π2

∫ ∞

0
dζ

ζ sin ζω/2

ω/2

Under substituting ζ = (2j + 1) it is turned into

δ (ω) =
1

8π2

∫ ∞

−1/2
dj (2j + 1)

sin (2j + 1)ω/2

ω/2
=

∫
dj εclass(j)(ω). (63)

Expression

εclass(j)(ω) = (2j + 1)
sin (2j + 1)ω/2

ω/2
(64)

is an obvious counterpart of (53) and of its expression for the Dirac distribution

on SU(2), and the all other analogies are easily readable. They are not merely

formal analogies, the point is that they are really true asymptotic approximations

and geometric counterparts. Discrete summation over the “quantum number” j
is now replaced by the integration over the continuous label j corresponding to

the non-compactness of R
3 � su(2) and well suited to the “classical” nature of

expressions.

The superposed functions (64) play in the commutative group algebra su(2) ≈ R
3

the role of generating units of ideals M(j) composed of functions with the fixed

“square of linear momentum”

(j + 1/2)2 �
2 ≈ j (j + 1) �

2.
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The last approximate “equality” corresponding to the “large” values of j. This

ideal is not minimal. The minimal ones just correspond to the single exponents

with the wave vectors κ, i.e., “linear momenta” �κ. In εclass(j) superposed are

(with equal “coefficients”) all exponents e (i (j + 1/2)n · ω), where n runs over

the manifold S2(0, 1) ⊂ R
3 of all unit vectors. The ideals M(j) are minimal

ones invariant under the group SO(3, R) of outer automorphisms of SU(2). Those

outer automorphisms are not only algebraic automorphisms of R
3 as an Abelian

additive group. In addition they preserve the standard Euclidean metric in R
3. This

metric just corresponds up to multiplicative constant factor to the Killing metric

of su(2) ≈ R
3. It worth to note that the above terms like “group algebra” are

now used rather in a metaphoric sense, because we are dealing with continuous

spectrum and are outside of L2
(
R

3
)

and L1
(
R

3
)
. Everything may be rigorously

formulated in terms of rigged Hilbert spaces and direct integrals of Hilbert spaces,

however, there is no place for that here.

The above limit transition and asymptotics are meant in the sense of truncation

procedure in the rigorous group algebra of SU(2).

Quasiclassical limit is based on the truncation procedure of the group algebra of

SU(2). Namely, we take the subalgebra consisting of all ideals M(j) with j ≥ j0

for some fixed j0

M (j ≥ j0) :=
⊕
j≥j0

M(j).

As mentioned, for large values of j, the generated units ε(j) ∈ M(j) are essen-

tially concentrated about k = 0, k = 2π

ε(j) ≈ ε◦(j) + ε2π(j)

cf. (58), (59), (60), (61), and the following holds

ε◦(j)(0) = (2j + 1)2 , ε2π(j)(2π) = (−1)2j (2j + 1)2 .

The larger truncation threshold j0, the better the generated unit of M (j ≥ j0)

ε (j ≥ j0) :=
∞∑
j=j0

ε(j) (65)

is approximated by

εclass (j ≥ j0) :=

∫ ∞

j0

dj εclass(j) (66)

where εclass(j) is given by (64). Of course, the convergence of series (65) and

integral (66) is meant in the distribution sense.
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Projections of functions A, B on SU(2) onto the truncated ideal M (j ≥ j0) will

be denoted by

Ã = A (j ≥ j0) , B̃ = B (j ≥ j0) .

The abbreviations Ã, B̃ are used when there is no danger of confusion.

For physically relevant functions A, B, the Peter-Weyl series expansions of Ã, B̃
may be reasonably approximated by continuous integral representations like (63),

(66).

Let us go back to quantum states-densities represented in terms of non-redundant

multipole expansions as follows

� =
∞∑
j=j0

2j∑
l=0

l∑
m=−l

P (j)lmQ {j}lm (67)

Q{j}lm
(
k
)

= fjk(k)Ylm

(
k

k

)
(68)

where the expansion coefficients P (j)lm may be roughly interpreted as magnetic

multipole moments.

Quasiclassical states are represented by expressions (67), (68), where

• j0 is “large”

• P (j)lm as functions of j are concentrated in some ranges[
j −Δj/2, j + Δj/2

]
, j � Δj � 1

• within this range, P (j)lm are slowly varying functions of j

|P (j + 1/2)lm − P (j)lm|  |P (j)lm| .

Algebraic operations of group algebra on SU(2) attain some very peculiar rep-

resentation in quasiclassical limit in the above sense. So, let us write down the

convolution formula for “truncated” functions

(A(j ≥ j0) ∗B(j ≥ j0))
(
u
(
k
))

=

∫
A(j ≥ j0)

(
u
(
l
))

B(j ≥ j0)
(
u
(−l
)
u
(
k
)) 4 sin2 l/2

l2
d3l

16π2
·

The terms concentrated about k = 2π, as it was seen, approximately cancel each

other. One can assume that the integrated functions are essentially concentrated in



88 J. Sławianowski, V. Kovalchuk, A. Martens, B. Gołubowska and E. Rożko

a close neighbourhood of the unity in SU(2), i.e., the null of su(2). There, in the

lowest order of approximation, we have

u
(
l
)
u
(
k
) ≈ u

(
l + k +

1

2
l × k

)
.

Performing the corresponding Taylor expansions in our integral formulas and mak-

ing use of the earlier mentioned relationship between the variables k and ω, we

finally obtain

A(j ≥ j0) ∗SU(2) B(j ≥ j0) ≈ A(j ≥ j0) ∗R3 B(j ≥ j0) (69)

where the convolution symbols on the left- and right-hand sides are meant in the

non-commutative SU(2)- and commutative R
3 � su(2) � so(3, R)-senses, re-

spectively. Surely, (69) is meant in the sense of lowest-order approximation, the

terms with higher-order derivatives are neglected.

Similarly, for the quantum Poisson bracket we obtain the familiar expression[
Ã, B̃

]
=

1

i�

(
Ã ∗SU(2) B̃ − B̃ ∗SU(2) Ã

)
≈ 1

i�

((
AaÃ

)
∗R3

(
ωaB̃
))

. (70)

Here again we mean the lowest-order approximation, when the higher-derivatives

terms following from the Taylor expansions are neglected. As usual, Aa is the

generator of inner automorphisms in SU(2), i.e., equivalently, of Killing rotations

in su(2) ≈ R
3

Aa = εab
cωb

∂

∂ωc
·

So, in terms of Fourier representants
̂̃
A(σ), we have

{σi, σj} = σkε
k
ij ,

{̂̃
A,
̂̃
B

}
= σkε

k
ij

∂
̂̃
A

∂σi

∂
̂̃
B

∂σj
·

In particular, for the evolution of density �̃ we obtain

∂�̃

∂t
=
[
H̃, �̃
]

R3
,

∂̂̃�
∂t

=

[ ̂̃
H, ̂̃�]

where H denotes the Hamiltonian. Taking appropriate Hamiltonians one obtains

classical asymptotics of various dynamical models of the evolution of quantum

angular momentum, or rather systems of quantum angular momenta. This includes

complicated interactions between magnetic multipoles as described above.
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6. Final Comments Concerning Quasiclassical Limit

Let finish with some comments concerning quasiclassical formulas which may be

helpful when operating with some geometrically and physically important quanti-

ties.

First of all, let us observe that (69) is a merely zeroth-order approximation. The

first-order approximation is given by

Ã ∗SU(2) B̃ ≈ Ã ∗R3 B̃ +
1

2

[
Ã, B̃

]
R3

(71)

where, let us remind
[
Ã, B̃

]
R3

is the extreme right-hand side of (70). The second

term is the lowest-order approximation to the SU(2)-convolution commutator. It

is well known that the commutator, or more precisely quantum Poisson bracket,

describes infinitesimal transformations, in particular symmetries of quantum states

(as described by density operators). It is well known that the operator eigenequa-

tion for density operators

A� = a�

implies that the operators A, � do commute, thus, their quantum Poisson bracket

vanishes

{A, �}Q =
1

i�
(A�− �A) = 0.

It is assumed here that A represents a physical quantity, thus, it is self-adjoint,

A+ = A. Therefore, the concept of eigenstate, in particular that of pure state

(one satisfying a maximal possible system of compatible eigenconditions), unifies

in a very peculiar way two logically distinct concepts: information and symmetry.

Information aspect is that the physical quantity A has a sharply defined value on

the state �, there is no statistical spread of measurement results. Symmetry as-

pect is that � is invariant under the one-parameter group of unitaries, i.e., quantum

automorphisms, generated by A. On the quantum level, symmetry properties are

implied by information properties, because the quantum Poisson bracket is alge-

braically built of the associative product. This is no longer the case in quasiclassical

limit and on the classical level, where the Poisson bracket and (commutative) asso-

ciative product are algebraically independent on each other. But information and

symmetry are qualitatively different things, therefore, on the quasiclassical level,

the two first terms of the expansion for the non-commutative associative product

should be taken into account when discussing classical concepts corresponding to

eigenequations. Otherwise the physical interpretation of eigenconditions would be

damaged.
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Let us remind, following (33)–(35), that differential equations satisfied by the func-

tions ε(j)mk may be written in the following form

S2 ε(j)mk = j(j + 1)�2 ε(j)mk

S3 ε(j)mk = m� ε(j)mk

Ŝ3 ε(j)mk = k� ε(j)mk

with the known spectra of quantum numbers j, m, k. Rewriting these equations in

terms of SU(2)-convolutions we obtain

Σ2 ∗ ε(j)mk = ε(j)mk ∗ Σ2 = j(j + 1)�2 ε(j)mk (72)

Σ3 ∗ ε(j)mk = m� ε(j)mk (73)

ε(j)mk ∗ Σ3 = k� ε(j)mk (74)

where Σa are given by (45) and Σ2 denotes the convolution-squared vector Σa

Σ2 = Σ1 ∗ Σ1 + Σ2 ∗ Σ2 + Σ3 ∗ Σ3.

To obtain the quasiclassical counterparts of (72)–(74) we must use the asymptotic

formulas (71). It is more convenient to express them in terms of Fourier transforms,

which were defined as functions on the Lie co-algebra (su(2))∗ � R
3. So, we shall

use the coordinates σi introduced above and the functions ε̂(j)(σ) such that

ε(j)mn(κ) =
1

(2π�)3

∫
ε̂(j)mn(σ)e

(
i

�
σκ

)
d3σ. (75)

The left-hand sides of (75) are functions on the Lie algebra su(2) � R
3 used to

represent the approximate expressions for the elements of canonical basis (matrix

elements of irreducible UNIREPS) as functions on SU(2). The system (72)–(74)

is expressed in terms of these Fourier transforms as follows

σ2 ε̂(j)mn(σ) = j(j + 1)�2 ε̂(j)mn(σ) (76)

σ3 ε̂(j)mn(σ) +
1

2
{σ3, ε̂(j)mn(σ)} = m� ε̂(j)mn(σ) (77)

σ3 ε̂(j)mn(σ)− 1

2
{σ3, ε̂(j)mn(σ)} = n� ε̂(j)mn(σ). (78)

The last two equations imply that

{σ3, ε̂(j)mn(σ)} = (m− n)� ε̂(j)mn(σ).

It is convenient to use the polar angle ϕ in the plane σ3 = 0 of variables σ1, σ2 in

su(2) � R
3

tg ϕ =
σ2

σ1
·
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Instead of cylindrical variables σ3, � =
√

σ1
2 + σ2

2, ϕ in the Lie co-algebra

(su(2))∗ � R
3, we shall use the modified, spherically-cylindrical coordinates

σ =
√

σ1
2 + σ2

2 + σ3
2, σ3, ϕ = arctg

σ2

σ1
·

They coincide with the canonical Darboux coordinates in (su(2))∗ as a Poisson

manifold. Their Poisson brackets have the following form

{ϕ, σ3} = 1, {σ, ϕ} = 0, {σ, σ3} = 0.

In particular, σ2 = σ ·σ is the basic Casimir invariant. Its value surfaces σ = const
are canonically two-dimensional symplectic manifolds. The exceptional “s-state”

value σ = 0 is the singular co-adjoint orbit of dimension zero, just the origin of

coordinates.

In these coordinates the following holds

{σ3, f(σ)} =
∂

∂ϕ
f(σ, σ3, ϕ)

therefore, the system (76)–(78) is solved as follows

ε̂(j)mn = N(j)δ
(
σ2 − �

2j(j + 1)
)
δ

(
σ3 − �

m + n

2

)
e (i(m− n)ϕ)

(79)

=
N(j)

2�
√

j(j + 1)
δ
(
σ − �

√
j(j + 1)

)
δ

(
σ3 − �

m + n

2

)
e (i(m− n)ϕ)

where N(j) is a j-dependent normalization factor. It is defined by the demand that

ε(j)mn|κ=0 = (2j + 1)δmn. (80)

As already mentioned above, in quasiclassical situations the quantum-mysterious

j(j + 1) is not very essential and may be replaced by (j + 1/2)2 or just by j2.

Let us observe an interesting analogy with some formulas from the Weyl-Wigner-

Moyal formalism for quantum systems with classical analogy. The “basis” of the

wave function space consisting of non-normalizable, or rather “Dirac-δ-norma-

lized”, states |π〉 of fixed linear momentum π implies the following H+-algebra

“basis” in the space of phase-space functions (including the Moyal quasi-proba-

bility distributions)

�π1,π2

(
q, p
)

= δ

(
p− 1

2
(π1 + π2)

)
e

(
i

�
(π1 − π2) q

)
.
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There is an obvious analogy with the term

δ

(
σ3 − 1

2
(μ1 + μ2)

)
e

(
i

�
(μ1 − μ2)ϕ

)
in (79), if we put μ1 = �m, μ2 = �n. This analogy is not accidental. However,

there is no place here for more details.

Equation (79) and normalization condition (80) imply finally that

ε̂(j)mn ≈ 16π2
�

4

(
j +

1

2

)2

δ

(
σ2 − �

2

(
j +

1

2

)2
)

δ

(
σ3 − �

m + n

2

)
e (i(m− n)ϕ)

therefore

D̂(j)mn ≈ 8π2
�

4

(
j +

1

2

)
δ

(
σ2 − �

2

(
j +

1

2

)2
)

δ

(
σ3 − �

m + n

2

)
e (i(m− n)ϕ) .

In the above formulas we mean the same as previously asymptotic “indifference”

concerning j(j + 1), (j + 1/2)2, j2 for large values of j.

Warning: It must be stressed that the above functions are not literally meant as-

ymptotic expressions for ε(j)mn, D(j)mn for “large” values of j. They may be

used instead of rigorous ε(j)mn,D(j)mn when superposing them with coefficients

“slowly varying” as functions of j. And the very important point: The discrete

quantum number j may be then formally admitted to be a continuous variable and

the summation with “slowly-varying” coefficients may be approximated by inte-

gration. In this way the compactness of SU(2) is seemingly “lost”. This procedure

is well known in practical applications of Fourier analysis, where often Fourier

series may be approximated by Fourier transforms.
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