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Abstract. A novel and rational approach based on Lie analysis is proposed to

investigate the mechanical behaviour of materials exhibiting experimental master

curves. This approach provides a priori two ways of formulating constitutive laws

from data as well as the possibility of predicting new master curves and material

charts. The first part of the paper is devoted to the presentation of the algorithm.

Afterwards, the strategy is applied to the uniaxial creep and rupture behaviour of a

Chrome-Molybdene alloy (9Cr1Mo) at different temperatures and stress levels.
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1. Introduction

Invariance relations – together with master curves as their graphical counterpart –

are currently used in rheology to synthesize the constitutive response of various

materials submitted to mechanical or thermal solicitations. A typical example of

such an empirical construction is the well-known time-temperature equivalence

principle, stating an equivalence between the effect of time and of temperature,

as proposed originally by Williams, Landel and Ferry, giving rise to the so-called

WLF model. In the same spirit, power laws in fatigue have been formulated in [2,3]

(see also [5] and references therein), using arguments of dimensional analysis in

combination with similarity principles.

One important field in which invariant relations are used is high temperature creep

of metallic alloys, devoted to industrial applications. Landmarks in this context are

the Larson-Miller and the Dorn models (see e.g. [22] and the references therein).

Those relations intrinsically have the meaning of invariants, and further allow

to extrapolate experimental data at different temperatures, assuming that the mi-

crostructure of the material remains stable during the creep test. The two main ob-

jectives of this kind of investigation are either the determination of the time needed

to reach a given strain for fixed stress and temperature, or the estimation of the time

leading to rupture, in the same controlled conditions. In principle, both problems,

although interrelated (viscoplasticity is coupled to damage), are distinct: the first

one is a creep problem, whereas the second more specifically involves damage.

Hence, the iso-strain responses in a double logarithmic representation of stress vs

time are not able to include the limit case of rupture, since the rupture curves are

not iso-strain curves in this representation. We consider in the present study the

creep behaviour of the 9Cr1Mo martensitic stainless steel, which is also known for

its good thermal-fatigue strength and oxydation resistance [10]. These structural

components of nuclear power plants are particularly operative at high temperature.

According to specialists in the field, one of the most crucial problem in determin-

ing the integrity of structural components is the creep behaviour [11]. Indeed, due

to thermal activation, the material can slowly and continuously deteriorate under

constant stress, even for low stress levels, as mentioned by [27]. In [1], the be-

haviour of the 9Cr1Mo alloy at the three temperatures 923K, 873K and 823K is
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analyzed. The authors state that Norton law

ε̇ = Aσn exp

(
− Q

RT

)
(1)

in which A is a constant (see the nomenclature for the significance of other sym-

bols) is well representative for this material, especially regarding the activation

energy Q. According to the same authors, the Monkman-Grant relation (MGR),

descriptive of a rupture criterion, well describes the relation between the minimum

creep rate (secondary stage) and the rupture time. In parallel to this, they exam-

ine the microstructural evolution of the carbide precipitation during creep loading,

and relate the creep resistance to the coarsening of certain precipitates. A log-log

plotting of the rupture time, tR, versus the steady-state creep rate (or the minimum

creep rate ε̇min), shows empirically a straight line, hence one may write

log tR +m log ε̇min = C (2)

with m,C some constants. In practice, one very often considers the modified

Monkman-Grant relation (abbreviated MMGR)

log

(
tR
εR

)
+m′ log ε̇min = C ′ (3)

in which the strain to fracture εR is closely related to creep deformation processes

that lead to the formation of cracks and cavities.

In fact, the MMGR has been introduced by [8] to account for tertiary creep, and

to better describe experimental results for certain metals and alloys. In [19], an

interpretation of the MGR and the MMGR is provided, following a simple math-

ematical analysis of the strain rate versus time responses. This analysis has been

applied to the Zircaloy-4 alloy and the stainless steel AISI 304. The same author

concludes that the MGR and the MMGR relations result from a too coarse approx-

imation of the area sustained by the strain rate versus time curve, and from the

adjustment of experimental data in a double logarithmic representation. However,

those relations (MGR and MMGR) remain very useful when evaluating order of

magnitudes of quantities such as εR, tR or ε̇min. The authors of [10] considered

also the 9Cr1Mo alloy as well as the stainless austenitic steel 316LN, in a temper-

ature range between 823K and 923K. They analyze experimental results from the

MGR and MMGR relations, concluding that the MMGR model is in quite good

adequation with the measurements. Based on a continuum creep damage mechan-

ics approach, a new relationship between time to reach MGR ductility and rupture

life in terms of damage tolerance factor is proposed in [18]. The authors showed

the validity of this relationship for creep data relative to 9Cr1Mo and AISI 304
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stainless steels, with implications to tertiary creep damage and engineering creep

design.

In practice, many other empirical relations involving invariants can be encountered.

For instance, if we start from the expression of the thermally activated creep strain

rate

ε̇ = ε̇0 exp

(
− Q

RT

)
(4)

and further identify the global material response to the secondary creep regime

with ε̇0 the constant minimum creep rate (the primary and tertiary creep stages are

neglected), we obtain

t =
C

ε̇0
exp

(
Q

RT

)
· (5)

This relation can be rearranged into the form

log t =
B1

T
− logB2, with B1 =

Q

R
, and B2 =

ε̇0
C
· (6)

As underlined in [22], the Larson-Miller parameter PLM results from the assump-

tion that solelyQ is a function of stress, whileB2 is constant, hence the relationship

PLM = T (log t+ logB2) (7)

with the parameter PLM a function of the applied stress. Opposite to this model,

the Dorn parameter PD is obtained when the activation energy is assumed to be

stress independent, while B2 is a function of stress, thus giving

PD =
B1

T
− log t (8)

with the parameter PD also a function of the applied stress. Both Larson-Miller and

Dorn parameters are of great interest to extrapolate experimental data if the value of

some loading parameter (e.g. temperature, applied stress) cannot be reached in an

experimental context. These kind of relationships, including the MGR and MMGR

relations written in the same spirit – see Table 1 for a brief literature review – were

at their time formulated in a purely empirical manner so as to fit experimental

responses.

They are closely related to the notion of master curve, which is nothing but the

graphical consequence of the invariance property in a given representation (choice

of a set of variables to define a planar representation). Despite the great practical

interest of these relationships, the mathematical background providing the suitable

tools to predict invariance relations and the associated master curves has not yet

been fully developed to our knowledge.
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Table 1. Some creep invariants encountered in the literature.

Invariant(s) Authors

T (log t+ logB2) Larson & Miller
B1
T − log t Dorn

log tR +m log ε̇min Monkman-Grant

log
(
tR
εR

)
+m′ log ε̇min Modified Monkman-Grant

This lack of theoretical framework may be remedied by considering the Lie sym-

metry analysis as a relevant mathematical tool to analyze and predict master curves

and their associated invariants. By “master curve”, we mean a graphical superpo-

sition of different experimental curves in accordance with some geometrical map-

ping. For instance, the so-called time-temperature equivalence principle reveals

the possibility of plotting a unique master curve from several isothermal mechani-

cal responses of a polymeric-like material. More precisely, if we consider different

plots representing the logarithm of the isothermal creep compliance J(t, T ) – de-

fined as the ratio of the Henky strain ε(t) to the Cauchy stress σ(t) at a given

time t and temperature T – vs the logarithm of time log t, a unique curve C can

be obtained by shifting the different isothermal curves along the log t axis. The

resulting curve C is called the master curve, but the expression can also refer to

the geometrical mapping allowing the construction of C (a horizontal translation

in the present case). Beyond the geometrical nature of the mapping, the master

curve is by essence governed by three principles closely related to the three basic

axioms of the Lie groups theory. Indeed, if we denote by CT the isothermal plot

of log J(t, T ) vs log t at a given temperature T , we have

• any creep compliance curve CT is obtained by translating itself by 0 along

the log t axis. This particular translation is nothing but the identity appli-

cation, which is in fact the neutral element of translations (in the sense of

composition).

• ifCT ′ is obtained fromCT by a translation of μ along the log t axis, thenCT
can be obtained by shifting CT ′ of −μ along the same axis. This property

can be viewed as a reflexivity property.

• if CT ′′ is obtained from CT ′ by a translation of μ′ along the log t axis, and

if CT ′ is obtained from CT by a translation of μ, then CT ′′ can be obviously

obtained by translating CT of μ′ + μ (transitivity property).
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In this example, the scalar μ represents the Lie group parameter, allowing a con-

tinuous mapping from one curve to another one which corresponds to the length

of the translation vector. In a more general case, the geometrical mapping leading

to a master curve may be more elaborated than a mere translation, but it will in

any case satisfy the same previous axioms. For instance, the group parameter μ
may represent the angle of a rotation, or eμ may represent the ratio of a homothetic

transformation. The above remarks clearly show that it is relevant to associate a

Lie symmetry to any master curve (and conversely). Another reason to support the

use of the mathematical framework of Lie groups is that any Lie symmetry can

have invariants, namely quantities that remain unchanged when the group parame-

ter varies. It will be shown below that this general notion of invariant provides a

relevant fundation to support the Dorn and Larson-Miller relationships. However,

contrary to the latter which have been formulated in a purely empirical manner,

we will try to develop a systematic method to formulate these invariants and com-

bine them to investigate constitutive equations in accordance with the observed

symmetries.

The use of Lie groups as a tool to screen the experimental behaviour of some mate-

rials and to express their mechanical constitutive laws seems to be for the first time

tackled in [14]. The authors provide a methodology for modelling the mechanical

behaviour of an acrylic stick solicited at high strain rate. In this strategy, called the

inverse method in [9], the final form of the constitutive equation is obtained from

a set of experimental data representing the material response for different values

of a control parameter, starting from a general functional dependence amongst the

control variables, which is fully determined by applying the symmetry conditions.

The aim of the present paper is then to provide an extension of the modelling

method previously proposed in [14]. In this previous work, the case of only one

generator vobs
1 – the shortcut “obs” stands for “observed”, recall that vectors are

denoted by boldfaced symbols here and in the sequel – and one constitutive equa-

tion Δ1 has been investigated. One analyzes here situations for which several

generators and several constitutive equations are considered. Accordingly, the al-

gorithm for the definition and classification of observed symmetries will first be

presented and will constitute the two first steps of the new method (Step 1 and

Step 2). The formulation of the constitutive equations from symmetry conditions

will be described in a following step of the algorithm, Step 3. It will be completed

with the consideration of invariants of observed symmetries, and the possibility to

formulate the constitutive equations as functions of these invariants. In the final

step of the method (Step 4), it will be shown that a complete Lie analysis of the

constitutive equations can be of great interest to predict new master curves or new

charts. Such an analysis can be useful to adjust the mathematical structure of the
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constitutive equations if the predictions are not in good enough agreement with

observations. A summary of the entire methodology (steps 1 to 4) is represented

in the diagram of Fig. 1. In the second part of the paper, the present methodology

is exemplified for the 9Cr1Mo stainless steel submitted to creep tests at different

(constant) temperatures and stress levels, extending the behaviour up to rupture.

2. General Strategy

As previously stated, the use of Lie groups in combination with experimental re-

sponses of a given material to formulate its constitutive law seems to be for the

first time tackled in [14]. A general methodology has been provided for modelling

the mechanical behaviour of a polymer solicited at high strain rate (acrylic stick

at ε̇ ≈ 20 s−1). The final form of the constitutive equation is obtained from a set

of data representing the material responses at different values of a control parame-

ter. In the present contribution, the methodology is enriched by two novel aspects.

The first point is the consideration of several master curves (in different planes)

rather than a sole one, resulting in the possibility of predicting new master curves

or new theoretical charts by linearly combining their associated Lie symmetries.

Thus, the whole methodology will be extended by a predictive aspect, which may

be particularly useful to confirm or discriminate the mathematical structure of the

identified constitutive equations. The second contribution in the algorithm is the

consideration of invariants associated with Lie groups, which offers an alternative

to the theoretical formulation of constitutive equations. In the present work, it will

be shown that constitutive equations can be formulated by combining invariants,

without solving any differential system as done in [14]. As a consequence, the

investigation of the behaviour of the studied material becomes more straightfor-

ward. Regarding the following section, the generalized methodology is split into

four main steps (Fig. 1), each of which being exposed in a separate subsection.

2.1. Step 1: Formulation of Symmetries From Experimental Data

The usual strategy of the mechanician or rheologist consists in finding a set of con-

stitutive equations linking a set of observable variables u = u1, u2, . . . , un to a set

of parameters p = p1, p2, . . . , pm by analyzing experimental data. The main dif-

ference between observable variables and parameters is that parameters are quan-

tities which are controlled during the test, contrary to observable variables. From a

physical point of view, the parameters define the solicitation, while the observable

variables characterize the mechanical response. For instance, if we consider a uni-

axial compression test, we can choose u1 = σ as the uniaxial Cauchy stress, while
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Figure 1. General modelling strategy for materials exhibiting master curves.
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the controlled strain rate p1 = ε̇ or the controlled room temperature p2 = T are

parameters, as well as the time p3 = t, since its origin may be arbitrarily chosen.

Let us now introduce the domain of variations of the variables, denoted here as the

following intervals

Ui = [umin
i ;umax

i ], i = 1, . . . , n, Pj = [pmin
j ; pmax

j ], j = 1, . . . ,m (9)

with ui ∈ Ui, i = 1, . . . , n and pj ∈ Pj , j = 1, . . . ,m. We shall also denote

U = U1 × U2 . . .× Un, P = P1 × P2 . . .× Pm. (10)

In this work, we focus on the existence of parametric applications Gobs
i (μ,u,p)

(the superscript “obs” stands for “observed”), i = 1, . . . , q, defined as follows

P × U × R
Gobs

i−−−→ P × U
[p,u, μ] → [p̄, ū] = [Φp(p,u, μ),Φu(p,u, μ)]

(11)

with Φp = Φp1 , . . . ,Φpm , Φu = Φu1 , . . . ,Φun , μ the parameter, and such that

there exists a subset of the experimental data which is “approximatively trans-

formed” into another subset of experimental data. For instance, if we consider the

two sets of measurements of the variables x1 and x2

x1 1.01 1.02 0.99
x2 1.01 2.02 3.01︸ ︷︷ ︸

set 1

,
x1 2.04 1.98 2.01
x2 3.04 3.98 5.03︸ ︷︷ ︸

set 2

(12)

and then the relations

x̄1 ≈ x1 + μ (13)

x̄2 ≈ x2 + 2μ (14)

can be viewed as fulfilled for μ = 0 (we have the correspondences set 1→ set 1,

and set 2→ set 2), μ = 1 (set 1→ set 2), and μ = −1 (set 2→ set 1).

Below, we assume that the applications Gobs
i (μ,u,p) satisfy the three axioms of a

Lie group, that is: existence of a neutral element in the sense of composition

Φp(p,u, 0) = p, Φu(p,u, 0) = u, p ∈ P,u ∈ U (15)

reflexivity

[p̄, ū] = [Φp(p,u, μ),Φu(p,u, μ)]
(16)

⇒ [p,u] = [Φp(p̄, ū,−μ),Φu(p̄, ū,−μ)] , p ∈ P, u ∈ U
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and transitivity

[p2,u2] = [Φp(p1,u1, μ1),Φ
u(p1,u1, μ1)]

[p3,u3] = [Φp(p2,u2, μ2),Φ
u(p2,u2, μ2)]

(17)

⇒ [p3,u3] = [Φp(p1,u1, μ1 + μ2),Φ
u(p1,u1, μ1 + μ2)]

p1,p2,p3,∈ P, u1,u2,u3 ∈ U .

In practice, the validity of applications (11) can only be verified for some values

of the parameter μ. It is here assumed that (11) are valid in the continuum range

of values [μmin;μmax] (with μmin and μmax the minimal and maximal values of μ
for which (11) is true). It is then possible to introduce a generator vobs

i associated

with the Lie group Gobs
i , defined by

vobs
i =

m∑
k=1

∂Φpk

∂μ

∣∣∣∣
μ=0

∂

∂pk
+

n∑
k=1

∂Φuk

∂μ

∣∣∣∣
μ=0

∂

∂uk
, i = 1, . . . , q. (18)

Summarizing the section, we have here considered q observed symmetries vobs
i ,

i = 1, . . . , q.

2.2. Step 2: Enumeration and Classification of Symmetry Conditions

The previously-built observed symmetries are next applied to the (currently un-

known) postulated constitutive equations. Consequently, let us express those con-

stitutive equations as a set of partial differential equations (PDE) written in the

general form

Δ = {Δi = 0; i = 1, . . . , n} (19)

in which the constitutive model Δi may depend on p and all the derivatives of

u (including 0 order derivatives, i.e., the quantities u themselves). We assume

that there are as many equations as observables, hence the index i varies from 1
to n in (19). No assumption is made for n, in the sense that it can be greater or

lower than the number of observed symmetries q. Equation (19) hides unknown

constitutive functions of the variables, which shall be identified by applying the

symmetry conditions (see e.g. [14]). In fact, the mathematical structure of equation

(19) is defined according to the chosen constitutive framework (e.g. hyperelasticity,

viscoelasticity, viscoplasticity). Thus, for a given Δi, one has to enumerate which

of the observed symmetries vobs
k (with k = 1, . . . , q) will be applied to Δi and this

amounts defining a subset Ki = {k1, . . . , kmi
} of mi indices in 1, . . . , q which
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selects the values of k such that vobs
k is a symmetry of Δi = 0. The range of Ki,

denoted mi, corresponds to the total number of symmetries that are applied to Δi.

Consequently, the symmetry conditions write

pr()vobs
k Δ1 = 0 whenever Δ1 = 0, k ∈ K1

pr()vobs
k Δ2 = 0 whenever Δ2 = 0, k ∈ K2

(20)

. . .

pr()vobs
k Δn = 0 whenever Δn = 0, k ∈ Kn

where the symbols pr(κ)vobs
k or pr()vobs

k stand for the κ-th order prolongation –

pr()vobs
k is used if the order κ – of the vector field vobs

k is not prescribed. The sub-

sets Ki are contructed by associating some of the generators vobs
k to Δi according

to the physical meaning of Δi. They only have to verify

K1 ∪K2 . . . ∪Kn = {1, 2, . . . , q} (21)

indicating that all the generator vobs
k have been used at least once in equations (20).

2.3. Step 3: Formulation of the Constitutive Equations Δ

At this stage, the mathematical expression of the (unknown) constitutive equations

can be clarified. For this purpose, two different strategies can be envisaged. The

first strategy has been developed in [14] and consists in solving equations (20)

with respect to Δ. If a mathematical structure is prescribed for every Δi, one can

expect that the solving of (20) may lead to the final expression of Δi.

The second strategy consists in calculating the invariants of the generators vobs
k

and to find combinations of them that fit the experimental data. Accordingly, let us

consider vobs as any vector field given by (18) and rewritten here as

vobs =
m∑
k=1

φpk
∂

∂pk
+

n∑
k=1

φuk
∂

∂uk
(22)

with

φpk =
∂Φpk

∂μ

∣∣∣
μ=0

, φuk =
∂Φuk

∂μ

∣∣∣
μ=0

. (23)

If vobs has s non vanishing components amongst φp and φu, it then has s − 1
invariants I1, I2, . . ., Is−1 given by the solution of the characteristic system

dpj
φpj

=
dui
φui
· (24)
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It is straightforward to show that any function f(I1, I2, . . . , Is−1) of the invariants

is also invariant under vobs, since

vobs[f(I1, . . . , Is−1)] =
m∑
k=1

φpk
∂f

∂pk
+

n∑
k=1

φuk
∂f

∂uk

=
m∑
k=1

φpk

s−1∑
l=1

∂f

∂Il

∂Il
∂pk

+
n∑
k=1

φuk

s−1∑
l=1

∂f

∂Il

∂Il
∂uk

(25)

=
s−1∑
l=1

∂f

∂Il

[
m∑
k=1

φpk
∂Il
∂pk

+
n∑
k=1

φuk
∂Il
∂uk

]
︸ ︷︷ ︸

vobs(Il)=0

= 0.

Hence, the constitutive equation Δi can be expressed by combining the invariants

I1, I2, . . . , Is−1, provided it fits the experimental data. The main limitation of this

methodology is that it cannot be applied if more than one generator is considered:

indeed, if we denote vobs and wobs two generators having invariants I1, . . . , Is−1

and J1, . . . , Jr−1 respectively, and a new function f of those combined invariants,

we then have

vobs[f(I1, . . . , Is−1, J1, . . . , Jr−1)] =
r−1∑
l

∂f

∂Jl
vobs(Jl) �= 0

(26)

wobs[f(I1, . . . , Is−1, J1, . . . , Jr−1)] =

s−1∑
l

∂f

∂Il
wobs(Il) �= 0

which shows that a general combination of the two sets of invariants is not a pri-
ori invariant under the experimental symmetry groups. The generalization to any

number of generators greater than two is obvious and consequently, the derivation

of a constitutive equation Δi written as a function of the invariants of vobs
k , k ∈ Ki,

is only possible if mi = 1.

2.4. Step 4: Computation of the Lie Algebras and Predictions

At this stage, it is assumed that Δ is completely determined by the previous step,

and that it is coherent with the experimental data. The present step of the algo-

rithm consists in a complete Lie analysis of Δ. More precisely, for each Δi, one

computes the Lie algebra

Ai = v1
i ,v

2
i , . . . ,v

ni
i (27)
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containing the ni vector fields that can generate (by linear combination) any Lie

symmetry of Δi. Obviously, the vector fields vobs
k , k ∈ Ki, have to be generated

by the vector fields (27), that is

for all vobs
k , k ∈ Ki, and there exists α ∈ R

ni such that vobs
k =

ni∑
j=1

αjv
j
i . (28)

The interest of calculating the Lie algebra is twofold. First, it is possible to predict

new master curves valid in some graphical representation. Indeed, one can consider

suitable linear combinations of the vector fields v
j
i for which one or several well-

chosen components vanish. It is then possible to carry out new experiments which

shall confirm or invalidate the predicted master curve. If the master curve is not

observed, then the mathematical expression of Δi (or even, the expression of vobs
k )

has to be adjusted, such that every master curve predicted by its Lie algebra is in

coherence with the experimental data.

Among the set of all combinations of v
j
i , we can also focus on vector fields for

which (i) the component of a given observable uj vanishes and (ii) the other com-

ponents do not depend on uj

v =
m∑
k=1

φpk(p,u−j)
∂

∂pk
+

n∑
k=1,k 
=j

φuk(p,u−j)
∂

∂uk
(29)

with u−j = u1, . . . ., uj−1, uj+1, . . . , un. The flow of such a vector field takes the

particular form

p̄ = p̄(p,u−j , μ)
ū−j = ū−j(p,u−j , μ)
ūj = uj .

(30)

Hence, eliminating the parameter μ allows a priori to determine the equations of

the “iso-uj” curves in the space P × U−j , with

U−j = U1 × . . . Uj−1 × Uj+1 . . .× Un. (31)

This kind of chart may be an interesting tool to extrapolate experimental data when

the value of some parameter pk cannot be reached in the experimental setting.

Summarizing this section, the step 4 of the algorithm is in fact a phase of prediction

and validation, since the results induced by the Lie algebra have to be validated by

experiments. The entire methodology (steps 1 to 4) is represented in the diagram

in Fig. 1. Let us now apply the proposed strategy to creep strain phenomena, which

are known to be highly dependent on the applied stress and temperature.
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3. Application to the 9Cr1Mo Creep: Observed Symmetries

Ferritic-martensitic steels have been extensively studied during the last 30 years,

due to the need to increase steam conditions (temperature and pressure). According

to the authors of [26], they are commonly used in supercritical and ultrasupercrit-

ical plants with steam conditions close to 903 K and 30 MPa. Ferritic-martensitic

steels with Cr contents ranging from 9% to 12% in weight are also being con-

sidered in different applications in various generations of advanced nuclear power

plant designs, such as pressure vessels, tubing and piping, and fuel cladding. Those

heat-resistant steels typically contain 0.1% to 0.2% carbon and small additions of

refractory metals such as Mo, V, and W. They constitute an attractive substitute for

austenitic stainless steels due to their reduced cost, lower thermal expansion coef-

ficient, and better radiation stability combined with adequate corrosion resistance

(see [26] and the references therein).

Here We rely on the experimental data of [24], obtained for the above-mentioned

9Cr1Mo alloy, when submitted to creep tests carried out at different constant tem-

peratures and different constant stress levels. In the present case, the observable

variables are the strain rate u1 = ε̇ and the time to rupture u2 = tR, while the

control variables are the applied stress p1 = σ, the absolute temperature p2 = T ,

and the time p3 = t. Let us notice that applying a function to a physical quantity

means that the function is applied to the measure of the quantity in its own unit:

for instance, log σ stands for log(σ/σ0) with σ0 = 1Pa if σ is written in Pa. Below,

the following units will be considered: hours (h) for the time t, megaPascal (MPa)

for the stress, Kelvin (K) for the temperature, percents (%) for the strain.

3.1. Step 1

3.1.1. Rupture Curves

In this section, isothermal rupture curves at different temperatures are first consid-

ered in the logarithmic plane. If we consider only “simple” geometrical mappings

such as translations or homothetic mappings, it can be seen that a master curve

can be obtained by shifting the curves along the log tR and log σ axis, as shown

in Fig. 2. From a mathematical point of view, one then looks for the following

geometrical mapping

T̄ = T + μ
log t̄R = a1(μ) + log tR
log σ̄ = b1(μ) + log σ

(32)
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Figure 2. Experimental master curve at the reference temperature T̄ = 748 K

obtained by shifting the curves along the log tR and log σ axis.

with a1(μ) and b1(μ) the shift factors along the log tR and log σ axis respectively.

If the (arbitrary) chosen value of T̄ is 748 K, then a1(μ) and b1(μ) correspond to

the shift required to move the curve at T to make it coincide with those at T̄ , if

μ is defined by T̄ = T + μ. The values of μ, a1(μ) and b1(μ) leading to the

construction of the master curve of Fig. 2 are given in Table 2.

Table 2. Values of the shifts a1(μ) and b1(μ) to superpose a given curve at

T on the reference response at T̄ = 748 K, μ being defined by T̄ = T + μ.

T (K) 748 773 798 823 848 873

μ 0 -25 -50 -75 -100 -125

a1(μ) 0 0.9 2.0 2.9 4.1 5.1

b1(μ) 0 0.15 0.32 0.45 0.55 0.74

If we assume that equations(32) define a Lie group, then the three axioms presented

in Section 2.1 have to be fulfilled. It can be readily shown that they yield the

following conditions to be satisfied by functions a1(μ) and b1(μ)

a1(0) = 0
a1(−μ) = −a1(μ)

a1(μ1 + μ2) = a1(μ1) + a1(μ2),

b1(0) = 0
b1(−μ) = −b1(μ)

b1(μ1 + μ2) = b1(μ1) + b1(μ2)
(33)
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for all μ, μ1, μ2 in R. From equations (33), one can infer the linearity of a1(μ)
and b1(μ) with respect to μ

a1(μ) = αμ, b1(μ) = βμ (34)

where α and β are true constants. Those last relations are in great accordance with

the experimental values of the shift factors, since linear fits of a1(μ) and b1(μ)
exhibit good correlations. The two fits give the following values of the coefficients

α = −0.0403636, β = −0.00584727 (35)

that will be used here and in all subsequent developments. Hence, if one inserts

(34) into (32), the following observed Lie group Gobs
1 is obtained

T̄ = T + μ, t̄R = eαμtR, σ̄ = eβμσ (36)

and maps an experimental curve into another one. Of course, this Lie group is only

valid for the explored values of T , but its validity is presently assumed for all T
between the extremal values 748 K and 923 K. The components of the generator

vobs
1 associated withGobs

1 are given by the derivation of equations (36) with respect

to μ at μ = 0, viz

vobs
1 = α tR

∂

∂tR
+ β σ

∂

∂σ
+

∂

∂T
· (37)

Thereby, and as summary, the infinitesimal generator allowing to shift the mea-

sured rupture curve for a given temperature to another neighboring temperature in

the stress-rupture time plane has been obtained. The Lie group generated by this

vector field allows to shift all rupture responses in the same plane to the response

obtained for a chosen reference temperature while the curve associated with this

response is designated as the master curve.

3.1.2. Creep Curves

A similar strategy may be applied to the “isostrain” creep curves in the logarithmic

plane log σ vs log t. As previously, one shall search the transformation rules

ε̄ = eμε
log t̄ = a2(μ) + log t
log σ̄ = b2(μ) + log σ

(38)

mapping a curve at ε to a reference curve at ε̄ = 5% (observe that the chosen value

of the reference strain is arbitrary). The corresponding values of the shifts a2(μ)
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Table 3. Values of the shifts a2(μ) and b2(μ) to superpose a given curve at ε
on the reference response at ε̄ = 5%, μ being defined by ε̄ = eμε.

ε (%) 5.0 2.0 1.0 0.5 0.2 0.1

μ 0 0.92 1.61 2.30 3.22 3.91

a2(μ) 0 1.15 2.18 3.33 4.71 6.78

b2(μ) 0 -0.023 -0.032 -0.046 -0.053 -0.062
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Figure 3. Master curve obtained at the reference strain ε̄ = 5.0% by shifting

the different responses along the log t and log σ axis.

and b2(μ) are listed in Table 3 and the obtained master curve is shown in Fig. 3.

The axioms of Lie symmetries lead as in Section 3.1.1.to the linearity of a2(μ) and

b2(μ) with respect to μ

a2(μ) = γμ, b2(μ) = δμ (39)

with γ and δ new constants given by linear fit

γ = 1.57167, δ = −0.0172415. (40)

A second Lie group Gobs
2 is then obtained by inserting (39) into (38)

ε̄ = eμε, t̄ = eγμt, σ̄ = eδμσ. (41)

The generator vobs
2 of Gobs

2 is given by

vobs
2 = γ t

∂

∂t
+ δσ

∂

∂σ
+ ε

∂

∂ε
· (42)



46 Vincent Magnenet, Rachid Rahouadj and Jean-François Ganghoffer

The prolongations of the vector fields vobs
1 and vobs

2 account for the component

with respect to ε̇ and shall prove useful in the sequel. They can be computed with

the prolongation formulae (see e.g. [15])

pr(1)vobs
1 = αtR

∂

∂tR
+ βσ

∂

∂σ
+

∂

∂T (43)

pr(1)vobs
2 = γt

∂

∂t
+ δσ

∂

∂σ
+ ε

∂

∂ε
+ ε̇(1− γ) ∂

∂ε̇
·

It is now possible to search for constitutive equations of the studied alloy.

3.2. Step 2

At this stage, recall that two generators (vobs
1 and vobs

2 ) have been identified from

the experimental data set (step 1). Following the strategy of Section 2, we now

look for a set of constitutive equations that can capture the creep behaviour of the

material. As written in the introduction, one classically admits that the set of con-

stitutive equations can be split into two relations revealing two different physical

informations. The first one expresses the time to rupture tR versus the loading pa-

rameters (T and σ in the present case) while the second one gives the evolution of

the strain rate ε̇ as a function of t, σ, ε, and T

Δ1 = tR − f(σ, T ) = 0 (44)

Δ2 = ε̇− h(t, σ, ε, T ) = 0. (45)

In those two equations, h and f are unknown functions that will be further deter-

mined. As concerns the classification of symmetries, it seems reasonable to apply

the symmetry condition vobs
1 to Δ1 and vobs

2 to Δ2. Indeed, the generator vobs
1

(vobs
2 respectively) has been built by only considering rupture curves (creep curves

respectively). The satisfaction of those symmetry conditions means that each con-

stitutive law (creep and rupture) keeps the same form and remains valid when the

considered parameter changes. Finally, the complete set of symmetry conditions

writes

pr(1)vobs
1 Δ1 = 0, whenever Δ1 = 0 (46)

pr(1)vobs
2 Δ2 = 0, whenever Δ2 = 0 (47)

and it is associated with the following sets K1 = {1} and K2 = {2}. The next

step consists in writing the constitutive models in terms of invariants.



A Rational Approach for Modelling the Mechanical Behaviour. . . 47

3.3. Step 3

As m1 = 1 and m2 = 1, the two methodologies described in Section 2.3 can

be applied. The first methodology (direct solving of the symmetry conditions)

has already been applied in [14] and here we shall consider the strategy involving

a combination of invariants (case B in Fig. 1), in the spirit of the extrapolation

methods of the literature (see the review article [22] and references therein). Thus,

one looks for two new functions Σ1(I1, I2) and Σ2(J1, J2, J3) such that

Σ1(I1, I2) = 0 ⇔ Δ1 = 0 (48)

Σ2(J1, J2, J3) = 0 ⇔ Δ2 = 0 (49)

with I1, I2 the invariants of vobs
1 given by the solution of the system (24)

dtR
αtR

=
dσ

βσ
=

dT

T
(50)

and J1, J2, J3 the invariants of vobs
2 given by the solution of the same characteristic

system
dt

γt
=

dσ

δσ
=

dε

ε
=

dε̇

(1− γ)ε̇ · (51)

Solving (50) and (51) gives the following invariants for rupture

I1 = log tR − αT, I2 = log σ − βT (52)

and creep

J1 = log t− γ log ε, J2 = log σ − δ log ε, J3 = log ε̇− (1− γ) log ε. (53)

Considering rupture, we suggest a relation having the form

log tR =
F1(σ)

T
+ F2(σ). (54)

We have decided to keep the dependence of the slope F1 with respect to σ, since the

very low number of experimental points does not allow to assume a constant slope.

To follow as closely as possible the mathematical structure of (54), the following

expression is proposed

Σ1(I1, I2) =
K1

I2
+K2I1 +K3I2 = 0 (55)

in which K1, K2, K3 are constants, which warrants a hyperbolic dependence with

respect to T . Equation (55) leads to

log tR =
a

log σ − βT + b log σ + (α− bβ)T (56)
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with a = −K1/K2 and b = −K3/K2 new constants. Equation (56) shows that a

linear term in T appears by combining the invariants I1 and I2, giving a relation

which slightly differs from the Larson-Miller or Dorn relationships. However, this

linear term is necessary to fullfill the symmetry condition (46) that follows from

the experimental data set. A good validation of equation (56) with the experimental

data presented in [24] can be observed (the coefficients a and b are adjusted). As to

the creep strain rate, we introduce in accordance with the “convenient creep laws”

of [24] the power function

Σ2(J1, J2, J3) = eJ3 −AecJ1edJ2 = ε̇ε−(1−γ) −Atcε−cγσdε−dδ = 0 (57)

with A, c and d some constants, which leads to

ε̇ = Atcσdε1−γ−cγ−dδ. (58)

It can be easily shown that the symmetry conditions (46) and (47) are fulfilled. If

we denote by (i) ε(t = 0, σ, T ) = ε0(σ, T ) the initial value of the strain ε and (ii)

the exponent ν = γ + cγ + dδ, then the resolution of equation (58) allows to write

ε(t) = (1 + c)−1/ν
[
(1 + c)ε0(σ, T )ν +Aνtc+1σd

]1/ν
. (59)

If the temperature T and the strain ε are assigned fixed values, and if we assume

that the initial strain can be written in terms of a Hookean relation

ε0(σ, T ) =
σ

E(T )
(60)

with E(T ) the Young modulus at T , then the “isostrain” curves may be obtained

by expressing the time t(σ) from equation (59), viz

t(σ) =

[
(c+ 1)(εν − σνE(T )−ν)

Aνσd

]1/(1+c)
. (61)

The inverse functional dependence σ(t) can be numerically calculated. The vali-

dation of the model log σ vs log t can then be carried out through equation (61) and

we have observed that the model and the experimental data are in good agreement

(the coefficients E(T ), A and c, d are adjusted).

3.4. Step 4

To summarize the previous sections, the following constitutive equations have been

obtained as representative of the creep and rupture behaviours of the considered

9Cr1Mo stainless steel

ε̇ = Atcσdε1−γ−cγ−dδ if t ≤ tR (62)

tR = σbe
a

log σ−βT
+(α−bβ)T

. (63)
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Those formulations of the constitutive laws are compatible with the observed mas-

ter curves. We can now proceed to the Lie analysis of these constitutive equations.

3.4.1. Lie Algebra of the Creep Model

The Lie algebra of the creep model is computed following the methodology de-

scribed in [15]. It contains 4 generators vi2, i = 1, . . . , 4 with prolongations given

by:

pr(1)v1
2 = σdt−c

∂

∂t
+ cε̇σdt−c−1 ∂

∂ε̇
(64)

pr(1)v2
2 = σdε1−ν

∂

∂ε
+ (1− ν)σdε−ν ε̇ ∂

∂ε̇
(65)

pr(1)v3
2 = t

∂

∂t
+

(
c+ 1

ν

)
ε
∂

∂ε
+

(
c+ 1− ν

ν

)
ε̇
∂

∂ε̇
(66)

pr(1)v4
2 = t

∂

∂t
−
(
c+ 1

d

)
σ
∂

∂σ
− ε̇ ∂

∂ε̇
(67)

in which we recall that ν = γ + cγ + dδ. The commutation table of this Lie

algebra is given in Table 4. In order to show the practical interest of this table, let

Table 4. Commutator table of the Lie algebra of equation (62).

v1
2 v2

2 v3
2 v4

2

v1
2 0 0 (c+ 1)v1

2 2(c+ 1)v1
2

v2
2 0 0 (c+ 1)v2

2 (c+ 1)v2
2

v3
2 −(c+ 1)v1

2 −(c+ 1)v2
2 0 0

v4
2 −2(c+ 1)v1

2 −(c+ 1)v2
2 0 0

us consider the particular combination of the calculated generators

ν

c+ 1

(
pr(1)v3

2 +

(
c+ 1− ν

ν

)
pr(1)v4

2

)
= t

∂

∂t
+ ε

∂

∂ε
−
(
c+ 1− ν

d

)
σ
∂

∂σ
(68)

which has no component with respect to ε̇ and which is obviously a Lie symmetry

of (62). The flow of this generator is given by

t̄ = eμt

σ̄ = e−( c+1−ν
d )μσ

ε̄ = eμε

(69)
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or, by taking the logarithm

log t̄ = μ+ log t
log σ̄ = − ( c+1−ν

d

)
μ+ log σ

log ε̄ = μ+ log ε.
(70)

This last set of relations is of great interest since it describes a master curve in the

log ε vs log t representation. More precisely, the curve log ε̄ vs log t̄ obtained for a

stress level σ̄ is linked to the curve obtained for σ by a translation of vector (μ, μ),
the shift being defined by μ = d

c+1−ν log(σ/σ̄). This master curve has not been

validated because too few creep curves ε(t) at different stress levels have been

found. Consequently, an experimental investigation should be of great interest to

validate or discard this master curve.

3.4.2. Lie Algebra of Equation (63)

The Lie algebra has two generators vi1, i = 1, 2, given by

v1
1 = tR

(
b (log σ − βT )2 − a

log σ − βT
)

∂

∂tR
+ σ(log σ − βT )

∂

∂σ
(71)

v2
1 = tR

(
(α− bβ) (log σ − βT )2 + aβ

log σ − βT
)

∂

∂tR
+ (log σ − βT )

∂

∂T
(72)

and its commutator table is given in Table 5. If we denote by φ1,tR and φ2,tR the

Table 5. Commutator table of the Lie algebra of equation (63).

v1
1 v2

1

v1
1 0 βv1

1 + v2
1

v2
1 −βv1

1 − v2
1 0

component in tR of v1
1 and v2

1 respectively, then the following local combination

v =
φ2,tRv1

1 − φ1,tRv2
1

tR (73)

= σ
[
aβ + (α− bβ)(log σ − βT )2

] ∂
∂σ

(
a− b(log σ − βT )2

) ∂

∂T

is a symmetry of equation (63) having no component in tR and whose components

in σ and T do not depend on tR. Consequently, v has the form of equation (29),
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and the flow of this vector field is given by the solution of the following system of

differential equations

dσ̄

dμ
= σ̄
[
aβ + (α− bβ)(log σ̄ − βT̄ )2

]
(74)

dT̄

dμ
= a− b(log σ̄ − βT̄ )2 (75)

with the initial conditions

σ̄(0) = σ, T̄ (0) = T (76)

and the equality t̄R = tR. Consequently, the numerical solution of (74) and (75)

provides a parametric representation (T (μ), σ(μ)) of the “iso-tR” curves in the

(T, σ) plane. This kind of theoretical chart is of high practical interest, as it allows

to extrapolate the rupture time of a specimen at any stress level or any temperature,

provided that the rupture time is known for a given value of σ and T .

4. Discussion and Concluding Remarks

Lie symmetries can be considered as a powerful tool in the Mechanics of Materials,

in order to construct the constitutive law of a given material from experimental re-

sults, as a functional relation between control variables and additional parameters.

Thereby, the symmetry method is exploited to solve an inverse problem, assuming

the measured data have a structure akin to a Lie group, when considering a continu-

ous range of variation of the adopted parameters. Recall that two main class of ap-

proaches have arisen in the literature, which will be referred to as the direct and the

inverse problem or method, in the vocabulary of [9]. The direct problem consists

in finding the Lie symmetries of a given set of constitutive equations, as developed

by several authors in the field of Mechanics of Materials, see e.g. [16,21]. It allows

a priori the calculation of all symmetries and associated invariances of those equa-

tions, which may lead to geometrical transformation rules revealing (graphical)

superpositions of the material responses (the superposition of those responses in a

given space of variables gives the master curve). The methodology at the root of

this construction has been summarized in algorithmic form into four main steps in

the diagram of Fig. 1. In the first step of the algorithm, one looks for one or several

Lie symmetries formulated from experimental master curves. Next, the subsequent

symmetry conditions are applied to a general expression of the constitutive equa-

tions involving some unknown functions, resulting in a PDE system satisfied by

these unknown functions. The formulation of the constitutive equations (step 3)
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may follow two alternative routes, one relying on the calculated invariants associ-

ated with a given symmetry generator (in this case, only one generator is applied

to one or several constitutive equations), and the other one based on the direct so-

lution of the symmetry equations. The comparison of the constructed constitutive

model with experimental results allows to validate or refine the model if needed.

As a fourth and last step, the inverse problem is linked to the direct problem: once

a possible material constitutive law has been constructed, the material’s response

can be predicted outside the range of variation of the control variables involved

in the measurements for varying experimental conditions, hence using Lie symme-

tries inherent to the obtained constitutive law as an extrapolation technique. Master

curves associated with those evidenced invariants can be built in various planes of

analysis resulting from the planar projection of the evidenced invariants (choosing

a suitable pair of variables). In addition to this, charts of the material’s response

predicted in this way – the iso-tR curves have been calculated in the (T ,σ) plane in

the present contribution – have a high practical importance, in that they determine

the range of admissible variations of the considered set of variables. The present

methodology exploiting Lie symmetries in a combined direct and inverse manner

can potentially be applied to a wide class of materials including polymers, metals,

ceramics, metallic and polymeric foams and constitutive laws, such as nonlinear

elasticity, viscoelasticity and viscoplasticity, with or without damage.

As concerns the obtained constitutive equations, it is further interesting to con-

front the obtained creep constitutive model to the classical models of the literature.

Let us recall that in [24], creep constitutive models are classified into four main

families, a brief summary being given in Table 6.

Table 6. Some creep laws encountered in the literature.

Relationship Reference(s)

ε = f1(σ)f2(t)f3(T ) [20, 25]

ε̇ = f1(σ)f2(t)f3(T ) [4, 7, 17, 20]

ε̇ = g1(σ)g2(εc)g3(T ) [7, 13, 20]

E(t)Φ[ε(t)] = σ(t) +
∫ t
0 K(t, τ)σ(τ)dτ [20]

The first family of models is the total strain model, originally developed in [25] and

in [20]. There the authors assume at constant temperature a straightforward rela-

tionship between the strain, stress and time (see Table 6). This amounts assuming

that the isochronous creep curve at the time tmay be obtained by the multiplication

of the instantaneous stress-strain curves by a function of time, viz σ = σi(ε)Ψ(t).
Another family of creep model is the time hardening model proposed in [7] and
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developed in [4, 17, 20], for which one assumes that at constant temperature, there

exists a relationship between the creep strain rate, the stress and the time.

Similarly, the strain hardening model considers a relationship between the creep

strain rate, the stress and the cumulated creep strain p at constant temperature,

with p = ε − εe = εp + εc (the variables εe, εp and εc denote the elastic, plastic

and creep strain respectively). This concept was suggested in [7, 13], and used

by [20] who developed the hypothesis of the state equation. According to [20], the

analytic form of these equations which allows the description of the first two parts

of the creep curve writes

ṗpα = f(σ) exp

(
−ΔH

RT

)
. (77)

Various useful suggestions for the stress dependence may be introduced, as the

famous relation f(σ) = kσn, see [12]. The fourth class of model is the Rabotnov’s

nonlinear hereditary model meaning that the entire history of the stress prior to time

t affects the strain response at time t (see Table 6). The kernel function K(t, τ) (or

K(t − τ)) characterizes the material properties, while the term Φ[ε(t)] stands for

the nonlinear function of strain which is obtained from the uniaxial tensile test.

Complementary to the previous approaches, the authors of [23] have tested the va-

lidity of four constitutive equations for the description of creep of several metallic

alloys (1.25Cr-0.5Mo-Si, 2.25Cr-1Mo and SUS316 steels), namely the power law,

the exponential, logarithmic and Blackburn models, expressed respectively as

ε = εi + atb + ε̇M t (78)

ε = εi + a[1− exp(−bt)] + ε̇M t (79)

ε = εi + a log[1 + bt] + ε̇M t (80)

ε = εi + a[1− exp(−bt)] + c[1− exp(−dt)] + ε̇M t. (81)

The quantities ε, εi, t, ε̇M therein represent successively the strain, the initial strain,

the creep time and minimum creep rate; a, b, c et d are constants. The authors show

that none of those model is able to account for the creep relation on the long dura-

tions encountered during service life, although the power law gives a better agree-

ment with measurements. In the same group of researchers, the authors of [11]

confirmed in a recent work that the power law is more adequate for 9Cr1Mo. If we

consider the mathematical sructure of equation (58), one can notice that the creep

strain rate is a power function of the stress, the time, and the strain. Consequently,

our model can be viewed as derived from the second class of constitutive equations

presented in [24], showing the coherence with those previous models.
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Despite of the good conformity of the present model with the previous laws, a

discussion on the proposed systematic methodology and its consequences is in or-

der. At first, let us notice that the formulation of “observed” Lie symmetries relies

on the assumption that the transformation equations (11) are valid for a continuous

variation of the parameter μ in [μmin;μmax], although only a couple of experimen-

tal values have been reached in this interval. This interpolation assumption seems

to be reasonable but its extension to situations for which μ is not in the interval

[μmin;μmax] (extrapolation) can be debatable. In the present model, the two mas-

ter curves have been validated for T between 748 K and 873 K and for ε between

0.1 % and 5.0 %. If the temperature T is higher than 873 K, or if values of strain

greater than 5.0 % are considered, new internal phenomena may be activated (e.g.

damage, tertiary creep), and the validity of the transformations rules revealed by

equations (36) and (41) can be discussed. More generally, one cannot guarantee

a priori that microstructure effects activated in some range of variables (T , ε, σ,

. . . .) are the same outside this range, or that other mechanisms may operate. In

the same spirit, let us recall that contrary to the so-called time-temperature equiv-

alence principle – which can be interpreted in terms of free volume – no physical

modelling of the shift factors has been proposed. The transformation rules of equa-

tions (36) and (41) and the associated “observed” symmetries are presently viewed

as mathematical tools to formulate constitutive equations.

Another limitation of the proposed algorithm is related to the non-uniqueness of

master curves, which has to be examined at two levels of modelling. First, one

should keep in mind that the adequate choice of variables (classically log σ vs

log t, or log ε vs 1/T ) to be plotted from experimental data (step 1 of Fig. 1) is not

obvious a priori, since master curves can only emerge for well-chosen representa-

tion variables.

The second item concerns the case of a single representation plane, for which the

construction of a unique master curve can be problematic. For instance, let us

consider in the plane (x, y) the two lines L1 defined by y = ωx + β1 and L2

defined by y = ωx+β2. Since L1 and L2 have the same slope, it is either possible

to superpose L2 on L1 horizontally, i.e. by translating L2 along x by (β1− β2)/ω,

or vertically by shifting L2 along y by the quantity β1 − β2.

The choice of transformation rules (11) may have a great impact on the mathe-

matical formulation of the constitutive equations, but no general “theorem” for

choosing between several master curves can be formulated. In the same spirit, let

us also notice that only classical Lie groups have been used in the present algo-

rithm (translation and dilatation groups). The use of more sophisticated groups

(e.g. rotation) is currently being studied.
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