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Abstract. In Part I of this series we have presented the general ideas of apply-

ing group-algebraic methods for describing quantum systems. The treatment there

was very “ascetic” in that only the structure of a locally compact topological group

was used. Below we explicitly make use of the Lie group structure. Relying on

differential geometry one is able to introduce explicitly representation of important

physical quantities and to formulate the general ideas of quasiclassical representa-

tion and classical analogy.
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1. Introduction

This paper is a continuation of Part I referred further as [25] and is devoted to the

H+-algebras as a mathematical tool for describing quantum mechanics. It was

shown there that the H+-algebras form in a sense a beautiful scheme useful for the

mathematical expression of quantum rules and for the very formulation of quantum

ideas. This is due to their mathematical structure which in a sense unifies both the

linear space and the non-commutative associative algebra with involution. The

idea of using the H+-algebras in such a context was formulated many years ago
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by W. M. Tulczyjew. It enables us both to investigate the basic ideas of quantum

mechanics and, basing on the Clebsch-Gordan series, to formulate the rules of

composing two quantum systems into a single one.

It turns out that the convolution group algebras, first of all ones over the compact

and Abelian groups, are the most interesting examples from the point of view of

quantum applications. In this part we will investigate that very particular choice

of the Lie group and of the metric structure on it. We assume that the group un-

derlying our investigation is either a compact semisimple Lie group or a group

isomorphic with R
n, or something between those two extreme special cases, e.g.,

the Cartesian product of the two mentioned situations. In certain problems we may

decide to admit semisimple but not necessarily compact Lie group of transforma-

tions acting on some Abelian Lie group of translations. Nevertheless, to be as

concrete as possible, we usually concentrate on the compact/semisimple Lie group

of transformations acting on a linear space or just on a linear space interpreted as

an R
n-type additive Abelian Lie group. When dealing with semisimple Lie groups

of transformations acting in a linear space, we mainly use the Cartan-Killing metric

tensor. In certain problems the metric tensors invariant under the group of all left

or right regular translations are admitted. Obviously, they lead to the same volume-

metric on G. Analytically, it is given by the square root of the determinant of the

matrix of the metric tensor. Basing on the theory of representations of compact

Lie groups, we construct the canonical complete system of states on the group.

Discussed is also another complete system of states suited to the group of inner

automorphisms acting on the group. It turns out that this alternative set of states is

a very convenient tool of the analysis leading to the quasi-classical analysis.

2. Compact Lie Groups

Let us now discuss the very important situation when G is a compact Lie group.

The special stress is laid on semisimple Lie groups or their central extension. We

are particularly interested in problems concerning angular momentum, i.e., the

group SU(2) or its quotient SO (3, R) = SU (2) /Z2. Nevertheless, it is convenient

to begin with remarks concerning the general situation.

The Lie algebra of G will be denoted by g. We assume G to be a linear group,

i.e., a group of finite matrices, some subgroup of GL (N, R) or GL (N, C). This

simplifies notation. Of course, any compact Lie group is linear. Lie algebras are

meant in the matrix commutator sense. Let (. . . , ea, . . .) be some basis in g, the

structure constants are meant in the following convention

[ea, eb] = eaeb − ebea = ekC
k
ab. (1)
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The Killing metric tensor on g, i.e., the Ad-invariant scalar product γ, is meant in

the following convention

γ (u, v) = Tr (aduadv) (2)

where adu ∈ L (g) � g ⊗ g∗ is given by the usual formula

adu · x = [u, x] .

Analytically, in terms of the basis e

γab = Ck
laC

l
kb, γ = γabe

a ⊗ eb (3)

where ea ∈ g∗ are elements of the dual basis, 〈ea, eb〉 = δa
b. If G is compact

and semisimple, then γ is negatively definite and in an appropriate basis e, γab is

a negative multiple of δab. Usually the basis is chosen in some convenient way

motivated by various reasons, then it is customary to change the normalization of

γab replacing it just by gab = δab. The contravariant inverse of γ, γ−1 ∈ g ⊗ g, is

analytically given by

γ−1 = γabea ⊗ eb, γacγcb = δa
b. (4)

In the trivial central extension G×U (1) of G, the Killing tensor is degenerate and

u (1) is the degenerate direction of g×u (1). Then it is customary to use the metric

tensor obtained as a direct combination of the Killing metric on g and the invariant

metric on u (1). The latter is unique up to normalization. Sometimes one proceeds

similarly when dealing with direct or semidirect products of semisimple groups

and Abelian ones of arbitrary dimension, however, if that dimension is higher than

one, the Abelian component of metric has a non-canonical arbitrariness.

Canonical coordinates of the first kind ka are defined by the formula

g
(
k1, . . . , kn

)
= e (kaea) , dimG = n (5)

(the summation convention is used on the right-hand side). This choice is often

convenient, but also other ones are useful, e.g., canonical coordinates of the second

kind

g
[
ξ1, . . . , ξn

]
= e

(
ξ1e1

)
. . . e (ξnen)

or something between, like Euler angles on SO (3, R) or SU (2). Often some gen-

eralized coordinates, “curvilinear” with respect to ka or ξa, are better suited to

particular problems. In any case, the choice of coordinates is a matter of conve-

nience.
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The differential structure of G offers some powerful tools of analysis. First of

all, one uses differential operators generating transformations (36), (37) in [25].

Generators of left and right regular translations are defined in the convention

(Laψ)
(
g
(
k
))

=
∂

∂xa

(
ψ
(
g (x) g

(
k
)))∣∣

x=0

(Raψ)
(
g
(
k
))

=
∂

∂xa

(
ψ
(
g
(
k
)
g (x)

))∣∣
x=0

i.e., roughly, we have the following expansions for small values of the group para-

meters ε

ψ (g (ε) g) ≈ ψ (g) + εa (Laψ) (g)

ψ (gg (ε)) ≈ ψ (g) + εa (Raψ) (g)

valid to terms quadratic and higher order in ε.

La, Ra are respectively, basic right- and left-invariant vector fields on G. We

represent them as follows

La = Li
a

(
k
) ∂

∂ki
, Ra = Ri

a

(
k
) ∂

∂ki
· (6)

With this convention we have the following commutation rules

[La,Lb] = −Ck
abLk, [Ra,Rb] = Ck

abRk, [La,Rb] = 0. (7)

Similarly one defines differential operators Da generating inner automorphisms

(Aaψ)
(
g
(
k
))

=
∂

∂xa

(
ψ
(
g (x) g

(
k
)
g (−x)

))∣∣∣
x=0

i.e., roughly

ψ (g(ε)gg(−ε)) ≈ ψ(g) + εa (Aaψ) (g)

up to higher-order corrections in ε. Here

Aa = La −Ra

and we use the notation

Aa = Ai
a(k)

∂

∂ki
·

It is also clear that

[Aa,Ab] = −Ck
abAk (8)

and

[Aa,Lb] = −Ck
abLk, [Aa,Rb] = Ck

abRk. (9)
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The ± signs on the right-hand sides of (7), (8), (9) are essential. As mentioned,

the translation operators (36), (37), (55), (56) in [25] are unitary in L2(G) due

to the very definition and properties of the Haar measure on G. Therefore, their

generators La, Ra, Aa are skew-symmetric in the corresponding dense subdomain

of L2(G)

〈Laψ|ϕ〉 = −〈ψ|Laϕ〉
〈Raψ|ϕ〉 = −〈ψ|Raϕ〉
〈Aaψ|ϕ〉 = −〈ψ|Aaϕ〉 .

By their very definition as differential operators, La, Ra, Aa are not globally de-

fined on L2(G).

Let us quote the following formulas

L
[
g(k)−1

]
= L

[
g(−k)

]
= e (kaLa)

R
[
g(k)−1

]
= R

[
g(−k)

]
= e (kaRa)

A
[
g(k)−1

]
= A

[
g(−k)

]
= e (kaAa)

which hold when their right-hand sides are well defined. Thus, in an appropriate

dense subdomain, with the convergence meant in the sense of L2(G)-norm. Cer-

tainly, the left-hand sides are well defined in action on the total linear space of all

possible functions on G (with arbitrary target spaces, not necessarily C).

The imaginary-unit multiples of La, Ra, Aa are formally Hermitian (symmet-

ric). Because of the obvious physical reasons we introduce the formally Hermitian

operators of L[G]-, R[G]- and A[G]-momenta, just the quantum versions of the

corresponding classical momentum mappings

Σa =
�

i
La, Σ̂a =

�

i
Ra, Δa =

�

i
Aa = Σa − Σ̂a. (10)

As operators acting on L2(G)-wave functions, they satisfy the obvious quantum

Poisson brackets

1

i�
[Σa,Σb] = {Σa,Σb}Q = Ck

abΣk (11)

1

i�

[
Σ̂a, Σ̂b

]
=

{
Σ̂a, Σ̂b

}
Q

= −Ck
abΣ̂k (12)

1

i�

[
Σa, Σ̂b

]
= 0. (13)

The corresponding classical counterparts are given by the phase-space functions

Σa = piLi
a, Σ̂a = piRi

a, Δa = piΔ
i
a = Σa − Σ̂a. (14)
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Their classical Poisson brackets are structurally identical with (11)–(13), i.e.,

{Σa, Σb} = Ck
abΣk,

{
Σ̂a, Σ̂b

}
= −Ck

abΣ̂k,
{

Σa, Σ̂b

}
= 0.

As mentioned, the regular translations and automorphisms (36), (37) in [25], and

all operators of convolution (41), (44), (49) in [25] preserve separately all sub-

spaces/minimal ideals M(α). This is also true for the operators La, Ra, Δa as

generators of those group actions. Of course, their multiples Σa, Σ̂a, Δa also pre-

serve all ideals M(α). The basic right- and left-invariant differential forms on G

will be denoted respectively by La, Ra. By definition they are assumed to be dual

to La, Ra

〈La,Lb〉 = 〈Ra,Rb〉 = δa
b.

We shall use the standard analytical representation dual to (6)

La = La
i(k)dki, Ra = Ra

i(k)dki

where

Li
aLa

j = Ri
aRa

j = δi
j , La

iLi
b = Ra

iRi
b = δa

b.

Then the following equations are satisfied, dual to (7)

dLa =
1

2
Ca

bdLb ∧ Ld, dRa = −1

2
Ca

bdRb ∧Rd.

Let us notice that

La(g) =
(
Adg−1

)b
aRb(g) (15)

where the matrices
[
(Adg)

b
a

]
are implicitly given by

Adgea = geag
−1 = eb (Adg)

b
a.

Similarly, (ady)
b

a are given by

adyea = [y, ea] = eb (ady)
b

a

thus

(ady)
b

a = Cb
day

d = −Cb
ady

d

and

Ade(a) = e (ada) . (16)

In finite dimensions all above expressions are well-defined. Dually to (15) we have

La(g) = (Adg)
a

bRb(g). (17)
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The above differential operators and differential forms are a very useful tool of

analysis. When constructing important tensor fields and differential operators on

G we need certain intrinsically constructed tensors on its Lie algebra g. We mean

some tensors built of the structure constants C i
jk with the use of universal alge-

braic operations. The first of them is C itself, it is a mixed tensor once contravariant

and twice covariant, C ∈ g ⊗ g∗ ⊗ g∗, skew-symmetric in its lower indices. The

next one is the Killing tensor γ ∈ g∗⊗g∗ (2), (3) and its inverse tensor γ−1 ∈ g⊗g.

One can also construct the higher-order covariant tensors like

γ(3)ijk = Ca
biC

b
cjC

c
ak (18)

and so on, e.g.,

γ(m)i1···im = Ca
bi1C

b
ci2 . . . Ck

lim−1
C l

aim (19)

all of them covariant and in general non-symmetric (unlike the Killing tensor

γ(2)ij = γij). Let us also mention other tensors like

γ(1)i = Ca
ai, Γij = C(1)kC

k
ij = −Γji. (20)

If G is semisimple, then the inverse tensor (4) does exist and one can construct the

whole ZOO of γ-tensors by the Killing-shift of indices. And similarly when G is a

trivial central extension of some semisimple group. The invariant metric tensor on

the centre is unique up to normalization.

The Killing metric tensor on G is given by

g = γabLa ⊗ Lb = γabRa ⊗Rb (21)

i.e., analytically

gij = γabLa
iLb

j = γabRa
iRb

j .

It is invariant under right and left regular translations on G. Usually one changes

its normalization in such a way that in certain practically useful coordinates, at the

group identity gij coincides with the Kronecker δij . In particular, if G is compact,

then γ, g are negatively definite, so it is the natural to inverse their signs.

The most general right-invariant metric on G is given by

rg = κabLa ⊗ Lb (22)

where the matrix [κab] is non-degenerate and constant. Similarly, for the left-

invariant metrics we have

lg = κabRa ⊗Rb. (23)
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They become identical and doubly-invariant when κab = γab. The corresponding

inverse contravariant metrics are given by

g−1 = γabLa ⊗ Lb = γabRa ⊗Rb

gij = γabLi
aLj

b = γabRi
aRj

b

and similarly for the inverses of (22) and (23)

rg
−1 = κ

−1abLa ⊗ Lb, lg
−1 = κ

−1abRa ⊗Rb.

The Laplace-Beltrami operator corresponding to the Killing metric (16) is given

by

Δ = γabLaLb = γabRaRb. (24)

Quite similarly, for the right-invariant metric (22) and left-invariant metric (23) we

would have respectively

rΔ = κ
abLaLb, lΔ = κ

abRaRb. (25)

Note that if G is non-Abelian, these expressions are different when κab �= γab.

One can show that all these expressions coincide with the usual definition of the

Laplace-Beltrami operator [3]

Δ = gab∇a∇b (26)

where ∇a denotes the Levi-Civita affine connection induced by the corresponding

vector tensors (21), (22), (23). Surely, this coincides with the analytical formula

Δψ =
1√|g|

∑
i,j

∂

∂ki

(√
|g|gij ∂ψ

∂kj

)
where again for g the expressions (21), (22), (23) are substituted, their contravari-

ant inverses gij are used, and |g| denotes the determinant of the matrix [gij ].

The Haar measure in G is identical with the n-form

L1 ∧ . . . ∧ Ln = R1 ∧ . . . ∧Rn

in the sense that∫
f(g)dg =

∫
fL1 ∧ . . . ∧ Ln =

∫
fR1 ∧ . . . ∧Rn.

In this prescription it is implicitly assumed that the orientation of G is chosen in

such a way that the integral of non-negative functions is non-negative. Analytically

we have that∫
f(g)dg =

∫
fdet[La

i]dk1 . . .dkn =

∫
fdet[Ra

i]dk1 . . .dkn.



Quasiclassical and Quantum Systems of Angular Momentum. Part II. 75

This integration coincides (up to a constant factor) with the usual Riemann inte-

gration ∫
f(h)dh =

∫
f
√

|g|dk1 . . .dkn

where g denotes any of the metric tensors (21), (22), (23). The Laplace-Beltrami

operators (24), (25), (26) are formally self-adjoint (symmetric) with respect to the

usual scalar product in L2(G).

The properties (38)–(40) in [25] imply immediately that

La (F ∗ G) = (LaF ) ∗ G, Ra (F ∗ G) = F ∗ (RaG) . (27)

Again we conclude that La, Ra are not differentiations of the convolution alge-

bra, although they are so for the pointwise product algebra. If F is constant on

equivalence classes of adjoint elements, i.e., if it is a linear combination or series

of idempotents ε(α) or characters

χ(α) =
1

n(α)
ε(α)

then

AaF = 0 (28)

therefore

LaF = RaF.

In particular, it is so for the Dirac distribution δ which formally plays the role of

the convolution unity. Let us stress that in differential manifolds the distributions

are well defined. In any case, for any finite subset I ⊂ Ω

δ (I) =
∑
α∈I

ε(α)

is the well-defined unity of the two-sided ideal

M(I) := ⊗
α∈I

M(α).

If J is a family of finite subsets of Ω ordered by inclusion and such that⋃
I∈J

M(I) = Ω

then δ is the distribution limit of the generalized sequence J � I → δ(I).

Equations (27) imply that

LaF = La (δ ∗ F ) = (Laδ) ∗ F, RaF = Ra (F ∗ δ) = F ∗ (Raδ)



76 J. Sławianowski, V. Kovalchuk, A. Martens, B. Gołubowska and E. Rożko

for any differentiable function F . This reduces separately to the ideals M(α),
where the action of operators La, Ra reduces respectively to the left and right

convolutions with Laε(α), Raε(α).

Let us quote some important and intuitive commutation relations in the convolution

algebra

(Laδ) ∗ (Lbδ) − (Lbδ) ∗ (Laδ) = −Ck
ab (Lkδ)

(Raδ) ∗ (Rbδ) − (Rbδ) ∗ (Raδ) = −Ck
ab (Rkδ) .

This is of course the same relation written in two ways, because Laδ = Raδ.

Roughly speaking, the functions constant on manifolds of mutually adjoint ele-

ments are scalars of the group of inner automorphisms of G, they satisfy the con-

ditions

AcF = 0, Acδ = 0, Ac

∑
α

cαε(α) = 0.

It is no longer the case with their Lr-derivatives

LaF = RaF, Laδ = Raδ, La

∑
α

cαε(α) = Ra

∑
α

cαε(α). (29)

Roughly speaking, they are vectors of the group of inner automorphisms, e.g.,

denoting

Qa := Laδ = Raδ (30)

we have

AaQb = −Ck
abQk

and similarly, for all other quantities in (29) and their multiples by functions con-

stant on equivalence classes. Similarly, we have higher-order tensors, e.g.

Qab = LaLbδ = (Laδ) ∗ (Lbδ) = Qa ∗ Qb. (31)

They satisfy

AcQab = −Ck
caQkb − Ck

cbQak

and so on, for example, for

Qabc = LaLbLcδ = Qa ∗ Qb ∗ Qc (32)

we have

AdQabc = −Ck
daQkbc − Ck

dbQakc − Ck
dcQabk

etc.
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Casimir L-operators are polynomials of Lb with constant coefficients, commuting

with all La. They are expected to be polynomials of Lb with coefficients built

intrinsically of structure constants C, like (3), (18), (19), (20) or rather their ver-

sions with γ-raised indices. The most important example is the Laplace-Beltrami

operator (24). It is clear that

[Δ,La] = [Δ,Ra] = 0.

Other expected quantities of this type are

γ(m)i1...imLi1 . . .Lim

etc. The raising of indices is meant in the sense of the Killing tensor. In the group-

algebraic representation, these Casimir objects are given by functions/distributions

like

C(2) = γij (Liδ) ∗ (Ljδ) = γijLiLjδ

C(m) = γ(m)i1...im (Li1δ) ∗ · · · ∗ (Limδ) = γ(m)i1...imLi1 . . .Limδ.

They are expected to satisfy

C(m) ∗ f − f ∗ C(m) = 0

(central elements of the convolution algebra).

To avoid distributions, one can consider their “α-versions”, built of elements of

M(α)

C(2, α) = γij (Liε(α)) ∗ (Ljε(α))

C(m, α) = γ(m)i1...im (Li1ε(α)) ∗ · · · ∗ (Limε(α)) .

Similarly, for any fixed α ∈ Ω, the quantities (30), (31), (32), and so on become

usual functions

Qa(α) = Laε(α) = Raε(α) (33)

Qab(α) = LaLbε(α) = (Laε(α)) ∗ (Lbε(α)) = Qa(α) ∗ Qb(α) (34)

Qabc(α) = Qa(α) ∗ Qb(α) ∗ Qc(α) (35)

...
...

Qab...r(α) = Qa(α) ∗ Qb(α) ∗ · · · ∗ Qr(α) (36)

etc. Evidently, Qa, Qab, Qabc, etc., are distributions obtained as series (in the

distribution sense of limit) of all the above Q-s. One important circumstance must

be stressed: The quantities Qab...r are tensors under the action of automorphisms,
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however they are not irreducible tensors, because they are not symmetric if G is

non-Abelian. To obtain irreducible tensors one must take their symmetric parts,

skew-symmetric ones, and remove the γ-traces from the symmetric parts.

For any fixed α the tensors Qa, Qab, etc., form some basis of M(α) alternative to

ε(α)ij . Of course, when α is fixed, the order of tensors Q(α) terminates at some

value, because dimM(α) = n(α)2 cannot be exceeded.

From some point of view one might suppose that the pointwise products of Qa,

e.g., QaQb, QaQbQc, etc., might be simpler and more convenient. And they are

tensors of Ai as well. However, it is not the case, because Qa(α)Qb(α), etc., are

no longer elements of M(α). Nevertheless, they may be useful in a sense. They

may become elements of M(α) when multiplied by appropriate scalars under inner

automorphisms, i.e., multiplied by appropriate functions f(α) constant on classes

of adjoint elements, thus, satisfying (28).

The matrices of irreducible representations D(α) will be represented (at least lo-

cally, in some neighbourhood of the group identity), as follows

D(α)(g) = e (kae(α)a) , g
(
k1, . . . , kn

)
= e (kaea) (37)

where e(α) are n(α) × n(α) matrices which obey the commutation rules (1)

[e(α)a, e(α)b] = e(α)kC
k
ab.

If D(α) are unitary, that is always assumed here, then e(α) are anti-Hermitian, so

we have that

D(α)+ = D(α)−1, e(α)+ = −e(α).

In quantum-mechanical considerations the fundamental role is played by Her-

mitian matrices

Σ(α)a =
�

i
e(α)a = Σ(α)+a

which obey the commutation rules analogous to (11)–(13)

1

i�
[Σ(α)a, Σ(α)b] = Ck

abΣ(α)k.

Then we have the favourite formulas of physicists

D(α)
(
g
(
k
))

= e

(
i

�
kaΣ(α)a

)
L
(
g(k)−1

)
= e

(
i

�
kaΣa

)
(38)

R
(
g(k)−1

)
= e

(
i

�
kaΣ̂a

)
.
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Note that the last two formulas are meant in an appropriate function domain, if to

be meaningful. The representation property and definition of operators La, Ra,

Aa and their Hermitian counterparts Σa, Σ̂a, Δa imply that the matrix-valued

functions D(α) on G (equivalently ε(α) = n(α)D(α)) satisfy the following dif-

ferential equations

LaD(α) = e(α)aD(α) (39)

RaD(α) = D(α)e(α)a (40)

AaD(α) = e(α)aD(α) − D(α)e(α)a = [e(α)a, D(α)] (41)

or, in terms of “Hermitian” operators

ΣaD(α) = Σ(α)aD(α) (42)

Σ̂aD(α) = D(α)Σ(α)a (43)

ΔaD(α) = [Σ(α)a, D(α)] . (44)

Let C(L), C(R), C(A) denote the mentioned Casimir operators. Let us remind

that C(L) commute with all La-operators, C(R) commute with all Ra-operators,

and C(A) commute with all Aa-operators. They are built in a polynomial way

respectively of L, R, A. Moreover, C(L)-Casimirs commute also with all R-

and A-operators and C(R)-Casimirs also commute with L- and A-operators. This

follows from the obvious fact that all L-operators commute with all R-operators.

But attention: C(A)-Casimirs do not commute with all L- and R-operators. How-

ever, they do commute with C(L)- and C(R)-Casimirs. For physical reasons one

uses often the C(Σ)-, C
(
Σ̂
)

-, and C(Δ)-Casimirs. They are built of Σ-, Σ̂- and

Δ-operators just like C(L), C(R) and C(A) are built of the indicated operators.

Usually there are a few ones of each kind. If necessary, some additional label is

introduced (e.g. polynomial degree, etc.).

The use of differential operators acting on the functions on G, in particular, the use

of their associative products, enables one to avoid dealing with more abstract and

non-intuitive notion of the enveloping algebra of g.

The most important Casimirs are γ-quadratic functions of L, R, A

C(L, 2) = C(R, 2) = Δ = γabLaLb = γabRaRb

C(A, 2) = γabAaAb.

As mentioned, in addition to the obvious rules

[C(L, 2),La] = [C(L, 2),Ra] = [C(A, 2),Aa] = 0



80 J. Sławianowski, V. Kovalchuk, A. Martens, B. Gołubowska and E. Rożko

we have also

[C(L, 2),Aa] = [C(L, 2), C(A, 2)] = 0. (45)

The corresponding expressions for “Hermitian” operators will be denoted by

C (Σ, 2) = C
(
Σ̂, 2

)
, C (Δ, 2) , etc.

They are built according to the prescriptions for C(L, 2), C(R, 2), C(A, 2) with

Σ, Σ̂, Δ substituted respectively instead of L, R, A, therefore, for quadratic

Casimirs we have

C (Σ, 2) = −�
2C(L, 2), C

(
Σ̂, 2

)
= −�

2C(R, 2), C (Δ, 2) = −�
2C(A, 2)

and similarly for other Casimirs.

When we fix some α and act with our Casimirs on functions D(α) (ε(α)), they

simply suffer the multiplication by scalars, just the eigenvalues of Casimirs. This

follows from the Schur lemma, because D(α) are irreducible. Therefore, e.g.,

iterating appropriately (39)–(41), (42)–(44), we obtain

γabLaLbD(α) = γabRaRbD(α)
(46)

= γabe(α)ae(α)bD(α) = C(2, α)D(α)

γabΣaΣbD(α) = γabΣ̂aΣ̂bD(α) = −�
2C(2, α)D(α) (47)

where

γabe(α)ae(α)b = C(2, α)Id n(α)

and C(2, α) are elements of the spectrum of Δ (24). These eigenvalues are n(α)2-

fold degenerate. It was mentioned that although γabAaAb does not commute in

general with La, Rb, nevertheless, it does commute with

Δ = γabLaLb = γabRaRb.

However, D(α)ij are not their common eigenfunctions. Indeed

γabAaAbD(α) = 2C(2, α)D(α) − 2γabe(α)aD(α)e(α)b (48)

i.e.,

γabΔaΔbD(α) = −2C(2, α)�2D(α) − 2γabΣ(α)aD(α)Σ(α)b. (49)

Nevertheless, their common eigenfunctions do exist and are given by (33)–(36).

For any fixed α ∈ Ω, the order of tensors (33)–(36) terminates at some fixed value.
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It is seen that in the action on functions

ε(α)ij = n(α)D(α)ij

our differential operators become algebraic. This is just the obvious counterpart

and generalization of the well-known facts in Fourier analysis. Let us quote a few

obvious and practically important formulas.

It was mentioned earlier about the Peter-Weyl expansion (30) in [25]. Let us write

it a bit more symbolically as

F =
∑
α∈Ω

Tr
(
F (α)T ε(α)

)
=

∑
α∈Ω

Tr
(
F (α)T D(α)

)
n(α). (50)

The general operations of group algebras are then represented in a suggestive way

by the corresponding operations performed on the matrices F (α), cf. (32)–(33)

in [25]. Together with the formulas (39)–(41), (42)–(44), (46)–(47), (48), (49) this

implies that the action of differential operators may be expressed in the following

way by the corresponding algebraic operations on the representing matrices F (α)

La,Σa : F (α) �→ F (α)e(α)a, F (α) �→ F (α)Σ(α)a (51)

Ra, Σ̂a : F (α) �→ R(α)aF (α), F (α) �→ Σ(α)aF (α) (52)

Aa,Δa : F (α) �→ [F (α), e(α)a] , F (α) �→ [F (α), Σ(α)a] . (53)

Therefore, the action of

γabLaLb = γabRaRb = Δ

is represented by multiplication of matrices F (α) by C(2, α), and similarly for

other Casimirs.

Let us mention that for some purposes the convention of transposed F (α)-matrices

might be more convenient, namely

F =
∑
α∈Ω

Tr (F (α)ε(α)) =
∑
α∈Ω

Tr (F (α)D(α)) n(α). (54)

A disadvantage is that then F ∗ G is not represented by the system of F (α)G(α)
but G(α)F (α). But, and this is an aesthetic advantage, the matrix transposition is

avoided, namely, the La/Σa act respectively as follows

La,Σa : F (α) �→ F (α)e(α)a, F (α) �→ F (α)Σ(α)a (55)

Ra, Σ̂a : F (α) �→ R(α)aF (α), F (α) �→ Σ(α)aF (α) (56)

Aa,Δa : F (α) �→ [F (α), e(α)a] , F (α) �→ [F (α), Σ(α)a] . (57)
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But again, a disadvantage is that the left/right differential generators are repre-

sented algebraically by the right/left matrix multiplication, thus, conversely. Of

course, all this is a merely matter of convention.

If we use the convention (50), then the functions (30), (31), (32), etc., i.e.,

lQab...k = LaLb . . .Lkδ = (Laδ) ∗ · · · ∗ (Lkδ) = Qa ∗ Qb ∗ · · · ∗ Qk (58)

are represented by matrices

lQ̂(α)ab...k = e(α)a
T e(α)b

T . . . e(α)k
T . (59)

And similarly, the functions

rQab...k = RaRb . . .Rkδ = Lk . . .LbLaδ = (Raδ) ∗ (Rbδ) ∗ . . . ∗ (Rkδ)

= (Lkδ) ∗ . . . ∗ (Lbδ) ∗ (Laδ) = Qk ∗ . . . ∗ Qb ∗ Qa = lQk...ba

are represented by matrices

rQ̂(α) = e(α)k
T . . . e(α)b

T e(α)a
T . (60)

If we use the convention (54), then instead of (59), (60) we obtain respectively

lQ̂(α)ab...k = e(α)k . . . e(α)be(α)a
(61)

rQ̂(α)ab...k = e(α)ae(α)b . . . e(α)k.

The Hermitian version of Qa, representing a physical observable, is obtained by

replacing the operators La, Ra by (10), i.e., by

Σa =
�

i
La, Σ̂a =

�

i
Ra.

They are given by

Σa =
�

i
Qa (62)

whereas Qa themselves are anti-Hermitian.

Let us observe that if G is non-Abelian (and here we concentrate mainly on semi-

simple ones), then in general the functions

lQab...k,
rQab...k

and the representing matrices

lQ̂(α)ab...k,
rQ̂(α)ab...k
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fail to be anti-Hermitian. Therefore, the corresponding monomials of Σ(α) and

Σ(α)T are not Hermitian. But their symmetrizations

Σ(α)(a . . .Σ(α)k), Σ(α)T
(a . . .Σ(α)T

k)
(63)

are Hermitian and so are the functions

Σ(a...k) =

(
�

i

)p (L(aδ
) ∗ · · · ∗ (Lk)δ

)
=

(
�

i

)p (R(aδ
) ∗ · · · ∗ (Rk)δ

)
(64)

where p is the order of tensors (the number of convolution factors). Note that (63)

are matrices of (64) when the conventions (54), (50) are used, respectively.

In realistic dynamical models Hamiltonians are usually given by simple algebraic

functions of the above Hermitian elements of group algebras. As a rule, those

Hamiltonians or their important terms are low-order polynomials. In special cases

of high symmetry they are built according to the Casimir prescriptions.

3. Abelian Lie Groups

Let us finish with some remarks concerning Abelian Lie groups. The only (up to

isomorphism) connected Abelian groups are

R
n, Tn = U(1)n = R

n/Z
n

and their Cartesian products R
n × Tm, i.e., linear spaces, tori and cylinders. The

group operation in R
n is meant as the addition of vectors (null vector being the

neutral element). In T n it is meant as the quotient action obtained when R
n is

divided by the “crystallographic” lattice Z
n ⊂ R

n.

Some conflicts between the above notational conventions and various customs

from the classical Fourier analysis appear, so one must be careful with an auto-

matic use of traditional formulas.

It is perhaps convenient to write down some formulas concerning R
n in the lan-

guage of abstract vector space. So, let V be a finite-dimensional linear space, and

V ∗ be its dual. We put n = dimV = dimV ∗. We consider them as Abelian

additive Lie groups. So, G = V with the “+” composition rule, Ĝ is isomorphic

with V ∗. And the particular choice of this isomorphism is a matter of convention.

G being non-compact, there is no standard of normalization. If V is endowed with

some fixed metric tensor γ ∈ V ∗ ⊗ V ∗, as it usually is in physical applications,

then, of course, the standard of Lebesgue measure is fixed∫
f(x)dμ(x) =

∫
fe1 ∧ . . . ∧ en
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where (. . . , ea, . . .) is an arbitrary orthonormal co-basis in V ∗

g = δije
i ⊗ ej .

In arbitrary coordinates, including curvilinear ones, we have∫
f(x)dμ(x) =

∫
f(x)

√
det [gij ] dx1 . . .dxn.

The dual linear space V ∗ parametrizes the dual group V̂ with the help of the stan-

dard covering homomorphism of the (additive) R onto (multiplicative) U(1)

R � ϕ �→ e(iϕ) ∈ U(1)

so, χ (k) ∈ V̂ is given by

〈χ (k) , x〉 = e (i 〈k, x〉)
where 〈k, x〉 is the evaluation of k ∈ V ∗ on x ∈ V . Analytically

〈k, x〉 = kax
a.

Using the language of quantum momentum p = �k, one writes also〈
χ
[
p
]
, x

〉
= e

(
i

�

〈
p, x

〉)
= e

(
i

�
pax

a

)
.

The corresponding conventions of Fourier analysis, particularly popular in quan-

tum mechanics, are as follows

f (x) =
1

(2π)n

∫
f̂ (k) e (i 〈k, x〉) dnk

(65)

=
1

(2π�)n

∫
f̂
(
p
)
e

(
i

�

〈
p, x

〉)
dnp

f̂ (k) = f̂
[
p
]

=

∫
f (x) e

(
− i

�

〈
p, x

〉)
dnx. (66)

The convolution on V is meant in the usual convention

(A ∗ B) (x) =

∫
A(y)B(x − y)dy.

We have then the following rules

χ (k) ∗ χ (l) = (2π)nδ (k − l) χ (k) = (2π)nδ (k − l)χ (l)

(χ (k) , χ (l)) = (2π)nδ (k − l)

χ
[
p
] ∗ χ

[
p′
]

= (2π�)nδ
(
p − p′

)
χ
[
p
]

= (2π�)nδ
(
p − p′

)
χ
[
p′
](

χ
[
p
]
, χ

[
p′
])

= (2π�)nδ
(
p − p′

)
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rather unpleasant ones, because of the (2π)n- and (2π�)n-factors. But this has to

do with the use of traditional symbols of analysis. If we remember that it is not

dnk, or dnp, but rather
dnk

(2π)n
,

dnp

(2π�)n

that is a measure Fourier-synchronized with dnx, that it is just

(2π)nδ (k − l) or (2π�)nδ
(
p − p′

)
that is to be interpreted as a “true Dirac delta”, let us say

Δ
(
k − k′) , Δ

(
p − p′

)
respectively in the spaces of wave co-vectors and linear momenta.

There are various conventions concerning Fourier transforms and synchronization

of measures on G, Ĝ, it is even stated in the book by Loomis [9], that it is “an

interesting and non-trivial problem”.

In classical analysis one often prefers the “symmetric” convention

A (x) =
1

(2π)n/2

∫
Â (k) e (i 〈k, x〉) dnk

Â (k) =
1

(2π)n/2

∫
A (x) e (−i 〈k, x〉) dnx.

An additional advantage of this convention is that the iteration of Fourier trans-

formation results in the inversion (total reflection) of the original function, with

respect to the origin ̂̂
A (x) = A(−x).

And, roughly speaking, Gauss function is invariant under Fourier transformation.

More precisely, we have

G(x) = e

(
−1

2
x · x

)
, Ĝ(k) = e

(
−1

2
k · k

)
where the scalar product in V is meant in the sense of metric g ∈ V ∗ ⊗ V ∗, and in

V ∗ — under its contravariant inverse g−1 ∈ V ⊗ V

x · x = g(x, x) = gijx
ixj , k · k = ĝ(k, k) = gijxixj .

If we identify V = R
n = V ∗, then the Gauss function is literally invariant under

the Fourier transformation.
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The counterparts of Clebsch-Gordon series from [25], i.e.,

ε(α)abε(�)rs =
∑
κ,k,l

n(α)n(�)

n(κ)
(α�ar|κk) (α�bs|κl) ε(κ)kl (67)

and

U (u (α)a ⊗ v (�)r) =
∑
κ,k

(α�ar|κk)w (κ)k (68)

are very simple now, because

χ(k)χ(l) = χ(k + l)

χ
[
p
]
χ
[
p′
]

= χ
[
p + p′

]
χ(k)χ(l) =

∫
δ(k + l − m)χ(m)dnm

χ
[
p
]
χ
[
p′
]

=

∫
δ(p + p′ − π)χ [π] dnπ.

Let us now fix some symbols concerning the compact case T n = U(1)n. Just

like R
n is an analytical model of any n-dimensional linear space over reals, T n is

parametrized by the system of angles
(
ϕ1, . . . , ϕn

)
taken modulo 2π, or uniquely,

by the system of unimodular complex numbers(
ζ1, . . . , ζn

)
, ζa = e (iϕa) .

Sometimes the convention “modulo 1” is accepted instead “modulo 2π”, i.e., one

puts

ζa = e (2πiξa) .

This is often used when T n is realized as a quotient of V modulo the “crystallo-

graphic lattice” generated freely by some fixed basis (. . . , ea, . . .) in V . Of course,

that discrete translation group is isomorphic with Z
n. The parametrization modulo

2π is more popular in theory of Fourier series. Torus is compact and it is natural to

take the Haar measure normalized to unity, as usual. If the multiple Fourier series

on Tn are meant in the convention

f(ϕ) =
∑

m∈Zn

f̂(m)e (im · ϕ)

then the inverse formula for coefficients f̂ reads

f̂(m) =
1

(2π)n

∫
f(ϕ)e (−im · ϕ) dnϕ.
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Concerning notation, analytical meaning of the expressions above is as follows

m = (m1, . . . , mn) ∈ Z
n, ϕ =

(
ϕ1, . . . , ϕn

)T

contractions in exponents are given by

m · ϕ = maϕ
a = m1ϕ

1 + · · · + mnϕn

and the range of variables ϕa in the integration element

dnϕ = dϕ1 . . .dϕn

is given by [0, 2π].

It is seen that the occurrence of factors (2π)−n is reciprocal to that in Fourier

analysis on R
n. This spoils the formal analogy, but suits the convention that the

Haar volume of compact groups equals the unity. To save the analogy, we would

have to replace (65)–(66) by

f(x) =

∫
f̂(k)e (i 〈k, x〉) dnk

f̂(k) =
1

(2π)n

∫
f(x)e (−i 〈k, x〉) dnx

which, by the way, is sometimes used indeed, however, it is incompatible with

some other customs of physicists and their taste.

Characters on T n are labelled by multi-indices m ∈ Z
n

〈χ(m), ζ(ϕ)〉 =
(
ζ1

)m1
. . . (ζn)mn = e (im · ϕ) .

The idempotence and independence property is literally satisfied, because T n is

compact and Z
n is discrete

χ(m) ∗ χ(l) = δmlχ(m) = δmlχ(l)

χ(m)χ(l) = χ(m + l) (69)

(χ(m), χ(l)) = δml

where the multi-index Kronecker symbol δml vanishes if m �= l (i.e., at least one

component of m differs from the corresponding component of l), and δml = 1
when m = l. In other words

δml = δm1l1 . . . δmnln .

Concerning the “Clebsch-Gordon” rule (69), its representation in terms of (67),

(68) reads

χ(m)χ(l) =
∑

π∈Zn

(m l|π) (m l|π)χ(π)
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where

(m l|π) = δm+l,π = (m l|π)2 .

Let us notice that in the non-compact case G = R
n, the counterpart of (67), i.e., the

right-hand side of (68), fails because the square of Dirac-delta is not well defined.

Note that if we take as an arena of our physics the discrete group Z
n, then its dual

group T n is compact and continuous. Again the mentioned problems with squared

delta-distribution appear.

4. Byproducts of the Group Structure

For certain reasons, first of all ones concerning quasiclassical analysis, it is inter-

esting to discuss certain byproducts of the group structure in G. It is well known

that the Lie algebra g of G encodes a great amount of information about the global

structure of G, although, of course, not the total information. This is due to the

very analytic structure of Lie groups. Making use of exponential mapping of g

into G (not “onto” in general) one can “pull back” some structures of G and some

physics in G to its tangent space g = TeG. But now, g as a finite-dimensional

linear space is an Abelian Lie group under addition of its elements. Therefore, we

can consider some physics, using the group algebra of g as an additive group of

vectors. But of course this would be completely non-physical and non-interesting

if we did not take into account the Lie-algebraic structure of g. This structure leads

to certain additional structures and relationships in the group algebra of g. Namely,

it is well know that the co-algebra g∗, i.e., the algebraic dual space of g, carries the

canonical Poisson structure. Namely, Poisson bracket of differentiable functions

A, B on g∗ is analytically given by

{A, B} := σkC
k
lm

∂A

∂σl

∂B

∂σm

(70)

where σk are linear coordinates in g∗ and Ck
lm are structure constants with respect

to these coordinates, or more precisely, with respect to the dual linear coordinates

in g. Notice that, being linear functions on g∗, i.e., elements of the second dual

g∗∗, functions σk are canonically identical with some basis vectors ek in g and

[el, em] = ekC
k
lm.

We might simply use the symbols σk instead of ek in this formula, however, this

might be perhaps a bit confusing, although essentially true.

It is obvious that the expression (70) is correct, i.e., coordinate-independent. It is

well known that it may be formulated without any use of coordinates. Namely,
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take differentials dAσ, dBσ at the point σ ∈ g∗. Being linear functions on g∗ �
Tσg∗, they are canonically identical with some elements of g. We take their

bracket/commutator [dAσ, dBσ] ∈ g and evaluate the one-form σ ∈ g∗ on this

vector, 〈σ, [dAσ, dBσ]〉. One obtains the prescription assigning a number to any

point σ ∈ g∗. The resulting function is just the value of {A, B} at σ

{A, B}(σ) = 〈σ, [dAσ, dBσ]〉 . (71)

The skew-symmetry is obvious and the Jacobi identity follows from the identity

satisfied by structure constants, thus, finally from the Jacobi identity in Lie algebra.

It is worth to note that (70) and (71) are defined only for differentiable functions.

The associative algebra of smooth functions C∞ (g∗) in the sense of pointwise

product becomes simultaneously an infinite-dimensional Lie algebra under Poisson

bracket. The two structures are compatible in the sense that the Poisson-bracket

ad-operation is a differentiation of the associative algebra

adC(AB) = {C, AB} = A{C, B} + {C, A}B = (adCA)B + A (adCB) .

The both structures may be transported from the function space over g∗ into func-

tion space over g by means of the Fourier transform. The pointwise product in g∗

becomes the convolution in g. All relationships are preserved. The new Poisson

bracket in g is a differentiation of the Abelian convolution.

Let us denote the corresponding Poisson bracket in g by [, ]. More precisely, if F ,

G are functions on g Fourier-expressed as

F (ω) =
1

(2π�)n

∫
F̂ (σ)e

(
i

�
σ · ω

)
dnσ

G(ω) =
1

(2π�)n

∫
Ĝ(σ)e

(
i

�
σ · ω

)
dnσ

then their bracket is defined as

[F, G] (ω) =
1

(2π�)n

∫
{F̂ , Ĝ}(σ)e

(
i

�
σ · ω

)
dnσ.

One can show that

[F, G] =
1

i�
(AaF ) ∗ (ωaG) =

1

i�
Aa (F ∗ ωaG) . (72)

Concerning the last formula, let us notice that

Aa (f ∗ g) = (Aaf) ∗ g + f ∗ (Aag)
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but it may be also shown that for any G

Aa (ωaG) = 0.

This explains why only one term appears in the middle expression in (72). Another,

equivalent expression for [F, G] is

[F, G] = − 1

i�
Aa ((ωaF ) ∗ G) = − 1

i�
(ωaF ) ∗ (AaG) . (73)

Therefore, the more symmetric formula for [F, G] would be

[F, G] =
1

i�
((AaF ) ∗ (ωaG) − (ωaF ) ∗ (AaG))

(74)

=
1

i�
((AaF ) ∗ (ωaG) − (AaG) ∗ (ωaF )) .

Let us stress here some subtle point concerning the relationship between symbols

ka, ωa. Roughly speaking, they denote almost the same, however, some delicate

difference in their meaning should be noted. In (5) the canonical coordinates ka

are analytically used as coefficients at the basic elements ea of the Lie algebra g.

Being used as a parametrization of g, they are functions on the group manifold G,

in general in a local sense. The exponential mapping e of g into G establishes a

correspondence between ka and ωa, namely, ωa = ka ◦ e, when carefully taking

domains into account. One must remember however that strictly speaking, ka as

functions on G are defined locally and the range of their values is not identical

with R
n. Unlike this, ωa are global linear coordinates on the linear space g. Inter-

pretation of functions on G in terms of functions on g is also local. As a rule, the

global identification fails, even because of simple topological reasons. The point

is, however, that in the quasiclassical limit these obstacles become inessential. In

this limit we deal with “large quantum numbers”, i.e., with “quickly oscillating”

functions. One performs some truncation or cut-off procedure, namely, the total

group algebra over G is replaced by its subalgebra composed of ideals M(α) the

generating units ε(α) of which have the number of nods above some fixed value.

The higher is the truncation threshold, the more is the essential behaviour of admis-

sible functions concentrated in a small neighbourhood of the group unity e. The

admissible functions on G practically vanish far away from e, and “do not feel”

the topology of G. They may be in a good approximation represented by functions

on g, thus, on a linear space. More precisely, it is so for functions superposed in

a quasiclassical way of the basic quickly oscillating functions ε(α)ij . By that we

mean that the combination coefficients C(α)ij are concentrated in a “wide range”

of the label α and are “slowly varying” within that range. To be more (even if
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roughly) rigorous with such statements, one must specify what is meant when we

say that the labels α, β are nearby. Simply we mean then that the numbers of nodes

of ε(α), ε(β) are nearby (roughly speaking, the corresponding quantum numbers

are nearby). Functions on G constructed according to such prescription may be

reasonably represented by functions on the Lie algebra g. Operations in the group

algebra of G may be approximated by certain operations in the group algebra of g,

where, just as above, g is interpreted as an Abelian additive Lie group. Continu-

ous Fourier expansion approximates in a satisfactory way the discrete Peter-Weyl

expansion on the compact group G. Expanding in the convolution formulas the

group multiplication rule in Taylor series and retaining the lowest-order terms, we

obtain some asymptotic approximate formulas, namely

F ∗
G

H ≈ F ∗
g
H +

i�

2
[F, H] (75)

where [F, H] is just (73), (74) and the symbols ∗
G

, ∗
g

denote respectively convolu-

tions in the sense of G and g (as an additive group). The use of the same symbols

F , H on the left and right sides of (75) is rough, however, the meaning is obvious:

just the “identification” in terms of the exponential map. In the lowest order of

approximation, the quantum Poisson bracket is expressed as follows

{F, H}q =
1

i�

(
F ∗

G
H − H ∗

G
F

)
≈ [F, H]. (76)

We can notice that (75) and (76) is a counterpart of the well-known quasiclassical

expansion of star products, first of all, the Weyl-Moyal product.

Some more details will be presented when discussing the physically important spe-

cial case G = SU(2) or G = SO(3, R), i.e., quantum description of angular mo-

mentum.
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