
JGSP 22 (2011) 51–65

MODIFIED COSMOLOGICAL EQUATIONS AND THE EINSTEIN
STATIC UNIVERSE

LUCA PARISI AND ROSANGELA CANONICO

Communicated by Ivaïlo M. Mladenov

Abstract. The stability properties of the Einstein Static solution of General Rela-

tivity is altered when corrective terms arising from modifications of the underlying

gravitational theory appear in the cosmological equations. Employing dynamical

system techniques and numerical integrations, we discuss the stability of static cos-

mological solutions in the framework of two recently proposed quantum gravity

models, namely Loop Quantum Cosmology and Horava-Lifshitz gravity.

1. Introduction

The Einstein Static (ES) Universe is an exact solution of Einstein’s equations de-

scribing a closed Friedmann-Robertson-Walker model sourced by a perfect fluid

and a cosmological constant (see, for example [23]). This solution is unstable to

homogeneous perturbations as shown by Eddington [15], furthermore it is always

neutrally stable against small inhomogeneous vector and tensor perturbations and

neutrally stable against adiabatic scalar density inhomogeneities with high enough

sound speed [2].

In recent years there has been renewed interest in the ES Universe because of its

relevance for the Emergent Universe scenario [16,17,31] in which the ES solution

plays a crucial role, being an initial state for a past-eternal inflationary cosmo-

logical model. In the Emergent Universe scenario the horizon problem is solved

before inflation begins, there is no singularity, no exotic physics is involved, and

the quantum gravity regime can even be avoided. This model, relying on the choice

of a particular initial state, suffers from a fine-tuning problem which is ameliorated

when modifications to the cosmological equations arise but then a mechanism is

needed to trigger the expanding phase of the Universe (see [27, 28]).

The existence of ES solutions along with their stability properties has been widely

investigated in the framework of General Relativity for several kinds of matter

fields sources (see [3] and references therein). ES solutions also exist in sev-

eral modified gravity models [8] ranging from the Randall-Sundrum and DGP
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braneworld scenarios [12, 18, 22, 37, 42] to Gauss-Bonnet modified gravity and

f(R) theories [4–6, 13, 20, 21, 36]. The issue of the existence and stability of ES

solutions has also been considered in the semiclassical regime of Loop Quantum

Cosmology (LQC), in either the case of correction to the matter sector [32] or the

case of correction to the gravitational sector [34]. Recently the same issue has

been also considered in the framework of Hořava-Lifshitz (HL) gravity [41] and

IR modified Hořava gravity [7, 19].

When dealing with higher order modified cosmological equations, the existence

of many new ES solutions is possible, whose stability properties, depending on

the details of the single theory or family of theories taken into account, are sub-

stantially modified with respect to the classical ES solution of General Relativity

(GR).

Often in such analysis the case of closed (k = 1) cosmological models is the

only one considered, neglecting the intriguing possibility of static solutions in open

(k = −1) cosmological models. It is interesting that, due to the aforementioned

corrections to the cosmological equations, open ES models may be found even

in the case of a vanishing cosmological constant or when the perfect fluid has

vanishing energy density.

In this paper we systematically review the stability properties of static cosmolog-

ical solutions arising in the framework of two recently proposed quantum grav-

ity models, namely Loop Quantum Cosmology and Horava-Lifshitz gravity, both

providing modified cosmological equations. To this aim, we employ dynamical

system techniques and numerical integrations. This work is based on the results

presented in [10, 33, 34].

This paper is structured as follows. In Section 2, we consider static solutions in

the framework of LQC, following and enlarging the analysis already performed

in [34]. It is shown that, beside the ES solution of GR, a LQC solution arises also

in the case of open cosmological models which stability is also completely charac-

terized. Following the same approach, in Section 3 we consider static cosmological

solutions in the context of HL gravity with detailed balance and projectability con-

dition. Two solutions are found along with their stability properties. In Section 4,

some conclusions are eventually drawn.

2. Loop Quantum Cosmology

In Loop Quantum Cosmology the quantization techniques borrowed by Loop Quan-

tum Gravity, a background-independent nonperturbative quantum theory of grav-

ity, are applied to symmetry reduced models (see [9] and references therein).
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For the sake of simplicity, in this section we consider the modified Friedmann equa-

tions arising in the semiclassical regime of LQC [1,39]. We consider gravitational

modifications only, neglecting the inverse volume correction to the matter sector.

The motivation is twofold: the analysis of this system allows a more transparent

comparison with the case of GR and moreover it allows us to follow the notations

introduced in [34] which will also be easily used in the analysis of the HL gravity

presented in the next section.

The model considered is sourced by a perfect fluid with linear equation of state p =
wρ plus a cosmological constant Λ. The classical energy conservation equation

still holds

ρ̇ = −3ρH(1 + w) (1)

while the loop quantum effects lead to a modification to the classical Friedmann

equation

H2 =

(
κ

3
ρ +

Λ

3
− k

a2

)(
1 − ρ

ρc

− Λ

κρc

+
3k

κρca2

)
(2)

and to the Raychaudhuri equation

Ḣ = −κ

2
ρ (1 + w)

(
1 − 2ρ

ρc

− 2Λ

κρc

)
(3)

+

[
1 − 2ρ

ρc

− 2Λ

κρc

− 3ρ(1 + w)

ρc

]
k

a2
+

6k2

κρca4
·

Notice that we are considering at once the k = 0 case and the k = ±1 cases [1,39].

Here κ = 8πG = 8π/M 2

P , and the critical LQC energy density is ρc ≈ 0.82M4

P .

2.1. Static Solutions

The system of equations (1)-(4) admits two static solutions, i.e. solutions charac-

terized by ȧ = Ḣ = ρ̇ = 0. The first solution corresponds to the standard ES

Universe in GR while the second solution arises from the LQC corrective terms

ρGR =
2Λ

κ(1 + 3w)
, a2

GR =
2k

κρGR(1 + w)
(4)

ρLQ =
2(Λ − κρc)

κ(1 + 3w)
, a2

LQ =
2k

κρLQ(1 + w)
· (5)

The conditions under which these static solutions exist are summarized in Table 1

which follow from a2 > 0 and ρ > 0. The presence of the curvature index k is

worth stressing, indeed the previous analysis [34] can be enlarged to enclose the

k = −1 case where the two solutions still exist.
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2.2. Stability Analysis

The stability of the solutions equations (4) and (5) can be characterized using dy-

namical system theory and performing a linearized stability analysis. To this aim,

we first have to rewrite the system of equations (1)-(4) in the form of a genuine

dynamical system. Indeed, in these equations the three variables a, H and ρ ap-

pear but the actual dynamics is constrained on a two-dimensional surface described

by the modified Friedmann equation (see Fig.1). Thus, following [34], we solve

Figure 1. Friedmann constraint as hypersurface in the a,H, ρ space the

for the case k = −1, Λ < 0, w < −1 with Λ = −100, w = −2,

κ = 25.13274123. The ES and LQ solutions are depicted as black dots

on top and underneath the surface respectively.

equation (2) for 1/a2. Two solutions are found

1

a2
= g±(ρ, H) (6)

where

g± =
2(κρ + Λ) + κρc

(
1 ±

√
1 − 12H2/κρc

)
6k

· (7)

Substituting the solutions (6) into equation (4), we find two branches for the time

derivative of the Hubble parameter, thus the original system splits in a pair of two-

dimensional nonlinear dynamical systems in the variables ρ and H (see Fig. 2)

GR : ρ̇ = −3Hρ (1 + w) and Ḣ = F−(ρ, H) (8)

LQ : ρ̇ = −3Hρ (1 + w) and Ḣ = F+(ρ, H) (9)
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where

F± = −κ

2
(1 + w)ρ

(
1 − 2ρ

ρc

− 2Λ

κρc

)
+

6k2g2
±

κρc (10)

+g±k

[
1 − 2ρ

ρc

− 2Λ

κρc

− 3(1 + w)
ρ

ρc

]
·

Each one of the systems (8) and (9) admits a fixed point representing a static solu-

tion, that is

GR : H = 0 and ρo =
2Λ

κ(1 + 3w)
(11)

LQ : H = 0 and ρo =
2(Λ − κρc)

κ(1 + 3w)
(12)

respectively. Substituting these values of ρo in equation (2) one gets exactly the

values of the constant scale factor in terms of the parameters as in equations (4)

and (5).

Figure 2. Splitting of the Friedmann constraint in two local charts around

the fixed points.

Finally, to characterize the stability of the solutions equations (4) and (5) we eval-

uate the eigenvalues of the Jacobian matrix for the two systems equations (8) and

(9) at the fixed points equations (11) and (12) respectively.

For the system in equation (8), we recover the usual properties of the ES solution

in GR. The eigenvalues of the linearized system at the fixed point are

λGR = ±
√

Λ(1 + w). (13)

In the case of positive curvature index k = 1, these are either real with opposite

signs for Λ > 0 and w > −1/3 - thus the fixed point is unstable (of the saddle
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type) - or purely imaginary for Λ < 0 and −1 < w < −1/3, so the fixed point is a

center. In the case of negative spatial curvature index k = −1, these are again real

with opposite signs for Λ < 0 and w < −1, so the fixed point is unstable (of the

saddle type). In Fig. 3 an example of the latter case is depicted.

Figure 3. Dynamical behavior of the system around the GR fixed point

for the case k = −1, Λ < 0, w < −1 with Λ = −100, w = −2,

κ = 25.13274123.

For the system equation (9) the eigenvalues at the fixed point are

λLQ = ±
√

(κρc − Λ)(1 + w). (14)

In the case of positive curvature index k = 1, the LQ fixed point is either unstable

(of the saddle kind), when κρc > Λ and −1 < w < −1/3, or a center for the

linearized system, i.e. a neutrally stable fixed point, when κρc < Λ and w > −1/3.

In the case of negative spatial curvature index k = −1, the eigenvalues are purely

imaginary for κρc > Λ and w < −1, so we have a center for the linearized system

again. In the latter case the fixed point is nonhyperbolic thus the linearization

theorem does not apply. Nevertheless a numerical integration of the fully nonlinear

system equation (9) for initial conditions near the fixed point confirms the result of

the linearized stability analysis (see Fig. 4). It’s worth stressing that in open LQC

models a stable ES solution exists in the case of positive values of the cosmological

constant as long as Λ < κρc.

The results of the linearized stability analysis are summarized in Table 1.
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Figure 4. Dynamical behavior of the system around the LQ fixed point for the

case k = −1, Λ < κρc, w < −1 with Λ = 10, w = −2, κ = 25.13274123.

Table 1. Existence conditions and stability conditions for the static solutions

in equations (4) and (5).

k Λ w Stability

GR 1 > 0 w > −1/3 saddle

< 0 −1 < w < −1/3 center

-1 < 0 w < −1 saddle

LQ 1 < κρc −1 < w < −1/3 center

> κρc w > −1/3 saddle

-1 < κρc w < −1 center

3. Hořava-Lifshitz Gravity

The Hořava-Lifshitz gravity [24, 25] is a power-counting renormalizable theory

of (3+1)-dimensional quantum gravity. In the ultraviolet limit, the theory has a

Lifshitz-like anisotropic scaling between space and time characterized by the dy-

namical critical exponent z = 3. In the IR limit the theory flows to the relativistic

value z = 1.

The effective speed of light c, the effective Newton constant G and the effective

cosmological constant Λ of the low-energy theory, emerge from the relevant de-

formations of the deeply nonrelativistic z = 3 theory which dominates at short

distances [24, 25]

c =
κ2μ

4

√
ΛW

1 − 3λ
, G =

κ2

32πc
, Λ =

3

2
ΛW · (15)
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The first of the equations in(15) imposes a relation among the parameters c, ΛW

and λ; thus, in order to have a real emergent speed of light c, for λ > 1/3 the

cosmological constant has to be negative ΛW . However, after an analytic con-

tinuation of the parameters (see [29]), a real speed of light for λ > 1/3 implies

a positive cosmological constant ΛW . Thus, mimicking the notation introduced

in [30], we introduce a two-valued parameter ε = ±1, in order to examine both the

aforementioned cases at once.

The HL cosmology has been systematically studied using dynamical systems the-

ory in [11, 14, 26, 38], it has also been investigated in [40] using conservation laws

of mechanics. Here we consider static solutions of the cosmological equations for

the HL gravity when both the detailed balance condition and projectability condi-

tion hold.

First we recast the modified Friedmann equations of [29] in a form which allows

an easy comparison with the formerly considered case of LQC1.

The modified Friedmann equation reads

H2 =
2

3λ − 1

[
κ

3
ρ + ε

(
Λ

3
− k

a2
+

3k2

4Λa4

)]
(16)

and the modified Raychaudhuri equation reads

Ḣ =
2

3λ − 1

[
−κ

2
ρ(1 + w) + ε

(
k

a2
− 3k2

2Λa4

)]
· (17)

The conservation equation for the energy density of the perfect fluid still holds

unchanged:

ρ̇ = −3ρH(1 + w). (18)

Besides the overall factor 2

3λ−1
on the right hand side of equations (16) and (17),

the modifications to the cosmological equations of GR consist of the higher order

terms ∝ k2/Λa4 which become dominant at short distance scales and do not affect

the classical cosmological equations in the case of flat models.

3.1. Static Solutions

It can be readily found, imposing the conditions ȧ = Ḣ = ρ̇ = 0, that the system

of equations (18)-(17) admits the following two static solutions

ρHL1 = 0, a2

HL1 =
3k

2Λ
(19)

ρHL2 =
−16εΛ

(3w − 1)2κ
, a2

HL2 =
(3w − 1)k

2Λ(1 + w)
· (20)

1According to the definitions given in Section II, c = 1 and κ = 8πG, equation (16) and equation
(17) have been written accordingly.
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The conditions under which these static solutions exist are summarized in Table 2

and Table 3.

The presence of the curvature index k and the parameter ε in equations (19) and

(20) is worth being stressed; indeed the analysis presented in [41] can be enlarged

to enclose the k = −1 case where new interesting possibilities arise. For instance

a physically meaningful ES solution is present even in the case of vanishing energy

density of the perfect fluid, i.e., equation (19).

3.2. Stability Analysis

The stability analysis can be easily performed reducing the original system to an

actual two-dimensional autonomous dynamical system by making use of the Fried-

mann constraint (see Fig.5). In this case the simplest and most straightforward

Figure 5. Friedmann constraint as hypersurface in the a,H, ρ space the for

the case k = −1 with ε = 1, λ > 1/3, Λ < 0, w > 1/3. The two black dots

represent the HL1 (upper) and HL2 (lower) static solutions.

choice is to eliminate the dependence on ρ from the other equations, being equa-

tion (16) linear in ρ, that is, to consider the projection on the (H, a)-plane (see

Fig.6). This allows us to describe the dynamics with just one set of equations.

Indeed, solving equation (16) for ρ

ρ =
3

2κ
(3λ − 1)H2 − ε

κ

(
Λ − 3k

a2
+ − 3k2

4Λa4

)
(21)

and substituting into equation (17) one gets a first order nonlinear differential equa-

tion

Ḣ =
ε

3λ − 1

[
(1 + w)Λ − (3w + 1)k

a2
+

3k2(3w − 1)

4Λa4

]
− 3

2
(1 + w)H2 (22)
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which, together with the definition of the Hubble parameter

ȧ = aH (23)

provides a genuine two-dimensional autonomous dynamical system in the vari-

ables a and H . The system admits two fixed points with energy densities as in

equations (19) and (20) and in order to characterize the stability of these solutions,

we evaluate the eigenvalues of the Jacobian matrix for the system equations (22)

and (23) at the fixed points corresponding to equations (19) and (20) respectively.

Figure 6. Friedmann constraint as seen from the (H, a)-plane.

The eigenvalues at the fixed point HL1 read

λHL1 = ±2
√

6(3λ − 1)εΛ

3(3λ − 1)
· (24)

For all the admitted values of the parameters this is a pair of purely imaginary

eigenvalues thus the fixed point is a center for the linearized system. The point

is nonhyperbolic so the linearized analysis may fail to be predictive at nonlinear

order, nevertheless a numerical integration proves that this fixed point is actually a

center (see Fig. 7).

The results of the stability analysis for the fixed point HL1 are summarized in

Table 2.

The eigenvalues at the fixed point HL2 read

λHL2 = ±2
√
−2(3w − 1)(3λ − 1)(1 + w)εΛ

(3λ − 1)(3w − 1)
· (25)
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Figure 7. Dynamical behavior of the system around the HL1 fixed point for

the case k = −1 with ε = 1, λ > 1/3, Λ < 0, w > 1/3.

Table 2. Existence conditions and stability conditions for the static solution

HL1.

ε λ k Λ Stability

−1 < 1/3 −1 < 0 center

> 1/3 1 > 0
1 < 1/3 1 > 0

> 1/3 −1 < 0

According to the admitted values of the parameters this is either a pair of purely

imaginary eigenvalues, so the fixed point is a center for the linearized system, or a

pair of real eigenvalues with opposite signs, so the fixed point is unstable (of the

saddle type). In particular, the solution is a center for −1 < w < 1/3 and is a

saddle for w < −1 or w > 1/3 (for an example of the latter case see Fig. 8).

The results of the stability analysis for the fixed point HL2 are summarized in

Table 3.

4. Conclusions

Here we have considered the existence of static solutions in the framework of two

recently proposed quantum gravity models, namely, LQC and HL gravity and even-

tually we have shown that the inclusion of a negative curvature index k = −1
enlarges the ranges of existence of the solutions affecting their stability properties
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Figure 8. Dynamical behavior of the system around the HL2 fixed point for

the case k = −1 with ε = 1, λ > 0, Λ < 0, w > 1/3.

Table 3. Existence conditions and stability conditions for the static solution

HL2.

ε λ k Λ w Stability

−1 > 1/3 −1 > 0 −1 < w < 1/3 center

1 > 0 w < −1 saddle

w > 1/3

1 > 1/3 −1 < 0 w < −1 saddle

w > 1/3
1 < 0 −1 < w < 1/3 centre

thus providing new interesting results. The solutions found display stability con-

ditions rather different from those of the corresponding solutions in closed models

and from the stability properties of the standard ES solution of GR.

In the case of LQC gravitational modifications to the Friedmann equations, a neg-

ative curvature index allows a neutrally stable static solution with Λ < κρc and

w < −1, in contrast to the GR case. In particular the LQC static solution exists

and is stable in the case of positive values of the cosmological constant as long as

Λ < κρc.

In the case of HL gravity two static solutions are found. The inclusion of the neg-

ative curvature index leads to a static solution (HL1) with negative cosmological

constant and vanishing energy density which is neutrally stable against homoge-

neous perturbations. Furthermore, a negative curvature index allows a static solu-

tion (HL2) which can be either a saddle, for w < −1 and w > 1/3, or a center for

−1 < w < 1/3.
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As already observed in the frameworks of different modified models [27, 28, 32, 34],

the regime of infinite cycles about the center fixed points must be eventually bro-

ken in order to enter the current expanding universe phase. To this aim a further

mechanism is needed, whose analysis is beyond the scope of this paper.
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