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Abstract. In this paper, we calculate the frequency of small oscillations of a ring

confined to a plane that, along with a fixed ring of the same size, supports a soap film

catenoid. The restoring force is provided by the film’s surface tension. We assume

that the soap film is massless and continuously assumes the shape of minimal area.

Mathematically, the problem is equivalent to calculating the second derivative of

the total area with respect to the displacement of the ring. The calculus of moving

surfaces is extensively used in the presented calculation.

1. Introduction

In this paper we propose to study the harmonic oscillations of a ring confined to

a plane under the influence of a massless soap film that continuously assumes the

surface of minimum area. The presented calculation demonstrates the stability of

the equilibrium catenoid with respect to an in-plane shift of the supporting rings.

The calculation relies on the calculus of moving surfaces.

The catenoid has historically played an important role in the calculus of varia-

tions and the study of minimal surfaces. In 1744, Euler showed that the catenoid

is a minimal surface of revolution in his celebrated work on the calculus of vari-

ations [2]. Since then, a number of embedded (that is, non-self-intersecting) sur-

faces have been discovered analytically: helicoid by Jean Meusnier in 1776, Scherk

surfaces by Heinrich Scherk in 1834, Riemann surfaces in 1860 and the Schwarz

quadrilateral in 1890. In recent decades, a number of minimal surfaces of genus

greater than zero have been discovered, including surfaces by Enneper, Catalan,

Henneberg and Costa. Minimal surfaces continue to be an active area of research

(see the works of Meeks, for example [6] and references therein).

Minimal surfaces play an important role in modern physical applications including

the study of fluid films [1], polymer networks [10], crystallography and protein

structures [5] and smectic-A [7] and other liquid crystal phases.
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2. Description of the Problem

Consider the physical system in Fig.1 consisting of two coaxial rings of radius

R a distance H apart. The top ring is fixed while the bottom ring slides on a

frictionless substrate. It is kept on the substrate by the force of gravity or some

other mechanism which is inconsequential for our discussion. If the bottom ring is

displaced from the equilibrium, the soap film provides the restoring force. What is

the frequency of the resulting small oscillations?

In this paper we solve a geometric problem that is directly related to this question.

Namely, assuming that the bottom ring is shifted by L and the area of the resulting

minimal surface is A (L) we calculate A′′ (0). Note that the first derivative vanishes

by symmetry.

2.1. The Equilibrium Catenoid

Point the z-axis (or, as we refer to it, the Z3-axis) downward, place the top ring at

z = 0 and the bottom ring at z = H . The equilibrium catenoid that spans coaxial

rings of equal radius R (see Fig.1) is given in cylindrical coordinates by

r (z) = a cosh
z − H/2

a
(1)

where the constant a is selected to match the radius of the ring at each end

a cosh
H

2a
= R. (2)

Let μ be the critical value above which the equation

cosh μx = x (3)

has no solutions. The approximate numerical value of μ is 0.66274. For any value

of H < 2Rμ, equation (2) has two solutions. The solution that corresponds to the

smaller value of a is morphologically unstable. The other one is stable and is the

object of our study.

Let Φ be the angle that the equilibrium catenoid forms with the vertical axis, as

illustrated in Fig.1. Then

cosΦ =
a

R
and sinΦ = tanh

H

2a
· (4)

Therefore, for a given value of R, the parameters H , a, and Φ are uniquely related

and we shall use them interchangeably.
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Figure 1. The equilibrium catenoid and a minimal surface spanning the

original top ring and the bottom ring shifted by a distance.

Looking ahead, we will derive the following expression for the second derivative

A′′ (0) of A at L = 0

A′′ (0) =
πa2

R2

(
2 + 2 cosh H

a
− H

a
sinh H

a(
1 + cosh H

a

) (
H
a

+ sinh H
a

) + tanh
H

2a

)
. (5)

The plot of A′′ (0) as a function of H for R = 1 is seen in Fig.2. We observe first

that A′′ (0) is positive for all values of H indicating stability with respect to the

horizontal displacement of the bottom ring. Secondly, A′′ (0) approaches infinity

as H → 0. In fact

A′′ (0) =
π

H
+ O

(
1

H3

)
as H → 0 (6)

as one would expect, since the catenoid is a nearly flat cylinder for small H , for

which equation (6) is easily verified.

3. Calculation

3.1. Variation of Area

The calculation is conducted in the framework of the calculus of moving surfaces

(CMS). For the description of this technique, see [3] and references therein. The

CMS has so far been developed for hypermanifolds embedded in Euclidean spaces.

Our analysis involves two such surfaces. First, the catenoid S is embedded in the

three dimensional space and has a rigid moving contour boundary s, that is the

bottom ring. Second, the motion of the rigid contour boundary s, will be analyzed
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Figure 2. The plot of A′′ (0) in equation (5) as a function of H for R = 1
and 0 < H ≤ 2μR, where μ is the largest value for which equation (3) has

a solution. Consequently, the value H = 2μR is the largest value of H for

which a catenoid solution exists.

from the point of view of the embedding within its plane. In the course of our

calculation we will need to obtain the rate of change of the catenoid surface normal

N with respect to the motion of the bottom ring. This will require a “crossover”

formula that relates the δ/δt-derivative in space with the δP /δt-derivative in the

plane. When applied to contour restrictions F of surface invariants, such as N, the

two derivatives are related by the chain rule

δP F

δt
=

δF

δt
+ cnα∇αF (7)

where nα is the contour normal that lies within the tangent plane to the surface S
and c is the invariant velocity of the contour with respect to S. The velocity c was

discussed in [4].

The starting point of our calculation is the following law that governs the rate of

change of the integral
∫
S

TdS over a deforming surface S with a moving contour

boundary s

d

dt

∫
S

TdS =

∫
S

δT

δt
dS −

∫
S

TCBα
αdS +

∫
s

cTds (8)

where Bα
α (the trace of the curvature tensor Bα

β ) is the mean curvature and C is the

velocity of the surface S with respect to the ambient Euclidean space.

The area A of the catenoid is given by the integral

A =

∫
S

dS. (9)
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We imagine a smooth evolution of the initial catenoid where the bottom ring moves

to the right with uniformly velocity in time t and the rest of the surface adjusts as

to maintain the minimal property

Bα
α = 0 at all t. (10)

Then the first derivative of A is obtained by an application of (8) to (9) with T ≡ 1.

The result, valid it all times t, is

dA

dt
=

∫
s

cds. (11)

The second derivative is obtained by a repeated application of (8) to (11), but this

time in the context of bottom ring s moving within the plane

d2A

dt2
=

∫
s

δP c

δt
ds −

∫
s

cCP BΨ
Ψds (12)

where CP (where P is for plane) is the invariant velocity of the contour s within

the plane and BΨ
Ψ is its mean curvature with respect to its embedding within the

plane. By our convention, capital Greek letters have value one. With respect to the

external normal NP , the mean curvature BΨ
Ψ is given by [8], [9]

BΨ
Ψ = − 1

R
· (13)

3.2. Differential Objects in the Plane

We begin by calculating the contour velocity Cp within the plane. It will later lead

to the contour velocity c with respect to the surface S and to δP c/δt. Refer the

plane to Cartesian coordinates P i. Refer the contour to the angle SΨ = θ, where

Ψ = 1, as mentioned above. Then the evolution of the rigid contour, which is

moving to the right with unit velocity, is

P i (t, θ) =

[
t + R cos θ

R sin θ

]
. (14)

The shift tensor Zi
Ψ, defined as ∂P i/∂SΨ, is

Zi
Ψ =

[
−R sin θ

R cos θ

]
. (15)

Since the plane is referred to Cartesian coordinates, the shift tensor ZiΨ with a

covariant index i, has the same entries.
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The metric tensors ZΨΨ = Zi
ΨZiψ and ZΨΨ (the inverse of ZΨΨ) are given by

ZΨΨ = R2, ZΨΨ =
1

R2
· (16)

The velocity vi
P , defined as ∂P i/∂t, and its projection vΨ

P = ZΨΛZiΛvi
P onto s

are

vi
P =

[
1
0

]
and vΨ

P = − 1

R
sin θ. (17)

The components N i
P of the exterior normal NP within the plane are easily guessed

N i
P =

[
cos θ
sin θ

]
. (18)

The covariant components (NP )i have the same values.

The velocity CP is defined as the normal projection of vi
P onto s

CP = vi
P (NP )i . (19)

It can be described by the explicit expression

CP = cos θ. (20)

We have thus obtained one of the ingredients of equation (12). The derivative

δP CP /δt of CP is calculated directly by the definition of the δP /δt-derivative

δP CP

δt
=

∂CP

∂t
− vΨ

P ∇ΨCP = − 1

R
sin2 θ. (21)

3.3. Calculation of the Contour Velocity

For a moment, we have to step out of the plane and consider the motion of the rigid

contour boundary s as embedded in the three dimensional Euclidean space. This

motion is characterized by the vector velocity Γ given by

Γ = CPNP . (22)

Then the contour velocity c with respect to the surface S is the tangential projection

of Γ onto S
c = CPNP ·n. (23)

A vector manipulation of the right hand side leads to a significant simplification.

Suppose that t is the unit tangent vector to the contour s within the plane. Then

n = t × N (24)
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and

c = CPNP · (t × N) . (25)

By an even permutation of the triple vector product, we have

c = CPN· (NP×t) .

Both NP and t lie in the plane of the ring. Therefore NP×t is a unit vector

pointing upwards, which, in our notation, is −k. Thus

c = −CPN · k. (26)

We have thus obtained another ingredient from equation (12).

3.4. Calculation of δP c/δt

Our starting point for the calculation of δP c/δt is equation (26). Apply the product

rule
δP c

δt
= −δP CP

δt
N · k − CP

δPN

δt
·k. (27)

Next, apply the chain rule (7) to the second term

δP c

δt
= −δP CP

δt
N · k − CP

(
δN

δt
+ cnβ∇βN

)
·k (28)

and apply one rule from the differentiation table of the CMS

δN

δt
= −S

α∇αC (29)

and one rule from classical tensor calculus [8], [9]

∇βN = −BαβS
α (30)

where S
α is the contravariant basis. So far, we have arrived at the following ex-

pression for δP c/δt

δP c

δt
= −δP CP

δt
N · k + CP

(
∇αC + cnβBαβ

)
S

α·k. (31)

We must therefore now turn to the calculation of these differential objects on the

catenoid: C, Sα, Bαβ , and nβ .
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3.5. Differential Objects on the Catenoid

Introduce Cartesian coordinates Z i in the ambient three dimensional Euclidean

space. Let Z1 and Z2 correspond to the usual arrangement of Cartesian coordinates

x and y in the plane, and let Z3 point down. Parametrize the equilibrium catenoid

with the help of two variables Sα, S1 = γ and S2 = θ as follows

Z1 (γ, θ) = a cosh
γ − H/2

a
cos θ

Z2 (γ, θ) = a cosh
γ − H/2

a
sin θ (32)

Z3 (γ, θ) = γ

where a is determined by equation (2).

The shift tensor Zi
α = ∂Zi/∂Sα is

Zi
α =

⎡⎢⎣ sinh γ−H/2
a

cos θ −a cosh γ−H/2
a

sin θ

sinh γ−H/2
a

sin θ a cosh γ−H/2
a

cos θ
1 0

⎤⎥⎦ (33)

and the shift tensor Ziα with a covariant index i has the same entries.

The covariant metric tensor Sαβ = Zi
αZiα is

Sαβ =

[
cosh2 γ−H/2

a
0

0 a2 cosh2 γ−H/2
a

]
. (34)

The contravariant metric tensor Sαβ , the matrix inverse of Sαβ , is

Sαβ =

⎡⎣ 1

cosh2 γ−H/2

a

0

0 1
a2

1

cosh2 γ−H/2

a

⎤⎦ . (35)

The normal N i is given by

N i =
1

cosh γ−H/2
a

⎡⎣ cos θ
sin θ

sinh γ−H/2
a

⎤⎦ . (36)

The covariant curvature tensor Bαβ is

Bαβ =

[
− 1

a

a

]
. (37)
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Raise the index α to obtain Bα
β

Bα
β =

⎡⎣ − 1

a cosh2 γ−H/2

a
1

a cosh2 γ−H/2

a

⎤⎦ .

The trace Bα
α of Bα

β , which gives the mean curvature is zero

Bα
α = 0. (38)

This condition is satisfied not only by the equilibrium catenoid, but continuously

throughout the evolution as expressed by equations (10). The Gaussian curvature

K is the determinant of Bα
β

K = − 1

a2 cosh4 γ−H/2
a

· (39)

The trace Bα
β Bβ

α of the third fundamental form Bα
β Bβ

γ is

Bα
β Bβ

α = −2K (40)

and this relationship holds for any minimal surface. The Laplacian ∇α∇α, best

obtained by the Voss-Weyl equation, is

∇α∇α =
1

cosh2 γ−H/2
a

(
∂2

∂γ2
+

∂2

∂θ2

)
· (41)

Next, we summarize the vector valued fields. With respect to the Cartesian basis

i, j,k, the position vector R is given by

R (γ, θ) = a cosh
γ − H/2

a
cos θ i+a cosh

γ − H/2

a
sin θ j+γ k. (42)

The covariant basis vectors S1 = ∂R/∂S1 and S2 = ∂R/∂S2 are given by

S1 = sinh
γ − H/2

a
cos θ i+sinh

γ − H/2

a
sin θ j + k (43)

S2 = −a cosh
γ − H/2

a
sin θ i+a cosh

γ − H/2

a
cos θ j.

We next derive n, the external unit normal to the bottom ring that lies within the

catenoid’s tangent plane. It is geometrically clear that n points along S1. Since n is

unit length and the length of S1 at γ = H is cosh (H/2a) or R/a , the components

nα of n are

nα =

[
a
R

0

]
. (44)
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Finally, note that the combination nαBαβ is given by

nαBαβ =

[
− 1

R

0

]
. (45)

Note that at the contour boundary

N · k = − sinΦ = − tanh
H

2a
· (46)

Therefore the contour velocity c with respect to S, given in equation (26) is

c = −CPN · k = cos θ tanh
H

2a
· (47)

Furtherer, Sα·k vanishes for α = 2, while for α = 1, we have from (43)

S
1·k =

1

cosh2 H
2a

=
a2

R2
· (48)

The remaining undetermined element in equation (31) is the surface velocity C,

which we will now calculate.

3.6. Calculation of C

The interior condition on C is obtained by applying the δ/δt-derivative to equation

(10), which results in the differential equation

∇α∇αC + CBα
β Bβ

α = 0. (49)

The boundary condition is determined by the motion of the bottom ring where C
must match the normal projection of Γ

C (H, θ) = Γ · N = cos θ cosΦ =
a

R
cos θ. (50)

At the top ring γ = 0, the velocity C must vanish

C (0, θ) = 0. (51)

In coordinate form, the differential equation (49) can be expressed with the help of

(39) and (41)
∂2C

∂γ2
+

1

a2

∂2C

∂θ2
+

2

a2 cosh2 γ−H/2
a

C = 0. (52)
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This equation can be solved by separation of variables. Let

C (γ, θ) = F (γ) eimθ. (53)

Then F (γ) must satisfy the ordinary differential equation

F ′′ +

(
2

a2 cosh2 γ−H/2
a

− m2

a2

)
F = 0 (54)

whose general solution for m = 1 (since we must match cos θ) is

F (γ) = A
1√

cosh 2γ−H
a

+ 1
+ B

sinh 2γ−H
a

+ 2γ−H
a√

cosh 2γ−H
a

+ 1
· (55)

With all boundary conditions satisfied, C (γ, θ) is given by

C (γ, θ) =
a

R

√
1 + cosh H

a

(
sinh H

a
+ 2γ

a
+ sinh 2γ−H

a

)
2
√

cosh 2γ−H
a

+ 1
(

H
a

+ sinh H
a

) cos θ. (56)

Its partial derivative Cγ (γ, θ) with respect to γ at γ = H is

Cγ (H, θ) =
1

R

2 + 2 cosh H
a
− H

a
sinh H

a(
1 + cosh H

a

) (
H
a

+ sinh H
a

) cos θ. (57)

3.7. Putting Everything Together

We now have in place all the elements of equation (31), repeated here

δP c

δt
= −δP CP

δt
N · k + CP

(
∇αC + cnβBαβ

)
S

α·k. (31)

The expression for δP CP /δt is given in (21), that for N · k in (46) and that one

for Cp in (20). Since S
α·k vanishes for α = 2, only the α = 1 component of the

parenthesized expression is relevant. The quantity ∇αC = Cγ is given in (57), c

in (47), nβBαβ in (45) and S
1·k in (48). Putting everything together we find

δP c

δt
=

1

R
sin2 θ tanh

H

2a (58)

+
1

R
cos2 θ

(
2 + 2 cosh H

a
− H

a
sinh H

a(
1 + cosh H

a

) (
H
a

+ sinh H
a

) + tanh
H

2a

)
a2

R2
·
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Integrating over the contour, we have∫
s

δP c

δt
ds = π tanh

H

2a
(59)

+π

(
2 + 2 cosh H

a
− H

a
sinh H

a(
1 + cosh H

a

) (
H
a

+ sinh H
a

) + tanh
H

2a

)
a2

R2
·

The remaining integral in the expression (12) for A′′ (0) is

−
∫

s

cCP BΨ
Ψds = −π tanh

H

2a
· (60)

Combining the two integrals, we obtain the final expression given in equation (5)

A′′ (0) =
πa2

R2

(
2 + 2 cosh H

a
− H

a
sinh H

a(
1 + cosh H

a

) (
H
a

+ sinh H
a

) + tanh
H

2a

)
presented at the beginning of this paper.

4. Discussion

Equation (5) represents the second variation of area A with respect to the hori-

zontal displacement of the bottom ring, assuming that the surface S continuously

satisfies the minimal property (10). Its right hand side (5) is positive for all H as

evidenced by the plot in Fig. 2. Therefore the catenoid soap film is stable with

respect to the in-plane dislocation of the supporting rings. This result can be used

as a potential test for Laplace’s model of capillary effects which essentially states

that equilibrium and stability of soap film configurations is governed by the po-

tential energy directly proportional to the total area. In a physical experiment, the

expected frequency f of small horizontal oscillations of the bottom ring of mass

M on a frictionless substrate is

f =

√
σA′′ (0)

M
(61)

assuming that the total inertia of the soap film is negligible. It must also be true that

the oscillations are small enough that the nonlinear dynamic features of fluid films,

such as dynamic thickening, do not substantially interfere with the base mode.

The correctness of equation (5) can be tested numerically in a very effective away.

It was discovered by Riemann in 1860 that the equilibrium surface that spans non-

coaxial rings is composed of circular cross-sections. Let r (z) denote the radius
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of the circle as a function of the z coordinate and s (z) denote the horizontal shift

of the center of the circle. Then r (z) and s (z) are determined by the system of

ordinary differential equations

rr′′ −
(
r′
)2 − (

s′
)2 − 1 = 0

(62)

rs′′ − 2r′s′ = 0

subject to the boundary conditions

r (0) = r (H) = R
(63)

s (0) = 0, s (H) = L.

This system can be solved in closed form. From the first equation it follows that

s′ = ar2 (64)

where a is a constant of integration, given by the equation

L = a

∫ H

0
r2dz. (65)

Therefore the system of ordinary differential equations (63) reduces to the single

equation

rr′′ −
(
r′
)2 − ar4 − 1 = 0. (66)

One integration (Greg Naber, private communication) yields(
r′
)2

= ar4 + br2 − 1 (67)

where b is another constant of integration. A second integration yields

r (z) =
ic sn

(√
2az
c

− F
(
i arcsinh

√
2a
c

,− c4

4a2

)
,− c4

4a2

)
√

2a
(68)

where c =
√

b +
√

4a2 + b2, sn(u, k) is Jacobi’s elliptic function, F (u, k) is the

elliptic integral of the first kind and the constants of integration are determined

from the boundary conditions (64). The author has tested the solution (68) for a

number of configurations.

On the other hand, equation (68) is quite complex and it is straightforward to solve

(63) numerically by a shooting method. With the help of a numerical solution, the

area of the skewed catenoid can be found to essentially arbitrary precision leading
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to an arbitrarily precise estimate for the second derivative A′′ (0) which can then

be compared with (5).

In conclusion, we would like to note the important question of morphological sta-

bility of the minimal surface that results for a finite displacement of the bottom

ring. Such stability analysis entails the calculation of the second variation with

respect to general morphological deformations of the surface and the subsequent

determination of whether the second variation as positive for all such deformations.
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