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Abstract. Known parametrizations of rotations are derived from the LIE group

theoretical point of view considering the two groups SO(3) and SU(2). The con-

cept of coordinates of the first and second kind for these groups is used to derive the

axis and angle as well as the three-angle description of rotation matrices. With the

homomorphism of the two groups the EULER parameter description arises from

the axis and angle description of SU(2). Due to the topology of SO(3) any three-

angle description gives only a local parametrization like EULER angles such that

the mapping from their time derivatives to the algebra so(3), i.e., to the angular

velocity tensor, exhibits singularities. All these parametrizations are based on the

generation of the respective group by the exp map from their algebras. Alterna-

tively the CAYLEY transformation also maps algebra elements to group elements.

This fact is well know on SO(3) and yields a representation of rotation matrices

in terms for RODRIGUES parameter, which is, however, not continuous. General-

izing this transformation to SU(2) allows for a singularity-free description of all

rotations, which does not contain transcendental functions. While in the consid-

ered range the exponential map is of class C∞ the cay map on SU(2) is only of

class C1 and on SO(3) it is not even continuous. Simulation results exemplify

the resultant numerical benefits for the simulation of rigid body dynamics. The

problem caused by a lack of a continuous transformation from generalized accel-

erations to angular accelerations can be avoided for rigid body motions using the

BOLZMANN-HAMEL equations.
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1. Introduction

The description of spatial rotations is a frequently addressed problem to which

contributions were originally made by RODRIGUES, EULER, KLEIN and CAYLEY

and many others. EULER and KLEIN independently derived equivalent four para-

metric descriptions of rotations. The complex valued CAYLEY-KLEIN parameter

were independently introduced by CAYLEY [3–5] and KLEIN [13], [14] based on

the work of RODRIGUES and EULER. CAYLEY used a projective description of

the Riemannian sphere to the complex plane to derive a complex representation

while EULER and RODRIGUES employed stereographic projections to gain real

valued relations. It was already noticed by HAMILTON that all these descriptions

are isomorphic to his quaternion algebra [9].

Rotations of three-dimensional vectors are naturally described by linear maps act-

ing on representations of vectors in an orthonormal frame. In coordinate repre-

sentation these maps are described by orthogonal matrices constituting a group,

the special orthogonal group SO(3). Moreover, this group is a LIE group and its

topology and representation is extensively investigated [1], [26–28], [30] . It is

well known that SO(3) is connected but not simply connected. Also well stud-

ied is its covering group SU(2), which is simply connected. The LIE algebras of

both groups are equivalent with respect to an isomorphism. Thus both groups are

locally equivalent via a homomorphism.

Since the early work the set of possible parameterization contains the axis angle,

three-angles, EULER and RODRIGUES parameter. But using a modified coor-

dinate transformation to obtain the RODRIGUES parameter (RP) gives rise to a

further parametrization, which is called the modified RP. It will be shown how

this approach naturally follows from the CAYLEY transformation on SU(2) and

fits into the LIE algebraic framework.

Vector-like descriptions of rotations based on the RP have attracted much attention

in conjunction with efficient computer implementations [6–8], [29]. Numerical

properties of conservative integration schemes using the CAYLEY transformation

on SO(3) as well as its use for discretizations of finite rotations were investigated

in [2] and [15]. The RP approach is especially useful for the description of small

rotations as it is for the formulation of the kinematics of elastic bodies [12]. The
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LIE group property of spatial rotations and rigid body motions in general have

been proven to be an important aspect that admits efficient symbolic computation

[19–22]. Vector parameterization in particular are attractive since they give rise to

purely algebraic and numerically advantageous descriptions of rotations.

In Section 2 the generation of SO(3) and SU(2) from their LIE algebras by the

exponential map and the CAYLEY transformation is addressed. On SO(3) the

CAYLEY transformation is well known but the CAYLEY transformation on SU(2)
does not appear in the literature. The isomorphism of both algebras is then used

in Section 3 to cast the adjoined actions of either groups on their algebra in the

form of the conventional description of rotations, i.e., matrix times vector. In

this way the four- and three-parametric descriptions based on the exponential map

on SO(3) and SU(2) are obtained with canonical coordinates of the first or sec-

ond kind, i.e., axis and angle or composition of relative rotations. Section 4 is

concerned with parameterization that result from CAYLEY transformations and

their relations to canonical coordinates on the respective group. On SO(3) these

are known as RODRIGUES or CAYLEY parametrizations. But the CAYLEY trans-

formation on SU(2) in conjunction with the group isomorphism of SO(3) and

SU(2) yields a new parametrization, the modified RP. Vector fields in the respec-

tive algebras and on the parameter space are related in Section 5 to obtain angular

velocities and accelerations in terms of the chosen parametrization. Section 6

concludes the paper with numerical issues and addresses the lack of a continuous

mapping from accelerations of the modified RP to the angular acceleration vector.

This drawback in the context of rigid body dynamics can, however, be overcome

using the BOLZMANN-HAMEL equations instead of the LAGRANGIAN motion

equations.

The LIE group theoretical background can be found in one of the excellent books

like [25] or [10]. For further reading on differential geometric treatments of rota-

tions the reader is referred to [1] and [23].

2. The Group SO(3) and its Covering Group SU(2)

The set of all real valued orthogonal 3× 3 matrices constitutes the special orthog-

onal group SO(3)

SO(3) =
{
A ∈ GL (3, R) ; AAT = I3,3, detA = +1

}
. (1)

It is a three-dimensional LIE group with LIE algebra so(3), the set of all real

valued 3 × 3 skew symmetric matrices

so(3) =
{
ω ∈ R

3,3 ; ω + ωT = 0
}

. (2)
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As such SO(3) is generated by the LIE algebra so(3) via the exponential map

exp : so(3) → SO(3). A basis for so(3) such that so(3) = span (L1, L2, L3)R is

given by Li = (−εijk) ∈ R
3,3, i = 1, 2, 3 or in matrix form

L1 =

⎛⎝ 0 0 0
0 0 −1
0 1 0

⎞⎠ , L2 =

⎛⎝ 0 0 1
0 0 0

−1 0 0

⎞⎠ , L3 =

⎛⎝ 0 −1 0
1 0 0
0 0 0

⎞⎠ .

(3)

If the generating LIE algebra element for R ∈ SO(3) has the form1

ωX = X iLi, ωX ∈ so(3), X i ∈ R
(4)

(ωX) ij = −εijkX
k

such that R = exp
(
XiLi

)
then the components X i, i = 1, 2, 3 are canoni-

cal coordinates of the first kind (C1K). The group SO(3) is a connected three-

dimensional LIE group and can hence be locally expressed as product of three

one-dimensional subgroups such that R = exp (θ1Li) exp (θ2Lj) exp (θ3Lk),
i �= j �= k where therein θi, i = 1, 2, 3 are canonical coordinates of the second

kind (C2K) on the LIE group SO(3) [17]. The concept of coordinates of the first

and second kind is of special importance for the description of spatial rotations.

Although SO(3) is connected, it is not simply connected and thus any product

representation cannot be global, i.e., for any such representation there exists a

point where the exponential map parameterized by C2K is not bijective. Exam-

ples for C2K on SO(3) are every three angles used to describe spatial rotations,

e.g. EULER or BRYANT angles. C1K are the rotation axis and angle. On so(3) as

matrix LIE algebra the LIE bracket is the matrix commutator and it holds that

[Li, Lj ] = LiLj − LjLi = εijkLk (5)

thus the structure constants of so(3) are given by the LEVI-CIVITA symbol. The

LIE bracket defines a linear map adω: so(3) → so(3) for fixed ω, adω (η) :=
[ω, η]. A norm on so(3) is given by

‖ωX‖2
so(3) = tr

(
ωT

XωX

)
= ‖X‖2

R3 (6)

where X :=
(
X1, X2, X3

)
, ‖X‖2

R3 = 〈X, X〉R3 = XT X is the standard inner

product on R
3. For simplicity the subscripts in (6) will be dropped if there is

no danger of confusion. For so(3) the exponential map is explicitly expressed

1Convention: summation over repeated indices on different levels.
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using the coordinates of the first kind X i by the well known EULER- RODRIGUES

formula

R (X) := expωX = I +
sin ‖ωX‖
‖ωX‖ ωX +

1 − cos ‖ωX‖
‖ωX‖2 ω2

X , ωX ∈ so(3). (7)

If ‖ωX̄‖ = 1 then (7) yields a rotation matrix describing a rotation about the axis

X̄ ∈ R
3 and angle θ ∈ (−π, π] 2

R
(
θ, X̄

)
:= exp

(
θωX

)
= I + sin θωX̄ + (1 − cos θ)ω2

X̄
. (8)

The SO(3) group acts on its LIE algebra via the adjoint map Ad: SO(3)×so(3) →
so(3) which describes how group elements act on algebra elements. A basic result

from the theory of LIE groups is the relation (cf. [17]) exp adωη = Adexp ωη with

ω, η ∈ so(3).

Proposition 1. If R = exp (ω) and ω, η ∈ so(3), the adjoint action R on η is
explicitly given by

AdRη = exp adωη =

(
I +

sin ‖ω‖
‖ω‖ adω +

1 − cos ‖ω‖
‖ω‖2 ad2

ω

)
η (9)

where adi
ω is the i-fold composition of the operator adω .

Proof: Iterative application of adω together with ω3 = −‖ω‖2 ω yields

adj
ωη =

{
(−1)k ‖ω‖2k adωη, j = 2k + 1

(−1)k ‖ω‖2k ad2
ωη, j = 2k + 2, k = 0, 1, 2, . . .

(10)

and substitution into the series expansion of exp gives the result

exp [ω, η] = v +
∞∑

k=0

(−1)k ‖ω‖2k

(
adωη

(2k + 1)!
+

ad2
ωη

(2k + 2)!

)

=

(
I +

sin ‖ω‖
‖ω‖ adω +

(1 − cos ‖ω‖)
‖ω‖2 ad2

ω

)
η.

�

By the bilinearity of ad it follows that for ‖ωX̄‖ = 1, Adexp θωX̄
η = η +

sin θ [ωX̄ , η] + (1 − cos θ) [ωX̄ , [ωX̄ , η]] .

Another way to map algebra elements to group elements which in contrast to rela-

tions (9) does not contain transcendental functions is the CAYLEY transformation.

2Let a ∈ R
3 be an arbitrary vector then a denotes the normalized vector: a := a/ ‖a‖
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Lemma 2. The CAYLEY transformation cay: ω 
−→ (I − ω)−1 (I + ω), for
ω ∈ so(3) is a map from so(3) to SO(3) and can be expressed as

cay (ω) = (I − ω)−1 (I + ω) = I +
2

1 + ‖ω‖2

(
ω + ω2

)
, ω ∈ so(3) . (11)

Proof: Using the NEUMANN series (I − ω)−1 = I +ω +ω2 +ω3 + · · · with the

relation ω3 = −‖ω‖2 ω for higher order terms (11) can be written as

cay (ω) =
(
I + ω + ω2 + ω3 + · · ·

)
(I + ω)

= I + 2
(
1 − ‖ω‖2 + ‖ω‖4 − ‖ω‖6 + · · ·

) (
ω + ω2

)
(12)

= I +
2

1 + ‖ω‖2

(
ω + ω2

)
.

R (ω) ∈ SO(3) if and only if R (ω)T R (ω) = I and detR (ω) = 1. With (13) it

holds that

RT R = I + 4
(
1 + ‖ω‖2

)−1
ω2 + 4

(
1 + ‖ω‖2

)−2 (
ω4 − ω2

)
= I

and det (I + ω) = Π3
i=1λi (I + ω) and det (I − ω)−1 = 1/det (I − ω), where

λi (A) is the i-th eigenvalue of A. From the power expansion I + ω = ω0 + ω
and I − ω = (−ω)0 − ω follows that λi (I + ω) = 1 + λi (ω) and λi (I − ω) =
1 + λi (−ω) respectively. The characteristic equation ω3 + ‖ω‖2 ω = 0 yields the

eigenvalues λ1 (ω) = 0, λ2,3 (ω) = ±i ‖ω‖ and λ1 (I + ω) = 1, λ2,3 (I + ω) =
1 ± i ‖ω‖. Thus det (I + ω) = 1 + ‖ω‖2. Proceeding in the same way it follows

that det (I − ω) = 1 + ‖ω‖2 and finally detR (ω) = 1. �

Let ωc = ciLi and R (c) := cay (ωc) with c ∈ R
3 then the vector c is known as

the RODRIGUES vector of R whose components ci, i = 1, 2, 3 will be referred to

as RODRIGUES parameter (RP) throughout. If again ‖ωX̄‖ = 1 then R
(
γ, X̄

)
:=

cay (γωX̄) = I + 2
1+γ2

X̄

(
γωX̄ + γ2ω2

X̄

)
is an orthogonal matrix determined by

the parameter γ and axis X̄ via (4). Therein the real parameter γ will be called

the CAYLEY parameter (CP) for a rotation about X̄ . It should be noticed that

some authors refer to the components ci of the RODRIGUES vector as CAYLEY

parameter [17] while others call them RODRIGUES parameter [18]. As will be

seen later, the RODRIGUES vector c ∈ R
3 and the vector X ∈ R

3 in (7) are

related by a coordinate transformation in R
3 as it should be expected since the

exp map is locally surjective for a compact group.
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The (simply connected) covering group of SO(3) is the special unitary group

SU(2)

SU(2) = {U ∈ GL (C, 2) ; UU ∗ = I2,2} . (13)

The unitarity condition on U ∈ SU(2) demands the special form

U =

(
a b

−b a

)
(14)

with complex values a, b ∈ C such that |a|2 + |b|2 = 1. These numbers a, b are

called CAYLEY-KLEIN parameters [1]. The generating LIE algebra of SU(2) is

su(2), the set of all skew Hermitian 2 × 2 matrices

su(2) =
{
u ∈ C

2,2 ; u + u∗ = 0
}

. (15)

Since for u ∈ su(2), u = −u∗ it follows that tr (u) = 0. A basis for su(2) such

that su(2) = spanR (E1, E2, E3) is given by

Ek =
i

2
σk, k = 1, 2, 3 (16)

where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are the PAULI matrices. In analogy to (4) every element u ∈ su(2) can be ex-

pressed as a linear combination of Ei, i = 1, 2, 3 with real coefficients X i

uX = X iEi, uX ∈ su(2), X i ∈ R, i = 1, 2, 3. (17)

The LIE bracket for the matrix algebra su(2) is the matrix commutator

[u, v] = uv − vu, u, v ∈ su(2). (18)

For su(2) the structure constants are due to the relations E1E2 = 1
2E3, E3E1 =

1
2E2, E2E3 = 1

2E1 and thus

[Ei, Ej ] = εijkEk (19)

are again determined by the LEVI-CIVITA symbol. A norm on su(2) can be in-

troduced as

‖u‖2 := detu (20)
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such that with uX = X iEi it holds ‖uX‖2
su(2) = ‖X‖2

R3 . A remarkable property

of SU(2) is that any U ∈ SU(2) can be expressed as a linear combination in the

basis {P0, P1, P2, P3}, i.e.,

U = pνPν (21)

with the condition
∑3

ν=0(p
ν)2 = 1. The basis elements are given in terms of the

basis on its algebra su(2)

Pν =

{
ISU(2) ν = 0

2δνiEi ν = 1, 2, 3.
(22)

The real parameter pν ∈ R, ν = 0, 1, 2, 3 in (21) are the EULER parameter (EP)

associated with a rotation about the axis X̄ ∈ R
3,
∥∥X̄∥∥ = 1. They are related to

the CAYLEY-KLEIN parameter by

a = p0 + ip3, b = p2 + ip1. (23)

The fact that SU(2) elements can be expanded as a linear combination (21) finds it

underlying reason in the existence of an homomorphism of SU(2) and the quater-

nion algebra. As a result the multiplication law for EP is determined by that

of quaternions and hence the group multiplication in SU(2) is governed by the

quaternion multiplication.

Lemma 3. For any u ∈ su(2) it holds

expu = I cos
∥∥∥u

2

∥∥∥+ 2 sin
∥∥∥u

2

∥∥∥ u

‖u‖· (24)

Proof: The characteristic equation for u = X iEi ∈ su(2) is ‖u‖2 + 4λ2 = 0 and

hence with the CAYLEY- HAMILTON theorem it also holds u2 = −1
4 ‖u‖

2 I . It

can be shown that uj = (−1)k 1
22k ‖u‖2k u, j = 2k+1 and uj = (−1)k 1

22k ‖u‖2kI,
j = 2k, k = 0, 1, 2, . . . which yields the desired result

expu =
∞∑

k=0

(−1)k

(
‖u‖2k

22k (2k)!
I +

‖u‖2k+1

22k+1 (2k + 1)!
u

)

= I cos
∥∥∥u

2

∥∥∥+
2

‖u‖ sin
∥∥∥u

2

∥∥∥u

and taking into account that ‖uX̄‖ = 1 the representation of U ∈ SU(2) in terms

of coordinates of the first kind is

U
(
θ, X̄

)
:= exp θuX̄ = I cos

θ

2
+ 2 sin

θ

2
uX̄ . (25)



Group Theoretical Approaches to Vector Parameterization of Rotations 51

The general result exp aduv = Adexp uv, u, v ∈ su(2) with the bilinear map

aduv = [u, v] gives rise to an explicit formulation for su(2) such as (9).

Lemma 4. For any u, v ∈ su(2) the adjoint map Adexp u: su(2) → su(2) can be
expressed as

exp aduv = v +
sin ‖u‖
‖u‖ aduv +

1 − cos ‖u‖
‖u‖2 ad2

uv. (26)

Proof: Using the relation for higher order terms ui above gives

adj
uv =

{
(−1)k ‖u‖2k aduv, j = 2k + 1

(−1)k ‖u‖2k ad2
uv, j = 2k + 2, k = 0, 1, 2, . . .

(27)

and the series expansion of exp yields

exp aduv = v +
∞∑

k=0

(−1)k ‖ω‖2k

(
aduv

(2k + 1)!
+

ad2
uv

(2k + 2)!

)
(28)

=

(
I +

sin ‖u‖
‖u‖ adu +

1 − cos ‖u‖
‖u‖2 ad2

u

)
v.

�

Presumed ‖uX̄‖ = 1 it follows with the bilinearity of aduv that

Adexp θuX̄
v = v + sin θ [uX̄ , v] + (1 − cos θ) [uX̄ , [uX̄ , v]] . (29)

As for SO(3) the CAYLEY transformation maps elements of the LIE algebra su(2)
to elements in the group.

Theorem 5. The transformation cay: u 
−→ (I − u)−1 (I + u) , u ∈ su(2) de-
fines a map from su(2) to SU(2) and has the explicit form

cay (u) = (I − u)−1 (I + u) =
1 −

∥∥u
2

∥∥2

1 +
∥∥u

2

∥∥2 I +
2

1 +
∥∥u

2

∥∥2 u, u ∈ su(2). (30)

Proof: The series expansion (I − u)−1 = I+u+u2+u3+· · · yields (I − u)−1 =
4

4+‖u‖2 (I + u) and thus

U = cay (u) = (I − u)−1 (I + u)
(31)

=
4

4 + ‖u‖2 (I + u)2 =
1 −

∥∥u
2

∥∥2

1 +
∥∥u

2

∥∥2 I +
2

1 +
∥∥u

2

∥∥2 u.
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U ∈ SU(2) if and only if U ∗U = I and detU = 1. With u∗ = −u it follows that

U∗U = 16
(
4 + ‖u‖2

)−2
(I − u)2 (I + u)2

=
(
16 + 8 ‖u‖2 + ‖u‖4

)(
4 + ‖u‖2

)−2
I = I.

From the characteristic equation ‖u‖2 + 4λ2 = 0 the eigenvalues of u can be

deduced as λ1,2 = ± i
2 ‖u‖ and λi (I + u) = 1 ± i

2 ‖u‖. Hence it follows that

det((I − u)−1 (I + u)) = 4
4+‖u‖2

(
1 + 1

4 ‖u‖
2
)

= 1. �

Alternatively U = cay (u) can be expressed as a product

U (u) = U
1

2 (u) · U 1

2 (u) with U
1

2 (u) = (1 +
1

2
‖u‖2)−

1

2 (I + u) . (32)

Let ua ∈ SU(2) be expressed as ua = 2aiEi, with a ∈ R
3 such that U (a) :=

cay (ua). Further set u = X̄iEi with ‖uX̄‖
su(2) = ‖X‖R3 = 1 and introduce a

real parameter α such that

U
(
α, X̄

)
:= cay (2αuX̄) =

1 − α2

1 + α2
I +

4α

1 + α2
u. (33)

Definition 6. Let ua = aiEi and U (a) = cay (2ua). The vector a =
(
ai
)
∈ R

3

is called the modified RODRIGUES vector of U . If U
(
α, X̄

)
= cay (2αuX̄) with

‖uX̄‖ = 1, then α ∈ R is called the modified CAYLEY parameter of U .

The above introduced parameters α and a are arbitrary and so their respective de-

finition was chosen in order to simplify the later expressions for rotation matrices

avoiding the factor 2. Modified CP and RP are not canonical coordinates by them

self but they result from those by a coordinate transformation on R
3.

3. Representation of Rotations Using Canonical Coordinates

In the context of rotations the algebras of interest are R
3, so(3) and su(2). Re-

lations of these algebras and of the two groups SU(2) and SO(3) give rise to

different parametrization of rotation expressed in terms of C1K or C2K on either

group. By a coordinate transformation on the respective group, SO(3) and SU(2)
can be parameterized in terms of the respective CPs as shown in the next section.

The vector space R
3 is a LIE algebra where the cross product represents the LIE

bracket [X, Y ]R3 := X × Y , X, Y ∈ R
3 , where in an orthonormal basis it holds
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for Z = X ×Y that Zi = 1
2εi

jkX
jY k and thus the structure constants of this LIE

algebra are given by the LEVI-CIVITA symbol. The LIE algebras so(3) and R
3

are isomorphic via the isomorphism

π1 : so(3) → R
3, ωX = X iLi 
→ X (34)

with ωX =
(
−εijkX

k
)

and Xk = −1
2εkijωij . I.e. π1 ◦ [ωX , ωY ]

so(3) =

[π1 (ωX) , π1 (ωY )]R3 = [X, Y ]R3 , with ωX = X iLi and ωY = Y iLi. Analo-

gously su(2) is isomorphic to R
3 via

π2 : su(2) → R
3, uX = X iEi 
→ X (35)

with Xk = −2tr (uXEk), such that π2 ◦ [uX , uY ]
su(2) = [π2 (uX) , π2 (uY )]R3 =

[X, Y ]R3 . The last equation follows from the relations EiEj = εijkEk − 1
4δij

which produce tr (EiEj) = −1
2δij . Hence π3 := π−1

1 ◦π2 defines an isomorphism

of so(3) and su(2), such that

π3 ◦ [uX , uY ]
su(2) = [π3 (uX) , π3 (uY )]

so(3) = [ωX , ωY ]
so(3) . (36)

The product representation of the cross product on R
3 is obtained from the LIE-

product on so(3) using π1

Z = π1 ◦ [ωX , ωY ]
so(3) = π1 (ωX) × π1 (ωY ) = X × Y = ωXY (37)

X, Y, Z ∈ R
3, ωX , ωY ∈ so(3)

which can be deduced along Y k = −1
2εkij (ωY )ij from

Zi =
1

8
εi

jkε
jmnεkrs (ωX)mn (ωY )rs

=
1

4

(
δ m
k δin − δ n

k δim
)
εkrs (ωX)mn (ωY )rs (38)

= −1

2
εkrs (ωX)ik (ωY )rs = (ωX)ik Y k.

Application of π1 to the adjoint map Adexp ω: so(3) → so(3) gives

π1 ◦ exp θadωX̄
(ωY ) = π1 ◦

(
I + sin θadωX̄

+ (1 − cos θ) ad2
ω

X

)
ωY

(39)
=
(
I + sin θωX̄ + (1 − cos θ)ω2

X̄

)
Y =R

(
θ, X̄

)
Y

with R
(
θ, X̄

)
given by (7). A similar results is obtained for the adjoint operator

Adexp uX̄
on su(2) using π2

π2 ◦ exp θaduX̄
(uY ) = π2 ◦

(
I + sin θaduX̄

+ (1 − cos θ) ad2
uX̄

)
uY

(40)
= R

(
θ, X̄

)
Y.
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Rotations of three-dimensional vectors are thus images of the group actions of

SO(3) and SU(2) on their respective algebras so(3) and su(2). Hence from the

LIE algebraic point of view a rotation of Y ∈ R
3 about an axis X ∈ R

3 is

described as SO(3) and as SU(2) action with R = expωX and U = expuX

given respectively by

ωY
′ = ωRY = AdR (ωY ) , ωY ∈ so(3) (41)

uY
′ = uRY = AdU (uY ) , uY ∈ su(2). (42)

The vector form is then obtained via π1 or π2 where the product representation

RY is a special feature of SO(3) due to the fact that π1 ◦ AdR (ωY ) = RY . It is

worth noting that rotations can be completely described using the associated LIE

algebra elements ωX , ωY or uX , uY .

The algebra isomorphisms π3: su(2) → so (3) locally determines a group homo-

morphism of SU(2) and SO(3). As already seen π1◦Adexp θωX̄
ωY = exp (θωX̄)Y

= R
(
θ, X̄

)
and Adexp θuX̄

vY = exp (θuX̄) vY exp (−θuX̄) describe the same

rotation. Because det
(
Adexp θuX̄

uY

)
= detuY = ‖Y ‖2 this transformation is

orthogonal and thus to each U = eθuX ∈ SU(2) can be uniquely assigned a

R ∈ SO(3) via the homomorphism Π3: SU(2) → SO(3)

Π3 : eθuX 
→ eθωX . (43)

The map Π3 is surjective but not injective since, as can be deduced from (41) with

π2 any two elements ±U ∈ SU(2) describe the same rotation. However, Π3 is a

group isomorphism of SO(3) and the projective special unitary group PSU(2) :=
SU(2)/ {I,−I} ∼= SO(3). Especially the generators Li and Ei of so(3) and

su(2) respectively generate one parametric (and hence ABELian) subgroups and

the isomorphism Π3: PSU(2) → SO(3) yields the following relations between

elementary rotations

U1 (θ) := exp θE1 R1 (θ) := exp θL1

=

(
cos θ

2 i sin θ
2

i sin θ
2 cos θ

2

)
Π3−−−→ =

⎛⎝ 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞⎠
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U2 (θ) := exp θE2 R2 (θ) := exp θL2

=

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
Π3−−−→ =

⎛⎝ cos θ 0 sin θ
0 1 0

− sin θ cos θ

⎞⎠
U3 (θ) := exp θE3 R3 (θ) := exp θL3

=

(
ei θ

2 0

0 e−i θ
2

)
Π3−−−→ =

⎛⎝ cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞⎠ ·

While the algebra isomorphism π3 is global, Π3 is only a local group homomor-

phism of SU(2) and SO(3) caused by the non-simply connectedness of SO(3) and

SU(2) being its double covering [1]. It should be noticed that the basis (3) yields

inverse rotation matrices, i.e., describing counterclockwise rotations about X as

it is obvious from (3).

Having established an isomorphism of SO(3) and SU (2) enables to describe ro-

tations either using a chart on SO(3) or on SU(2) with C1K or C2K respectively.

With Proposition 3 the EP are given in terms of a unit rotation axis X̄ ∈ R
3 and

angle θ or in terms of X ∈ R
3 by

p0 = cos θ
2 , pi = X̄i sin θ

2 , i = 1, 2, 3, −π < θ ≤ π

p0 = cos ‖X‖
2 , pi = Xi

‖X‖
sin ‖X‖

2 , i = 1, 2, 3, −π < ‖X‖ ≤ π.
(44)

The isomorphism π3 = π−1
1 ◦ π2 applied to (41) and (42) yields R (p) Y =

π2 ◦ Adexp uX
vY = π1 ◦ Adexp ωX

ηY = exp (ωX) Y = R (X) Y with

R (p)Y = π2 ◦
(

p0 + ip3 p2 + ip1

−p2 + ip1 p0 − ip3

)
·
(

iY 1 Y 2 + iY 3

−Y 2 + iY 3 −iY 1

)

·
(

p0 − ip3 −p2 − ip1

p2 − ip1 p0 + ip3

)
such that with the unitarity condition

∑3
ν=0(p

ν)2 = 1 due to detU = 1

R (p) =

⎛⎜⎝
1

2

(
a2 − b2 + a2 − b

2
)

− i

2

(
a2 + b2 − a2 − b

2
)

−ab − ab

i

2

(
a2 − b2 − a2 + b

2
)

1

2

(
a2 + b2 + a2 + b

2
)

i
(
ab − ab

)

ab + ab i
(
ab − ab

)
aa − bb

⎞⎟⎠
(45)

=

(
1 − 2

[
(p2)2 − (p3)2

]
2
(
p1p2 − p0p3

)
2
(
p1p3 + p0p2

)
2
(
p1p2 + p0p3

)
1 − 2

[
(p1)2 − (p3)2

]
2
(
p2p3 − p0p1

)
2
(
p1p3 − p0p2

)
2
(
p2p3 + p0p1

)
1 − 2

[
(p1)2 − (p2)2

]
)
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is a representation of rotation matrices in terms of EP. The multiplication law of

EP is naturally defined by that of SU(2) matrices which is exactly the multiplica-

tion law of quaternion [1] since EP are nothing but normalized quaternions. Let

W = UV be given as product of two SU(2) matrices described by their associated

EP pν
U and pν

V then EP of W are given by

p0
W = p0

Up0
V −

∑
i=1,2,3

pi
Upi

V

(46)
pi

W = p0
Upi

V + p0
V pi

U + εi
jkp

j
Upk

V , i = 1, 2, 3.

Using C2K to describe spatial rotations by successively applying elementary ro-

tations is equivalent to a local representation of SO(3) or SU(2) as product of

three one-dimensional subgroups. EULER and BRYANT angle descriptions are

two commonly used examples. With C2K SO(3) and SU(2) elements have the

form

R = Ri (θ1)Rj (θ2)Rk (θ3) , Ri (θ) = exp (θLi)

U = Ui (θ1)Uj (θ2) Uk (θ3) , Ui (θ) = exp (θEi) , i �= j �= k
(47)

where a certain choice of i, j, k yields a certain parametrization. An EULER angle

parametrization of SO(3) and SU (2) with ψ, ϑ, ϕ describing successive rotations

about the actual 3-1-3-axes yields (with sx := sinx, cx := cos x)

R (ψ, ϑ, ϕ) = R3 (ψ) R1 (ϑ)R3 (ϕ)
(48)

=

⎛⎝ cϕcψ − cϑsϕsψ −cψsϕ − cϕcϑsψ sψsϑ

cψcϑsϕ + cϕsψ cϕcψcϑ − sϕsψ −cψsϑ

sϕsϑ cϕsϑ cϑ

⎞⎠
U (ψ, ϑ, ϕ) = U3 (ψ)U1 (ϑ)U3 (ϕ)

(49)

=

(
e

i

2
φ+ i

2
ψ cos ϑ

2 i e
−i

2
φ+ i

2
ψ

i e
i

2
φ− i

2
ψ sin ϑ

2 e
−i

2
φ− i

2
ψ cos ϑ

2

)
.

Thus the CAYLEY-KLEIN parameter and EP for an EULER angle parametrization

are respectively

a = e
i

2
φ+ i

2
ψ cos

ϑ

2
, b = i e

−i

2
φ+ i

2
ψ

p0 = cos
ϕ + ψ

2
cos

ϑ

2
, p1 = cos

ϕ − ψ

2
sin

ϑ

2

p2 = sin
ψ − ϕ

2
sin

ϑ

2
, p3 = sin

ϕ + ψ

2
cos

ϑ

2

(50)
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and it is clear that the EP are periodic in θ with 4π due the double covering of

SO(3) by SU(2), i.e., there exist two U ∈ SU(2) and thus two sets of pν such

that Π3 (U) = R ∈ SO(3). More precisely these are ±U and ±pν , which im-

mediately follows from (45). Although EP arise from C1K they are not canonical

coordinates, neither of the first nor of the second kind. Moreover, EP result from

C1K, axis and angle, via (44) and from C2K via (50) e.g.

4. Vector Parametrization Based on CAYLEY transformations

Thus far the rotation group SO(3) can be globally parameterized with canonical

coordinates of the first kind or locally using canonical coordinates of the second

kind. Alternatively the global parametrization with C1K can be substituted by

the redundant set of EP. The later has the advantage that it yields a global para-

metrization which only contains rational functions. However, this is owed to the

use of four dependent parameter. Obviously CP or RP also describes rotation

matrices with rational functions and rotation matrices can be parameterized with

the three RP. Furthermore the CP approach enables to assign a real parameter to

each elementary rotation which is not possible with EP. Unfortunately the fact that

the CAYLEY transformation on SO(3) cannot describe arbitrary rotations (no re-

flexion) precludes its general use. A possible alternative is to relate the CAYLEY

transformation on SO(3) and that on SU(2) to obtain a global parametrization of

SO(3) which only contains rational functions, i.e., a parametrization with mod-

ified RP or CP. This allows the use of the minimal number of three parameters

to globally parameterize rotations only with rational functions. The fact that CP

parameterize one dimensional subgroups also gives rise to a local parametrization

with CP. The actual RP or CP can be related to the C1K or C2K respectively.

Consider the orthogonal matrix R (ωX) ∈ SO(3) describing rotations about the

axis X ∈ R
3 and let ωX = π−1

1 (X) ∈ so(3) be the associated skew symmet-

ric matrix. R can either be generated from ωX by the exp map or from some

ξc = π−1
1 (c) ∈ so(3) with associated RODRIGUES vector c using the cay map

R (ωX) = expωX = cay (ξc) = R (ξc) , ωX , ξc ∈ so(3). (51)

Due to the analyticity of exp there exist a locally unique ω for every R. It is thus

necessary that AdRωX = ωX and AdRξc = ξc and that ωX and ξc are related by

ξc = λωX , λ ∈ R. (52)
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Comparing (11) and (7) together with (52) yields the condition for λ

2λ

1 + λ2 ‖ωX‖2 =
sin ‖ωX‖
‖ωX‖ ωX ∧ 2λ2

1 + λ2 ‖ωX‖2 =
1 − cos ‖ωX‖

‖ωX‖2 (53)

which is fulfilled by

λ :=
1

‖ωX‖2 tan
∥∥∥ωX

2

∥∥∥ . (54)

It thus follows the relation of the exp and the cay map on SO(3) and that of X
and the RODRIGUES vector c

expωX = cay

(
tan

∥∥ωX

2

∥∥
‖ωX‖2 ωX

)
, Y =

1

‖X‖2 tan

∥∥∥∥X

2

∥∥∥∥ . (55)

Assumed ‖ωX̄‖ = 1 such that R (θ) = exp (θωX̄) then (55) relates the CP γ and

the rotation angle θ

γ = tan
θ

2
, −π < θ ≤ π (56)

where the range of θ is mapped to the entire real line and −∞ < γ < ∞. It also

immediately follows that the exp map (7) on SO(3) can be expressed in the form

exp (θωX̄) = cay

(
tan

θ

2
ωX̄

)
= I +

2

1 + tan2 θ
2

(
ωX̄ + ω2

X̄

)
(57)

that indeed containing transcendental functions. The transformation (56) is pe-

riodic in θ with a period of π and maps θ, with |θ| < π onto the parameter γ,

with a range |γ| < ∞ so that for θ = π the map cay
(
tan θ

2ωX̄

)
is not continu-

ous. Hence the CAYLEY transformation may describe arbitrary rotations except

a reflexion about X̄ . Comparing (11) and (45) yields the relation of CP and the

corresponding EP

p0 =
1√

1 + γ2
, pi =

γ√
1 + γ2

Xi, i = 1, 2, 3. (58)

The case of θ = ±π corresponds to the limit γ → ±∞ that gives the expected

EULER-Parameter for θ = ±π limγ→∞ p0 = 0 and limγ→∞ pi = X i, i = 1, 2, 3.

Hence the well known cay map on SO(3) yields a three-parametric description of

rotations which, however, cannot be used to describe arbitrary rotations.

An alternative vector description can be achieved based on the CAYLEY map (32)

on su(2). Here again the relation to the exp map is of particular interest. Let

a ∈ R
3 the modified RODRIGUES vector of U ∈ SU(2) . Presumed that cay (va)
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and exp (uX) with uX , va ∈ su(2) generate the same matrix U = cay (2va) =
exp (uX) it is necessary that va = λuX , λ ∈ R. Comparing (24) and (32) gives

two conditions on λ

4 − λ2 ‖uX‖2

4 + λ2 ‖uX‖2 = cos
1

2
‖uX‖ ∧ 8λ

4 + λ2 ‖uX‖2 =
2

‖uX‖ sin
1

2
‖uX‖ (59)

which can be combined as easy to solve quadratic equation λ2+ 4
‖uX‖

λ cot 1
2 ‖uX‖

− 4
‖uX‖2 = 0. The two solutions are

λ1 =
2

‖uX‖tan
1

4
‖uX‖ , λ2 = − 2

‖uX‖ cot
1

4
‖uX‖ .

Here λ1 is generated by θ ∈ (−π, π] and λ2 by θ ∈ (π, 2π] so that by definition of

θ = ‖uX‖ the solution can be restricted to λ1. The transformation from the C1K

X to the modified RODRIGUES vector a and from the C2K θ to the modified CP

α should be diffeomorphic in the range of definition. The respective mappings for

the RP and CP are

X 
→ a =
tan1

4 ‖X‖
‖X‖ X (60)

θ 
→ α = tan
1

4
θ (61)

which are in contrast to (56) bijective and continuously differentiable and −π <
θ ≤ π is mapped to −1 < α ≤ 1. The periodicity follows by taking ‖X‖ = θ
modulo 2π or α modulo 2 respectively. A rotation matrix parametrized with α in

(60) is thus periodic in α with a period of 2. Similarly to SO(3) the cay and exp
map are related by

exp (θuX̄) = cay

(
2tan

θ

4
uX̄

)
. (62)

The expression (60) can also be obtained via stereographic projection [24]. The

modified RODRIGUES vector is a scaled version of the WIENER-MILENKOVIC

vector [2], defined as 4
‖X‖

tan‖X‖
4 X , also called the conformal rotation vector.

Comparing (33) and (23) yields the relation of a and α with the EP

p0 = 1−‖a‖2

1+‖a‖2 pi = 2
1+‖a‖2 ai

p0 = 1−α2

1+α2 pi = 2α
1+α2 X̄i.

(63)
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Due to this relation the composition of modified RP is governed by the quaternion

composition rule (46). Incorporating (63) into (45) yields a rotation matrix in

terms of the modified RP a or CP α

R (a) = Π3 ◦ cay (2ua) = I +
4(

1 + ‖a‖2
)2

[(
1 − ‖a‖2

)
ωa + 2ω2

a

]
R
(
α, X̄

)
= Π3 ◦ cay (2αuX̄) (64)

= I +
4

(1 + α2)2

[
α
(
1 − α2

)
ωX̄ + 2α2ω2

X̄

]
with ωa = π−1

1 (a) and ωX̄ = π−1
1

(
X̄
)
. A product representation of SU(2) and

via Π3 of SO(3) in terms of modified CP gives elements of the form

R (α1, α2, α3) = Ri (α1)Rj (α2)Rk (α3) , i �= j �= k (65)

where Ri (α) := Π3 ◦ cay (2αEi). A decomposition corresponding to the EULER

angle decomposition is R (α1, α2, α3) = R3 (α1) R1 (α2) R3 (α3), where the pa-

rameters are α1 = tan
(

ψ
4

)
, α2 = tan

(
ϑ
4

)
, and α3 = tan

(
ϕ
4

)
, and

R1 (α) =

⎛⎜⎜⎝
1 0 0

0 1−6α2+α4

(1+α2)2
4α(α2−1)
(1+α2)2

0
−4α(α2−1)

(1+α2)2
1−6α2+α4

(1+α2)2

⎞⎟⎟⎠
(66)

R3 (α) =

⎛⎜⎜⎝
1−6α2+α4

(1+α2)2
4α(α2−1)
(1+α2)2

0

−4α(α2−1)
(1+α2)2

1−6α2+α4

(1+α2)2
0

0 0 1

⎞⎟⎟⎠ .

Hence a global singularity free three-parametric description is achieved by the

EULER-RODRIGUES formula (7) using C1K X or via the coordinate transforma-

tion (60) by (64) using the modified RODRIGUES parameter a. The later has the

advantage that it only contains rational functions like the EULER parameter de-

scription (45), which, however, needs four dependent parameter. Due to the use

of three independent RODRIGUES parameter ai it allows to describes one para-

metric subgroups of SO(3) with rational functions only, like (67). Thus a product

representation of SO(3) can be achieved using modified CAYLEY parameter as

coordinates which are related to the C2K via (61). This, of course, leads to the

problem of singularities of any three-parametric description using coordinates of
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the second kind. The main advantage of using modified RP or CP is the absence

of transcendental functions that may achieve a dramatically increased computa-

tion performance as well a higher numerical accuracy with respect to numerical

quantization error cumulation. The correspondence of the various representations

of SO(3) are depicted in the following diagram

su(2) π3−−−−→ so(3)

exp (uX)
exp (θuX̄)

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐+

exp (ωX)
exp (θωX̄)

SU(2)
Π3−−−−→ SO(3)

1. kind canonical coord.

axis X , angle θ = ‖X‖
θ ∈ (−π, π]

2. kind canonical coord.

angle θ ∈ (−π, π]

and those of SU(2) in the following diagram

su(2) π3−−−−→ so(3)

cay (2ua)
cay (2αuX̄)

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐+

cay (ωc)
cay (βωX̄)

SU(2)
Π3−−−−→ SO(3)

modified RODRIGUES vector RODRIGUES parameter

a =
tan 1

4
‖X‖

‖X‖
X , ‖a‖ ∈ (−1, 1] c =

tan 1

2
‖X‖

‖X‖2 X , ‖c‖ ∈ (−∞,∞)

modified CAYLEY parameter CAYLEY parameter

α = tan1
4θ, α ∈ (−1, 1] γ = tan1

2θ, γ ∈ (−∞,∞) .

Any specific parametrization determines a map from a three-dimensional parame-

ter space to the group SO(3). This parameter space is moreover a differentiable

manifold and hence any of the representations of rotation matrices defines a dif-

feomorphism from the parameter space to SO(3) as differentiable manifolds based

on local charts. Coordinates in the respective chart are the minimal coordinates

in the LAGRANGIAN motion equations of a rotating rigid body. For a freely ro-

tating rigid body the parameter space is of dimension three but if the rigid body
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motion is restricted to a submanifold it is of lower dimension, e.g. in case of

planar rotations. With C1K X and their derived RP c and a the parameter space

is R
3. The parameter space for a product representation with C2K is the usual

three-dimensional torus. More precisely it is the three-dimensional torus modulo

2π: T
3 (2π). The coordinate transformation (61) projects T

3 (2π) onto the three-

dimensional real space R
3 modulo 2: T

3 (2) as being the parameter space for a

parametrization with modified CP α. On the other hand the three-dimensional

torus T
3 (2π) is mapped to the entire R

3 by (56) which is the parameter space for

a parametrization with CP γ. Finally the EP approach defines a diffeomorphism

from the three-dimensional unit sphere S3 to SO(3). Schematically the different

approaches can be summarized as follows

C1K: X ∈ R
3 → exp (ωX)

RP: c ∈ R
3 → cay (ωc)

modified RP: a ∈ R
3 → R (a)

C2K: (θ1, θ2, θ3) ∈ T
3 (2π) → Ri (θ1) Rj (θ2) Rk (θ3)

CP: (γ1, γ2, γ3) ∈ R
3 → Ri (γ1)Rj (γ2) Rk (γ3)

modified RP: (α1, α2, α3) ∈ T
3 (2) → Ri (α1)Rj (α2)Rk (α3)

EP:
(
p0, p1, p2, p3

)
∈ S3 → R (p) .

5. Angular Velocity and Acceleration

The description of rigid body dynamics using certain parametrization is based on

relations that relate the angular velocity and acceleration vector to time derivatives

of the respective parameter. Depending on the choosing coordinates the angular

velocity tensor can be expressed in term of C1K or RP c and a as well as with

C2K or γ and α. Explicit relations for EULER angles, RP and EP are reviewed

in this section and relations for the modified RP and CP are derived. Consider

the angular velocity tensor ω in body, or convective, representation and in spatial

representation ωs respectively [17]

ω = R−1Ṙ, ωs = ṘR−1, ω, ωs ∈ so(3). (67)

This is equivalent to the conventional definition of ω since with the rotation matrix

E := RT and the definition ω = ĖT E = −
(
ET Ė

)T

it is ωij = −Ė
(i)

i E
(i)

j
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and thus ωi = −1
2εijkωjk = 1

2εijkĖ
(i)

i E
(i)

j are the components of the angular

velocity vector [31]. The angular velocity vector is obtained via ω := π1 (ω).

Given the C1K representation (7) in terms of X enables to express the angular

velocity in terms of Ẋ . Adopting the general result for the differential of the

exponential map on a LIE -group G with algebra g [10], [25]

d expX = d Lexp X |
e
◦ 1 − e−adX

adX
, X ∈ g

for the algebra so(3) yields with R (X (t)) = expX (t) and Lgh = gh, g, h ∈ G

e−X(t) d

dt
eX(t) =

I − e−adX(t)

adX(t)
Ẋ (t) =

∞∑
i=0

(−adX)i

(i + 1)!
· (68)

This together with (10) yields the angular velocity vector in terms of C1K on

SO(3) and their time derivative

ω = Ω
X
·Ẋ, with Ω

X
(X) = I − 1 − cos ‖X‖

‖X‖2 ωX +
‖X‖ − sin ‖X‖

‖X‖3 ω2
X . (69)

If R (c) = cay (ωc) a direct evaluation of π1

(
R−1Ṙ

)
yields

ω = Ω
c
·ċ, with Ω

c
(c) =

2

1 + ‖c‖2 (I − ωc) . (70)

A similar calculation relates time derivatives of modified RP a to the angular

velocity vector

ω = Ω
a
·ȧ, with Ω

a
(a) =

4

1 + ‖a‖2 I +
8(

1 + ‖a‖2
)2

(
ωa − ω2

a

)
. (71)

Obviously the image space of Ω
X

and Ω
a

is of constant dimension due to the general

property detΩ
X

= 1 �= 0, for all X and detΩ
a

= 64

(1+‖a‖2)
3 �= 0, ‖a‖ ≤ 1

while detΩ
c

= 8

(1+‖c‖2)
2

‖c‖→∞−−−−−→ 0 points toward a singularity of this map at

‖c‖ → ∞ � ‖X‖ → π.

Let R be given in the product representation (47) with C2K. Evaluating (67) with

AdR (η) = RωR−1 yields

ω = θ̇ie
−θkLke−θjLjLie

θjLjeθkLk + θ̇je
−θkLkLje

θkLk + θ̇kLk
(72)

= θ̇iAd−1
Rj(θj)Rk(θk) (Li) + θ̇jAd−1

Rk(θk) (Lj) + θ̇kLk.
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Specifically using EULER angles (48) such that R (ψ, ϑ, ϕ) = R3 (ψ) R1 (ϑ) R3 (ϕ)
gives (with sx := sinx, cx := cos x)

ω = ψ̇Ad−1
R1(ϑ)R3(ϕ) (L3) + ϑ̇Ad−1

R3(ϕ) (L1) + ϕ̇L3
(73)

=

⎛⎝ 0 −ϕ̇ − ψ̇cϑ −ϑ̇sϕ + ψ̇cϕsϑ

ϕ̇ + ψ̇cϑ 0 −ϑ̇cϕ − ψ̇sϕsϑ

ϑ̇sϕ − ψ̇cϕsϑ ϑ̇cϕ + ψ̇sϕsϑ 0

⎞⎠
and hence the angular velocity vector ω := π1 (ω) is

ω = Ω ·

⎛⎝ ψ̇

ϑ̇
ϕ̇

⎞⎠ , with Ω(ψ, ϑ, ϕ) :=

⎛⎝ sin ϕ sinϑ cos ϕ 0
cos ϕ sinϑ − sinϕ 0

cos ϑ 0 1

⎞⎠ . (74)

The definition (67) of ω can be naturally extended to SU(2)

u = U−1U̇ = U∗U̇ , u ∈ su(2) (75)

and with ω = π1 (ω) = π2 (u) follows the relation of the time derivatives of EP

and the angular velocity vector for the EP description (45) of R

ω = Ω
p
·
(
ṗ0, ṗ1, ṗ2, ṗ3

)T
(76)

with Ω
p

(
p0, p1, p2, p3

)
:= 2

⎛⎝ −p1 p0 p3 p2

−p2 −p3 p0 p1

−p3 p2 −p1 p0

⎞⎠ ·

Further if the rotation R = Π3 (U) is described by the modified CP α the relation

cay (2αuX̄) = exp (4 arctanα uX̄) yields

∂αcay (2α uX̄) = ∂α exp (4 arctanα uX̄) =
4

1 + α2
cay (2α uX̄) (77)

and θ̇ = 4
1+α2 α̇. With U = UiUjUk expressed as product (47) yields similarly to

(73)
u = θ̇iAd−1

Uj(θj)Uk(θk) (Ei) + θ̇jAd−1
Uk(θk) (Ej) + θ̇kEk (78)

and via π2 the kinematic EULER equations (74) when using EULER angles. But

if U
(
α, X̄

)
= cay (2α uX̄) then

u = α̇i
4

1 + α2
i

Ad−1
Uj(αj)Uk(αk) (Ei) + α̇j

4

1 + α2
j

Ad−1
Uk(αk) (Ej) + α̇k

4

1 + α2
k

Ek.

(79)
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Choosing the EULER composition U = U3 (α1)U1 (α2) U3 (α3) and applying π2

yields ω = π2 (u)

ω = Ω
α
· (α̇1, α̇2, α̇3)

T (80)

Ω
α

(α1, α2, α3) := 4

⎛⎜⎜⎜⎜⎜⎝
16 α2 (α2

2
−1)α3 ( α2

3
−1)

(4+α1
2) (4+α2

2)2 (4+α3
2)2

1−6 α3
2+α3

4

(1+α2
2) (1+α3

2)2
0

−4 α2 (α2
2−1) (1−6 α3

2+α3
4)

(1+α1
2) (1+α2

2)2 (1+α3
2)2

4 α3 (α3
2−1)

(1+α2
2) (1+ α3

2)2
0

1−6 α2
2+α2

4

(1+α1
2) (1+α2

2)2
0 1

1+α3
2

⎞⎟⎟⎟⎟⎟⎠.

It is worth noting that the factors in R (α) and Ω
α

are all powers of 2. The singu-

larity at α2 = 0 due to

det Ω
α

=
256α2

(
α2

2 − 1
)(

1 + α2
1

) (
1 + α2

2

)2 (
1 + α2

3

) (81)

corresponds to that for the EULER composition at ϑ = 0 due to detΩ = − sinϑ.

This singularity can be shifted using another chart for T 3 (2π) or T 3 (2) respec-

tively, e.g. using the BRYANT composition R = R1 (θ1) R2 (θ2) R3 (θ3).

At any point the linear maps Ω
X

, Ω
a
, Ω

c
and Ω, Ω

α
, Ω

γ
and Ω

p
are tangential maps

from the tangent space of the respective parameter manifold to R
3, e.g. Ω :

TT
3 (2π) → TR

3 � R
3. These maps are the kinematic basic functions that ap-

pear in the LAGRANGIAN equations of motion for rigid multibody systems [16].

Lower dimensional rotations are described by restricting the number of parame-

ters to one or two respectively.

The LAGRANGIAN motion equation of rigid bodies in minimal coordinates de-

mand explicit relations of the angular acceleration in body representation and q̈.

That is, ω̇ = Ωq̈ + Ω̇q̇, where q is a vector of either one of the possible pa-

rameter sets, i.e., q is the representing point on the parameter manifold. In the

remaining part of this section only modified CP α are considered in order clarify

the problem of continuously differentiability of Ω
a

and Ω
α

. It holds with (47) and

Uj (θ) = exp (θEj) that

∂

∂θk
Ad−1

UjUk
(Ei) =

[
Ad−1

UjUk
(Ei) , Ad−1

Uk
(Ej)

]
(82)

∂

∂θk
Ad−1

Uk
(Ej) =

[
Ad−1

Uk
(Ej) , Ek

]
.
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With Uj (α) = cay (2αEj) and (77) follows that

∂

∂αj
Ad−1

UjUk
(Ei) =

4(
1 + α2

i

) (
1 + α2

j

) [Ad−1
UjUk

(Ei) , Ad−1
Uk

(Ej)
]

(83)
∂

∂αk
Ad−1

Uk
(Ej) =

4(
1 + α2

k

) (
1 + α2

j

) [Ad−1
Uk

(Ej) , Ek

]
.

The time derivative of Ω
α

is thus given by

Ω̇
α

= π2

[
4 α̇j(

1 + α2
k

) (
1 + α2

i

)2 [Ad−1
UjUk

(Ei) , Ad−1
Uk

(Ej)
]

+
4 α̇k(

1 + α2
k

) (
1 + α2

j

) [Ad−1
Uk

(Ej) , Ek

]
(84)

−α̇i
8αi(

1 + α2
i

)2 Ad−1
UjUk

(Ei) − α̇j
8αj(

1 + α2
j

)2 Ad−1
Uk

(Ej)

−α̇k
8αk(

1 + α2
k

)2 Ek

]
.

Similarly π1 applied to (48) yields the well known relation of EULER angle and

angular accelerations. This outlines the general approach for arbitrary composi-

tions of elementary rotation. From the fact that the transformation (61) is of class

C1 follows that the tangential map Ω
α

: q̇ → ω is continuous but not continu-

ously differentiable for −1 < α ≤ 1. Especially the relation of q̈ and ω̇ is not

continuous at α = ±1 due to the last three terms in (85).

6. Computational Aspects

From the computational point of view vector like parametrization of rotations

can potentially reduce the computational complexity and accuracy even on high

performance computing facilities. These features stimulated the use of RP to

describe the dynamics of rigid and flexible bodies. The RP parameterization nat-

urally arises from the derivation of energy conserving integration schemes on the

rotation group [15]. Also the algebraic nature of the rational parameterization

with EP was addressed in the context of holonomic cut conditions for multibody

systems [29] as well as for the efficient descriptions of the kinematics of robotic

manipulators [6, 7].
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Figure 1. Evaluation time to obtain R for 106 different values of

‖X‖ ∈ (−4π, 4π) and α ∈ (−4, 4).

The absence of trigonometric functions which are a priory periodic demands to

introduce a periodicity of α = ‖a‖ by definition. So α ∈ R has to be mapped

to (−1, 1] taking α modulo 2, which can easily be carried out using simple shift

operations in computer implementations. To exemplify the possible speed up we

present Fig.1 which shows the required time to evaluate a rotation matrix for 106

different parameter values. Results are shown for R (X) = exp (ωX) in (7) and

R (a) = π2 ◦ cay (ua) in (64) with ‖X‖ ∈ (−2π, 2π) and α ∈ (−2, 2) respec-

tively. In situations where the use of θ = ‖X‖ is necessary then (64) can be used

with (60) a = tan ‖X‖
4

X
‖X‖

so that R is parameterized as usual with θ but only

one trigonometric functions is needed. The significant differences of the three

considered computer architectures is the presence of a mathematical co-processor

on the Pentium machine. Although the used computer hardware is not up-to-date

the results apply to general architectures distinguished by the presence of a math-

ematical coprocessor, e.g. graphics processing unit (GPU) and other real-time

hardware.

The globally singularity free three-parametric description of rotations with mod-

ified RP is owed to the lack of a continuously differentiable mapping from ȧ to

the angular velocity vector ω. Because of θ̇ = 4
1+α2 α̇ the transformation of time

derivatives of α and θ is continuously but not continuously differentiable too,

due to the discontinuity on the boundaries α = ±1. This phenomenon indeed

affects the integration process. To illustrate this effect the LAGRANGIAN mo-

tion equations for a disk rotating about a fixed axis with constant initial velocity
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Figure 2. Time derivatives of θ and α for a disk rotating with constant angu-

lar velocity.
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Figure 3. The drift of the angular velocity of the disc from remaining con-

stant.
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and no external forces are integrated using a 4th order RUNGE-KUTTA algorithm

with step size of 10−5s. The system with one degree of freedom was parameter-

ized with angle θ and modified CP α as respective generalized coordinates. Fig.2

shows the time evolution of the generalized velocities θ̇ and α̇ for the respective

approach. The obvious discontinuity of α̇ explain the drift of the angular velocity

from remaining constant as shown in Fig.3.

However, this phenomenon can be avoided for one and three-dimensional rota-

tions since there exist a locally invertible relation of ω and q̇ ∈ R
3 or q̇ ∈ R.

Using the state vector (q, ω) with q̇ = Ω−1ω the dynamics of rigid bodies is gov-

erned by the BOLZMANN-HAMEL equations (BHE) in non-holonomic velocity

coordinates ωi [16], [17]. For a freely rotating body these are precisely the dy-

namic EULER equations

Θijω̇j + εi
mnωmΘnjωj = 0 (85)

with ω (q) = Ω (q) q̇ and Θij being the inertia tensor. The main difference of

the LAGRANGIAN motion equations and the BHE is that the LAGRANGE ap-

proach needs a transformation of class C2 from the parameter manifold to the

group SO(3) while the BHE equations only need a C1 transformation from the

configuration space to SO(3).

Since the RP c and CP γ are not even related to rotation matrices by a transfor-

mation of class C0 they cannot be used in the LAGRANGE equations nor in the

BHE. In case of the modified RP a and CP α the relation to ω is of class C1 and

for one and three-dimensional rotations a transformation from ω to ȧ of class C0

exists: ȧ = Ω
a

−1ω. This enables their use in the formulation of motion equations

of rigid bodies with a degree of freedom one and three. Nevertheless in practical

application, where rotations are restricted a priory, as it is the case for universal

joints, the modified RP or CP are always applicable and the parameter range of

−1 < α ≤ 1 is more convenient than that of γ which is −∞ < γ < ∞.

The CAYLEY transformation as being a first order approximation of the expo-

nential map on SO(3) is employed for the update in integration schemes and for

the approximation of finite rotations, e.g. in finite element methods. Also the

cay-map on SU(2) is first order approximation of the exponential map and via

the isomorphism (64) is a first order approximation of the exponential map on

SO(3). The difference, however, is their parameter range and their behavior for

small rotations. Comparing (55) and (54) and with the approximation of tan (θ)
the approximation error for the modified CP α is smaller than that of the ordinary

CP γ when approximating the exp map.



70 Andreas Müller

References

[1] Altmann S., Rotations, Quaternions, and Double Groups, Oxford University

Press, Oxford 1986.

[2] Bauchau O., Damilano G. and Theron N., Numerical Integration of Non-
linear Elastic Multi-Body Systems, Int. J. Num. Methods in Engineering 38
(1995) 272-2751.

[3] Cayley A., On the Motion of Rotation of a Solid, Cambridge and Dublin

Mathematical Journal III (1843) 224-232.

[4] Cayley A., On Certain Results Relating to Quaternions, Phil. Mag. XXVL
(1845) 141-145.

[5] Cayley A., On the Rotation of a Solid Body Round a Fixed Point, Cambridge

and Dublin Mathematical Journal 1 (1846) 167-173 and 264-274.

[6] Chou J., Quaternion Kinematics and Dynamic Differential Equations, IEEE

Trans. Robotics and Automation 8 (1992) 53-64.

[7] Chou J. and Kamel M., Finding the Position and Orientation of a Sensor on
a Rrobot Manipulator using Quaternions, Int. Journal of Robotics Research

10 (1991) 240-254.

[8] Funda J., Taylor R. and Paul R., On Homogenous Transformations, Quater-
nions, and Computational Efficiency, IEEE Trans. Robotics and Automation

6 (1990) 382-388.

[9] Hamilton W., Some Applications of Quaternions to Questions Connected
with the Rotation of a Solid Body, Royal Irish Academe Proceedings IV
(1847-1850) 38-56.

[10] Helgason S., Differential Geometry, Lie Groups, and Symmetric Spaces,

Academic Press, San Diego, 1978.

[11] Hall M., The Theory of Groups, MacMillan, New York, 1959.

[12] Ibrahimbegowic A. and Al Mikdad M., Finite Rotations in Dynamics of
Beams and Implicit Time-Stepping Schemes, Int. J. Num. Methods in En-

gineering 41 (1998) 781-814.

[13] Klein F., Über die Bewegung des Kreisels, Nachrichten der Königlichen

Geselschaft der Wissenschaften zu Göttingen vom 11. Januar 1896.

[14] Klein F., The Mathematical Theory of the Top, Lectures at Princeton Univer-

sity, October 1896. Both [13] and [14] In: Fricke R. and Vermel H. (Eds),

Felix Klein, Gesammelte Mathematische Abhandlungen, Springer, Berlin

1922.



Group Theoretical Approaches to Vector Parameterization of Rotations 71

[15] Lewis D. and Simo J., Conserving Algorithms for the Dynamics of Hamilton
Systems on Lie Groups, J. Nonlinear Science 4 (1994) 253-299.

[16] Maißer P., A Differential Geometric Approach to the Multibody System Dy-
namics, Zeitschrift für Angew. Math. und Mech. 71 (1991) 116-119.

[17] Marsden J., Introduction to Mechanics and Symmetry, Springer, New York

1999.

[18] McCarthy J., Geometric Design of Linkages, Springer, New York, 2000.

[19] Mladenova C., Modelling and Control of Multibody Systems on a Configu-
rational Space with a Lie Group Structure, J. Theor. Appl. Mech. 31 (2001)

3-25.

[20] Mladenova C., Group Theory in the Problems of Modeling and Control of
Multi-Body Systems, JGSP 8 (2006) 17-121.

[21] Müller A. and Maißer P., A Lie-Group Formulation of Kinematics and Dy-
namics of Constrained MBS and Its Application to Analytical Mechanics,

Multibody System Dynamics 9 (2003) 311-352.

[22] Murray R., Li Z. and Sastry S., A Mathematical Introduction to Robotic
Manipulation, CRC Press, Boca-Raton, 1993.

[23] Normand J., A Lie Group: Rotations in Quantum Mechanics, North-Holland,

Amsterdam, 1980.

[24] Tsiotras P., Junkins J. and Schaub H., Higher-Order Cayley Transformations
with Applications to Attitude Representations, J. Guidance, Control and Dy-

namics 20 (1997) 528-534.

[25] Sattinger D. and Weaver O., Lie Groups and Algebras with Applications to
Physics, Geometry and Mechanics, Springer, Berlin 1993.

[26] Siminovitch D., Rotations in NMR: Part I. Euler-Rodrigues Parameter and
Quaternions, Concepts Magn. Reson. 9 (1997) 149-171.

[27] Siminovitch D., Rotations in NMR: Part II. Applications of the Euler-
Rodrigues Parameter, Concepts Magn. Reson. 9 (1997) 211-225.

[28] Stuelpnagel J., On the Parametrization of the Three-Dimensional Rotation
Group, SIAM Review 6 (1964) 422-430.

[29] Tasora A. and Righettini P., Application of Quaternion Algebra to the Effi-
cient Computation of Jacobians for Holonomic-rheonomic Constraints, EU-

ROMECH Colloquium 404, Advances in Computational Multibody Dynam-

ics, 20-23 September 1999, pp.75-92.

[30] Vinberg E., Linear Representations of Groups, Birkhäuser, Basel, 1998.



72 Andreas Müller

[31] Zihlin P., A New Approach to the Analysis of Free Rotations of Rigid Bodies,

Zeitschrift für Angew. Math. und Mech. 4 (1996) 187-204.

Andreas Müller

University Duisburg-Essen

Chair of Mechanics and Robotics

47057 Duisburg, GERMANY

E-mail address: andreas-mueller@uni-due.de


