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Abstract. An interesting class of axially symmetric surfaces, which generalizes

Delaunay’s unduloids and provides solutions of the shape equation is described

in explicit parametric form. This class provide the first analytical examples of

surfaces with periodic curvatures studied by K. Kenmotsu and leads to some unex-

pected relationships among Jacobian elliptic functions and their integrals.

1. Introduction

It is well-known that in aqueous solution, amphiphilic molecules (e.g., phospho-

lipids) form spontaneously bilayers so that the hydrophilic heads of these mole-

cules are located in both outer sides of the bilayer which are in contact with the

liquid, while their hydrophobic tails remain at the interior. In many cases, the

bilayer form a closed membrane, which is called a vesicle. Vesicles constitute

well-defined and sufficiently simple model systems for studying basic physical

properties of the more complex biological cells.

In 1973, Helfrich [3] had proposed the so-called spontaneous curvature model

according to which the equilibrium shapes of a lipid vesicle are determined by the

extremals of the curvature (shape) energy

Fc =
kc

2

∫
S

(2H − Ih)2 dA+ kG

∫
S

KdA

under the constraints of fixed total enclosed volume V and area A of its middle

surface S. In the above equation H and K denote the mean, respectively the

Gaussian curvature of the surface S while Ih, kc and kG are real constants rep-

resenting the spontaneous curvature, bending and Gaussian rigidity of the mem-

brane. Using two Lagrange multipliers λ and p, this yields the functional

F = Fc + λ

∫
S

dA+ p

∫
dV.

1



2 Peter Djondjorov, Mariana Hadzhilazova, Ivaïlo Mladenov and Vassil Vassilev

The Lagrangian multipliers λ and p are interpreted as tensile stress and pressure

difference between the outer and inner media.

The Euler-Lagrange equation corresponding to the functional F reads

ΔH + (2H − Ih) (H2 +
Ih

2
H −K) − λ

kc
H +

p

2kc
= 0 (1)

where Δ is the Laplace-Beltrami operator on the surface S. Equation (1), that

has been derived by Ou-Yang and Helfrich [19], is often referred to as the gen-

eral membrane shape equation. Its derivation from geometrical standpoint can be

found in [26].

In parallel two other curvature models have been developed. The first of them

is the so-called bilayer-couple model suggested by Svetina and Žekš in [25] on

the ground of the bilayer-couple hypothesis [23] and the related work [24]. The

second one is known as the area-difference-elasticity model [1, 12, 31]. For the

purposes of the present paper, however, it is important to underline that all the

curvature models mentioned above lead to the same set of stationary shapes, de-

termined locally by the equation (1) given above, since they differ only by global

energy terms (see [10, 12, 23]). Of course, the meaning of the constants involved

in this equation vary within different models. For more than three decades, the

study of the equilibrium shapes of the vesicles has attracted much attention, nev-

ertheless only a few analytic solutions to the shape equation (1) have been re-

ported up to now. These are solutions determining: spheres and circular cylin-

ders [19], Clifford tori [5, 20, 21], Delaunay surfaces [13, 16], circular biconcave

discoids [15, 17], nodoidlike and unduloidlike shapes [16], some types of Will-

more and constant squared mean curvature surfaces [9, 29, 32] as well as cylin-

drical surfaces [22, 27]. It should be noted, however, that, leaving aside the first

two types of the aforementioned surfaces whose parametric equations are well

known, explicit parametrizations of the rest ones are missing except for the sur-

faces of Delaunay [13,14] and the generalized cylindrical surfaces [27]. Strangely

enough, the rotational ellipsoids furnish only approximate solutions to the shape

equation [11].

From mathematical point of view the main difficulty in solving (1) is that it is a

nonlinear fourth order partial differential equation for the position vector x run-

ning on the surface S. A fortunate circumstance is that this differential equation

can be rewritten in the form of a system of four differential equations of second

order. One, namely (1) for the mean curvature H and three others, namely

Δx = 2Hn (2)

for the components of the position vector x. Here n stands for the unit normal
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vector of S and the formal proof of (2) can be found either in [18] or [22].

The aim of this paper is to present explicit parametric equations describing the

axisymmetric surfaces corresponding to the solutions of the shape equation (1)

discovered by Naito et al. [16]. These surfaces provide the first analytical exam-

ples of surfaces with periodic curvatures studied by Kenmotsu [8]. Along this

way, we have found also some unexpected relationships among Jacobian elliptic

functions and their integrals.

2. Shape Equation for Axisymmetric Vesicles

The axisymmetric vesicles will be thought of as a surface of revolution obtained

by revolving around the z-axis its profile curve Γ laying in the XOZ-plane. If

s denotes the arclength along Γ and ψ(s) denotes the slope of the tangent to the

curve with respect to the OX axis measured counterclockwise, one has the fol-

Figure 1. Geometry of the profile curve.

lowing geometrical relations

dψ(s)

ds
= κ(s),

dx

ds
= cosψ(s),

dz

ds
= sinψ(s) (3)

which can be deduced either from Fig. 1 or the Frenet-Serret equations

dx(s)

ds
= T(s),

dT

ds
= κN,

dN

ds
= −κT (4)
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in which T and N are respectively the tangent and the normal vector to the curve

and κ(s) is its curvature.

One can represent the profile curve Γ also by the graph (x, z(x)) of the function

z = z(x) (see Fig. 1) and in the latter case the general shape equation (1) reduces

to the following nonlinear third-order ordinary differential equation [5]

cos3 ψ
d3ψ

dx3
= 4 sinψ cos2 ψ

d2ψ

dx2

dψ

dx
− cosψ

(
sin2 ψ − 1

2
cos2 ψ

)(
dψ

dx

)3

+
7 sinψ cos2 ψ

2x

(
dψ

dx

)2

− 2 cos3 ψ

x

d2ψ

dx2

(5)

+

(
λ

kc
+

Ih2

2
− 2Ih sinψ

x
− sin2 ψ − 2 cos2 ψ

2x2

)
cosψ

dψ

dx

+

(
λ

kc
+

Ih2

2
− sin2 ψ + 2 cos2 ψ

2x2

)
sinψ

x
+

p

kc

where ψ is again the angle between the X-axis and T but this time considered as

a function of x. The two last equations in (3) imply the relation

dz

dx
= tanψ. (6)

3. Exact Solutions

The general shape equation is a nonlinear fourth order partial differential equation

which theory is far from being complete in any sense. As we have mentioned

before, there are only a few explicit solutions which were found by relying on the

axial symmetry that comprise spheres, circular cylinders [19], Clifford tori [5,20,

21], the rest of Delaunay constant mean curvature surfaces [13, 16], nodoidlike

and unduloidlike shapes [16, 33], and most recently the generalized cylindrical

surfaces [22,27]. Even for this short list explicit parametric equations are available

only for the tori [5], Delaunay [13, 14] and cylindrical surfaces [27].

Many years ago, Kenmotsu [7] had shown that surfaces of a given mean curvature

in R
3 are defined essentially by their Gauss map (see also [4]). Later on Eells [2]

pointed out that the Gauss map for Delaunay surfaces is given by the formula

sinψ = ax+
c

x
, x �= 0, a, c ∈ R. (7)



Beyond Delaunay Surfaces 5

Finally, in 1995, Naito et al. [16] discovered (see also [22]) that (7) which is

solution of the shape equation (5) describing axially symmetric constant mean

curvature surfaces could be generalized to the form

sinψ = ε+
1

Ihx
+

1

4

(
ε2 + 2

)
Ihx, ε ∈ R (8)

which corresponds to vesicles with spontaneous curvature (Ih �= 0) subjected to

nonzero pressure (p �= 0), and provided that the pressure p and the tensile stress λ
are given by the expressions

λ

kc
=

Ih2
(
ε2 + 1

)
2

,
p

kc
= − Ih3

(
ε2 + 2

)2
8

·

For the foregoing class of solutions the equation (6) reduces to

dz

dx
=

ε+ 1

Ihx + 1

4
Ih
(
ε2 + 2

)
x√

1 − (ε+ 1

Ihx + 1

4
Ih (ε2 + 2)x

)2 (9)

and hence the profile curve of such an axisymmetric vesicle can be expressed as

the graph (x, z(x)) of the function z(x) given by the following elliptic integral

z(x) =

∫
ε+ 1

Ihx + 1

4

(
ε2 + 2

)
Ihx√

1 − (ε+ 1

Ihx + 1

4
(ε2 + 2) Ihx

)2 dx.

The principle goal of the present paper is to find out parameterizations of the

above-mentioned contours that are free of the obvious limitations associated with

the graph presentations.

4. Parametric Equations

In terms of an appropriate new variable u, the equation (9) can be rewritten in the

form

dx

du
=

1

μ

√
−P (x)Q(x) (10)

dz

du
=

1

2μ
(P (x) +Q(x)) (11)

in which

P (x) = x2 +
4 (ε− 1)

(ε2 + 2) Ih
x+

4

(ε2 + 2) Ih2
(12)

Q(x) = x2 +
4 (ε+ 1)

(ε2 + 2) Ih
x+

4

(ε2 + 2) Ih2
(13)
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and where the real parameter μ will be fixed later on.

It should be noticed that the roots of the polynomial Π(x) = P (x)Q(x) are

α =
2
(
1 − ε−√−2ε− 1

)
(ε2 + 2) Ih

, β =
2
(
1 − ε+

√−2ε− 1
)

(ε2 + 2) Ih

γ =
2
(−1 − ε+

√
2ε− 1

)
(ε2 + 2) Ih

, δ =
2
(−1 − ε−√

2ε− 1
)

(ε2 + 2) Ih

and therefore, for each allowable value of the parameter ε, i.e., |ε| > 1/2, only

two of them are real. These are α and β �= α for ε < −1/2 and, alternatively,

γ and δ �= γ for ε > 1/2. In the first case we will have 0 < α ≤ x ≤ β when

Ih > 0, and in the second case x will be strictly positive i.e., 0 < γ ≤ x ≤ δ iff

Ih < 0.

Now, using the standard procedure for handling elliptic integrals (see [30], § 22.7),

one can express the solution x(u) of equation (10) in the form (see also [28])

x(u) =
2 sign (ε)

Ih
√
ε2 + 2

(
1 − 2τ

τ + cn(u, k)

)
(14)

where

τ =

√
1 + |ε| + √

2 + ε2

1 + |ε| − √
2 + ε2

, k =

√
1

2
− 3

4
√

2 + ε2
·

Actually, the choice of u as uniformization variable fixes also the value of the free

parameter μ, i.e.,

μ =
4

Ih (2 + ε2)3/4
·

Consequently, using expressions (12) and (13), one can write down the solution

z(u) of equation (11) in the form

z (u) =
1

μ

∫ (
x2(u) +

4 ε x(u)

(ε2 + 2) Ih
+

4

(ε2 + 2) Ih2

)
du (15)

and following this route in [28] we have found that

z(u) = μ

[
E(am(u, k), k) − sn(u, k) dn(u, k)

τ + cn(u, k)
− u

2

]
. (16)

The meaning of the functions that appear in the above equation is as follows.

E(· , ·) denotes the incomplete elliptic integral of the second kind which depends
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on its argument in the first slot and the so called elliptic modulus in the second slot.

The Jacobian amplitude function am(· , ·) and Jacobian elliptic functions sn(· , ·),
cn(· , ·) and dn(· , ·) depend in the same manner. More details on the subject of

elliptic integrals and functions can be found in [6].

In what follows we will present an alternative parameterization of Delaunay like

surfaces which we hope will be of some help in their studies from the geometrical

viewpoint.

We start with rewriting (14) in the form

x(u) = −
2sign(ε)

(
1 + |ε| +√2|ε| − 1

)
dn (ũ,m)

(ε2 + 2) Ih
(17)

where

ũ =
K(m)

2K(k)
u+K(m), m =

2
√

(1 + |ε|)√2|ε| − 1

1 + |ε| +√2|ε| − 1
(18)

and K(·) denotes the complete elliptic integral of the first kind evaluated for the

respective elliptic modulus.

Now, the remaining integrations in (15) are straightforward provided one takes

into account that we have the formulas∫
dn(t, k)dt = am(t, k),

∫
dn2(t, k)dt = E(am(t, k), k). (19)

Actually, the integration produces the primitive

ζ(u) =
8K(k)

μIh2(ε2 + 2)K(m)

[
(1 + |ε| +√2|ε| − 1)2

ε2 + 2
E(am(ũ,m),m)

(20)

+
2sign(Ih)ε(1 + |ε| +√2|ε| − 1)

ε2 + 2
am(ũ,m) + F (am(ũ,m),m)

]

in which the integration constant is omitted because if we want the sought-after

curve to start from the X axis for u = 0, then obviously we have to take

z(u) = ζ(u) − ζ(0). (21)

Thus, for each pair of the allowed values of the parameters ε and Ih, the expres-

sions in (17) and (21) provide the parametric equations of the profile curves of
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Figure 2. Open parts of the bulb (left) and the neck (right) segments of the

periodic surface of revolution obtained via parametric equations (17) and (21)

with ε = 1.3542 and Ih = −3.335623.

our axially symmetric unduloid-like surfaces corresponding to the respective so-

lutions of the membrane shape equation (5) of the form (8) (see Fig.2).

Before closing this paper, we will make the following comments. The first one is

that if we equate the right hand sides of the equations (14) and (17), respectively

(16) and (21) we will face quite nontrivial relationships among elliptic functions

and integrals. It is hardly to believe that they could be derived in purely analytic

way and probably should be considered just as glimpses of geometry.

The second one concerns the studies of the surfaces of revolution with periodic

mean curvature undertaken by Kenmotsu [8] who had presented numerical exam-

ples of such surfaces. According to the authors knowledge the surfaces presented

here provide the first examples from this class in analytical form.
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