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BALLOONS, DOMES AND GEOMETRY

IVAÏLO M. MLADENOV AND JOHN OPREA

Presented by Ivaïlo M. Mladenov

Abstract. In this survey, we present physical and mathematical ideas surrounding

the geometry of balloons and of pneumatic domes.

1. Introduction

The fact that geometric principles and tools are fundamental to structural engi-

neering is well-appreciated in the engineering world, but little-known in Mathe-

matics. The point of the present work is to survey the types of mathematical and

physical arguments that arise in the study of inflatable membranes in an attempt to

make the subject accessible to mathematicians. In previous works (see [19, 20]),

we have considered the shape of a Mylar balloon in the context of surface theory.

While there we presented some physical arguments that we hoped would place the

balloon in a broader context, here we want to carry this further to show the beauti-

ful connections between structure and geometry. Of course, we are not the first to

do this. The bibliography contains references (such as [2–5, 9, 13, 15, 17, 23, 24])

that will at least start the reader on the path to investigating an area where differ-

ential geometry plays a leading role in our understanding of practical engineering

problems.

Membranes are a special class of structures; they are made up of thin “films”

which carry load (almost) exclusively in tension (due to a lack of bending stiff-

ness). Examples of membranes include soap bubbles and balloons (especially My-

lar balloons and large scientific balloons). With the advent of new technologies,

membranes have found a place in structural engineering as designs for pneumatic

domes (enclosing arenas for instance). Inflated membranes are structures where

the membrane remains in place due to some internal pressure. Thus, the forces

acting on an inflated membrane are the pressure difference across the membrane

and the tension in the membrane (as in a soap film or bubble).

For many years, NASA has been interested in inflatable membranes because they

have small mass and can be transported while deflated — thus occupying a small
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volume. Indeed, there are projects investigating whether inflatable membranes

can act as antennas about Mars. Materials for inflatable membranes are usually

thin polymers (which have very small bending stiffness). As mentioned previ-

ously, this means that membranes carry load in tension alone. The structural be-

havior of membranes depends on their geometries and that is why understanding

the connection between geometry and physical processes is crucial in inflatable

membrane design.

2. Tensions and Geometry

2.1. Membrane Geometry

Our membrane will be modeled by a surface of revolution about the z-axis gener-

ated by a profile curve (r(s), z(s)) in the (first quadrant of the) xz-plane (where

s is the arclength parameter and we take z(s) to increase with increasing s: z(s)
rising from the x-axis and meeting the z-axis orthogonally). This surface has a

parameterization

x(s, v) = (r(s) cos v, r(s) sin v, z(s)) = r(s)e1(v) + z(s)e3(v)

where the unit radial vector is e1(v) = cos v i + sin v j and e3(v) = k. We also

take e2(v) = k × e1 = − sin v i + cos v j, the unit vector along the parallels

of revolution. A meridian r(s)e1(̊v) + z(s)k (i.e., fixed v̊) has tangent vector

t = r′(s)e1(̊v) + z′(s)k, where the primes denote differentiation with respect to

s. Because we parametrize the meridian by arclength, the tangent vector has unit

length, i.e., r′(s)2 + z′(s)2 = 1. Hence, we can define

r′(s) = − sin θ(s), z′(s) = cos θ(s) (1)

where θ(s) is the angle between t and k, and write t = − sin θ e1 +cos θ k. Note

that, since we assume z increases with s, t has an upward component. Hence, the

angle θ is positive to the “left” of k in the plane of the profile curve.

There is also a unit normal n(s, v) to the surface x(s, v) determined as follows:

the unit vector t and the vector xv = r(s)e2 give a basis for the tangent plane to

x(s, v), so

n(s, v) =
t × xv

|t × xv|
= − cos θ(s) e1(v) − sin θ(s)k

is the desired unit normal. For a surface of revolution parameterized in the form

(h(u) cos v, h(u) sin v, g(u)) with unit normal as given above, we know (see [22,
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Section 3.3.3]) that the principal curvatures are given by

kμ =
g′′h′ − g′h′′

(g′2 + h′2)3/2
, kπ =

g′

h(g′2 + h′2)1/2
· (2)

The subscript μ denotes that kμ is the curvature of the meridian (given by the

intersection of the plane determined by t and n at any point and x). The subscript

π denotes that kπ is the curvature given by the intersection of the plane determined

by xv and n at any point and x. For our surface x(s, v),we have g = z and h = r,

so we obtain

kμ =
z′′r′ − z′r′′

1
=

(
−r′r′′

z′

)
r′ − z′r′′

=
−r′′

z′
=

cos θ θ′

cos θ
= θ′

where we have used r′(s)2 + z′(s)2 = 1 and r′r′′ + z′z′′ = 0 (by differentiating

the first equation). We also obtain

kπ =
z′

r
=

cos θ

r
·

These principal curvatures will help us understand crucial interactions between

tensions and geometry later.

2.2. Tensions

Curved membranes do not necessarily change geometry to resist smoothly distrib-

uted loads. Furthermore, because shapes are determined at equilibrium, stresses

may be found by solving differential equations (with boundary conditions). For

arguments justifying these conclusions, see [1] and [13, Section 5.1]. So our goal

is to find the determining differential equations.

There are three possible tensions to consider: the meridian stress σm in the di-

rection t, the circumferential (or hoop) stress σc in the direction e2 and the shear

stress. As is argued in [13], for membranes that are surfaces of revolution, shear

stresses are zero due essentially to symmetry about an axis. These internal ten-

sions are given in units of force per unit length. An inflated membrane has an

external pressure p(s)n̄(s, v)−w(s)k, where n̄ = −n is the outward normal, the

pressure p(s) depends only on the meridian parameter s by symmetry about the

z-axis and w(s) is a weight density associated to the membrane itself. Note that

pressure pushes the membrane outward normally while weight is directed down-

ward as usual. Consider a patch on the membrane (see Fig. 1) with parameter
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Figure 1: A patch on an axisymmetric membrane which is in equilibrium under

various forces acting on it.

bounds s̊ ≤ s and v̊ ≤ v. The patch is in equilibrium, so the total force acting on

it is zero. Instead of writing things componentwise, we use vector notation and

write

0 =

∫ v

v̊
σm(s)r(s)t(s, u) du −

∫ v

v̊
σm(̊s)r(̊s)t(̊s, u) du

+

∫ s

s̊
σc(t)e2(v) dt −

∫ s

s̊
σc(t)e2(̊v) dt

+

∫ s

s̊

∫ v

v̊
p(t)r(t)n̄(t, u) du dt −

∫ s

s̊

∫ v

v̊
w(t)r(t)kdudt.

Now take ∂/∂s on both sides to obtain:

0 =

∫ v

v̊

∂

∂s
(σm(s)r(s)t(s, u)) du + σc(s)e2(v) − σc(s)e2(̊v)

+

∫ v

v̊
p(s)r(s)n̄(s, u) du −

∫ v

v̊
w(s)r(s)kdu.

Take ∂/∂v on both sides of this equation to obtain:

0 =
∂

∂s
(σm(s)r(s)t(s, v)) − σc(s)e1(v) + p(s)r(s)n̄(s, v) − w(s)r(s)k. (3)

Now we can project onto t and n̄ by dotting with t and n̄ respectively. We use
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several facts: t · ∂t/∂s = 0, e1 · t = − sin θ and

∂

∂s
(σmrt) · t + (σmrt) ·

∂t

∂s
=

∂

∂s
(σmrt · t)

=
∂

∂s
(σmr) + 2(σmr)

∂t

∂s
· t

∂

∂s
(σmrt) · t =

∂

∂s
(σmr).

We therefore have

0 =
∂

∂s
(σmr) + σc sin θ − wr cos θ

(4)
∂

∂s
(σmr) = −σc sin θ + wr cos θ.

Dotting with n̄ gives (using ∂t/∂s = −θ′n̄)

0 =
∂

∂s
(σmrt) · n̄ − σce1 · n̄ + prn̄ · n̄ − wrk · n̄

0 = −σmrθ′ − σc cos θ + pr − wr sin θ (5)

σmrθ′ = pr − σc cos θ − wr sin θ.

2.3. The case w = 0

Let’s consider the case where the weight of the membrane is negligible; that is,

w = 0. Recall that kμ = θ′ and kπ = cos θ/r. From (5), we get

σmθ′ +
σc

r
cos θ = p

σmkμ + σckπ = p.

If we define the radii of curvature by rμ = 1/kμ and rπ = 1/kπ, then we have a

version of the Laplace-Young equation (see [21, 22] for instance):

σm

rμ
+

σc

rπ
= p. (6)

Remark 1. Of course, when w �= 0, we then have

σm

rμ
+

σc

rπ
= p −

w

r
sin θ. (7)
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Now, when w = 0, (4) becomes ∂
∂s(σmr) = −σc sin θ. Since r′ = − sin θ, a

solution is given by

σm = σc = σ, a constant.

Put this in the Laplace-Young equation (6) to get

σ

(
θ′ +

cos θ

r

)
= p

1

2
(kμ + kπ) =

1

2

p

σ

H =
1

2

p

σ

where H is the mean curvature of the membrane.

If the pressure p is constant, then H is constant as well and the membrane is a

surface of Delaunay (see [21, 22]).

It is easy to conclude also that when p is still constant, but σm �= σc the equation

(6) defines the so called anisotropic Delaunay surfaces, and the reader is referred

for more details on their subject to [16].

Finally, if p = 0 and σm �= σc, one ends with the quite interesting class of the

linear Weingarten surfaces [18, 20].

Consider (4) again (when w = 0) and suppose σc = 0, p = α, constant. Then

σmr = β is a constant and σm = β/r. From (5), we get (using r′ = − sin θ)

β

r
rθ′ = αr

βθ′ = αr

θ′ =
α

β
r

2r′θ′ = 2
α

β
rr′

−2 sin θθ′ = 2
α

β
rr′

2(cos θ)′ =
α

β
(r2)′

2 cos θ =
α

β
r2 + d.

From our assumptions that the profile curve rises from the x-axis and goes to the

z-axis orthogonally, we see that θ = π/2 exactly when r = 0. Hence, d = 0.

Therefore, we have
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2
cos θ

r
=

α

β
r

= θ′ (8)

2kπ = kμ.

This condition will be explored in the next section. It describes the Mylar balloon.

We can thus say the following.

Theorem 2. If a membrane with w = 0, constant pressure p and hoop stress
σc = 0 is a surface of revolution

x(s, v) = (r(s) cos v, r(s) sin v, z(s)) = r(s)e1(v) + z(s)e3(v)

then 2kπ = kμ ; that is, the membrane is a Mylar balloon (see Section 3).

3. The Mylar Balloon

Let’s start with a mathematical model of a Mylar balloon. A Mylar balloon is

constructed from two disks of Mylar (of radius a say) sewn along their edges.

When the Mylar disk is inflated, the radius deforms to a curve z = z(x) that

we take to be in the first quadrant of the xz-plane. Of course, physical intuition

implies that the curve proceeds from its highest point on the z-axis downward to

a point of intersection with the x-axis (with respect to the parameter x, not s as

in Subsection 2.1). This is the right-hand side of the curve that, when revolved

about the z-axis, produces the top half of the balloon. The bottom half is just a

reflection of the upper half in the xy-plane.

Let R be the radius of the inflated balloon (i.e., the distance along the x-axis

from x = 0 to the point of intersection with the x-axis). Because of its physical

properties, the Mylar does not stretch significantly. As a result, the arclength of

the graph of z(x) from x = 0 to x = R is equal to the initial radius a. That is, we

have ∫ R

0

√
1 + z′(x)2 dx = a. (9)

The basic shape of the balloon is determined by this constraint. Next, it is clear

that, when the balloon is inflated, the pressure of the gas inside induces a maximal

enclosed volume. Because the balloon is a surface of revolution, this volume is
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given by the shell method:

V = 4π

∫ R

0
xz(x) dx.

In this setting we now have the calculus of variations problem of extremizing V
subject to the constraint (9). The corresponding Euler-Lagrange equation is

d

dx

(
λz′(x)√
1 + z′(x)2

)
− 4πx = 0. (10)

This equation is easy to integrate, yielding

λz′(x)√
1 + z′(x)2

= 2πx2 + C (11)

for some constant of integration C. This constant can be found by taking into

account the obvious geometrical (transversality) condition z ′(0) = 0. Inserting

x = 0 into (11) and using z′(0) = 0 gives C = 0. Consequently, we obtain

z′(x)√
1 + z′(x)2

=
2π

λ
x2. (12)

The transversality condition limx→R− z′(x) = −∞, along with the requirement

that the curve proceed from its highest point to its intersection with the x-axis

without introducing critical points (i.e., z ′(x) < 0 when 0 < x < R), allows us to

rewrite λ/(2π) in the form −m2. Now, solving (12) for z′(x), we find that

z′(x) = −
x2

√
m4 − x4

and, integrating, that

z(x) =

∫ R

x

t2
√

m4 − t4
dt

where the choice of the upper limit of integration comes from the requirement

that z(R) = 0. The profile curve of the Mylar balloon will be completely deter-

mined if we know what m is. Its value can be ascertained if we remember that

limx→R− z′(x) = −∞ and note that this will be the case if we take m = R.

Therefore, in the end we have

z(x) =

∫ R

x

t2
√

R4 − t4
dt, 0 ≤ x ≤ R. (13)
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This is an elliptic integral that has no closed form solution in terms of “elemen-

tary” functions. In what follows, however, we find an explicit expression for the

integral (13) in terms of elliptic functions and then use this expression to derive

various facts associated with the geometry of the Mylar balloon. For that pur-

pose we change the integration variable from t to u and make the substitution

t = R cn(u, k) where cn(u, k) is the Jacobi cosine function. The basic properties

of elliptic functions (details about which can be found in [14]) and this substitution

reduce (13) to

z(u) =
R
√

2

∫ u0

0

cn2(u, k) dn(u, k) du√
1 − 1

2sn2(u, k)
· (14)

Here u0 satisfies cn(u0, k) = x/R. Also, we use the identity

1 − cn4(u, k) = (1 − cn2(u, k))(1 + cn2(u, k)) = sn2(u, k)(2 − sn2(u, k)).

Further simplification of (14) can be achieved by choosing the value of the elliptic

modulus k appropriately. Letting k = 1/
√

2, we note that the identity dn2(u, k)+
k2 sn2(u, k) = 1 gives

z(u) =
R
√

2

∫ u

0
cn2

(
ũ,

1
√

2

)
dũ.

We now have the following general result (see [19] and also [7, item 782.02]).

Proposition 3. The following identity holds for u > 0:1

∫ u

0
cn2(ũ, k) dũ =

E(sn(u, k), k)

k2
−

1 − k2

k2
F (sn(u, k), k).

Here F (φ, k) and E(φ, k) are the so called incomplete elliptic integrals of the

first, respectively second kind which are functions of their argument φ and the

parameter k that is the elliptic modulus mentioned earlier. We can then express

z(u) in terms of elliptic functions:

z(u) = R
√

2

[
E

(
sn

(
u,

1
√

2

)
,

1
√

2

)
−

1

2
F

(
sn

(
u,

1
√

2

)
,

1
√

2

)]
. (15)

Since t = R cn(u, k), this means that the profile curve (traced counterclockwise)

is given by

1Although F (sn(u0, k), k) = u0, we shall continue to write F (sn(u0, k), k) for uniformity.
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Figure 2: Two views of the Mylar balloon.

x(u) = Rcn

(
u,

1
√

2

)
(16)

z(u) = R
√

2

[
E

(
sn

(
u,

1
√

2

)
,

1
√

2

)
−

1

2
F

(
sn

(
u,

1
√

2

)
,

1
√

2

)]
for u in [0 , K(1/

√
2)]. Note that the complete integral K(1/

√
2) arises because

cn(u, 1/
√

2) varies from 1 (where u = 0) to 0 (where u = K(1/
√

2)).

Theorem 4. The surface of revolution S that models the Mylar balloon is para-
metrized by

x = x(u, v) = (x(u, v), y(u, v), z(u, v))

where for u in [−K(1/
√

2), K(1/
√

2)] and v in [0 , 2π]

x(u, v) = R cn

(
u,

1
√

2

)
cos v, y(u, v) = R cn

(
u,

1
√

2

)
sin v

(17)

z(u, v) = R
√

2

[
E

(
sn

(
u,

1
√

2

)
,

1
√

2

)
−

1

2
F

(
sn

(
u,

1
√

2

)
,

1
√

2

)]
.

We can now put this parametrization into a computer algebra system such as

Maple and plot. We then see the familiar shape of a Mylar balloon in Fig. 2.
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Theorem 5. A surface of revolution M given by

x(u, v) = (r(u) cos v, r(u) sin v, z(u))

such that kμ = 2 kπ has a parametrization of the form (17). That is, the surface
M is a Mylar balloon.

Proof: By reparametrizing, we may without loss of generality assume that the

profile curve (h(u), g(u)) of M has constant speed. (Note that the parametrization

of the Mylar balloon that we have given satisfies this without reparametrization:√
x′(u)2 + z′(u)2 = R/

√
2.) 2 We thus have g′(u)2 + h′(u)2 = A2 for some

constant A > 0. By differentiating this relation with respect to u, we find that

g′g′′ + h′h′′ = 0. In tandem, these two relations reduce the principal curvature

formulas (see (2)) to

kμ =
g′′

Ah′
kπ =

g′

Ah
·

The hypothesis kμ = 2 kπ then gives

g′′

g′
= 2

h′

h

which ensures that g′ = αh2 for some constant α. We now insert this into

the constant speed relation to obtain dh/du = h′ = ±
√

A2 − α2h4. This is

a separable differential equation that can be solved by making the substitutions

h =
√

A/α cnw, dh = −
√

A/α snw dnw dw (where the elliptic modulus is

always taken to be 1/
√

2) and using the identity 1 − cn4w = sn2w (2 − sn2w):

±A

∫
du =

∫
dh√

1 −
(

α
A

)2
h4

±Au + c =

∫ √
A
α snw dnw

√
2 snw

√
1 − 1

2 sn2w
dw =

√
A

2α

∫
dw =

√
A

2α
w

whence
√

2α A u+ c̄ = w, where c̄ is a constant. We then apply the elliptic cosine

and use the substitution relation to obtain√
α

A
h = cn

(√
2α A u + c̄

)
2Note that an extraneous K appears here as a result of a TeX copy-paste error in [19, Theorem

6.5] and [22, Theorem 7.9.4] where the square root is said to be RK/
√

2.
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h(u) =

√
A

α
cn
(√

2α A u + c̄
)

.

We take c̄ = 0 for convenience and find g(u) by recalling that g ′ = αh2 =

A cn2
(√

2α A u
)

and invoking Proposition 3:

g(u) = A

∫
cn2
(√

2α A u
)

du

=
A

√
2α A

(
2E

(
sn(u),

1
√

2

)
− F

(
sn(u),

1
√

2

))
=

√
2A

α

(
E

(
sn(u),

1
√

2

)
−

1

2
F

(
sn(u),

1
√

2

))
.

This results in a parametrization of type (17). (Note that, for the balloon in (17),

A = R/
√

2 and α = 1/(
√

2R).) �

Remark 6. The natural parametrization of the balloon profile curve (16) can be
obtained after replacement of the argument u there with

√
2s

R . We can also easily
find that its curvature is then given by

κ(s) = kμ(s) =
2

R
cn

(√
2s

R
,

1
√

2

)

and that it satisfies the fundamental equation of the Euler elastica without a length
constraint (i.e., the so called free elastica)

κ̈(s) +
1

2
κ3(s) = 0

found by Birkhoff and de Boor [6]. (Here, the dots denote the derivatives with
respect to the natural parameter s.)

4. Kawaguchi’s Domes

4.1. The Question of the Shallowest Dome

We have seen in Theorem 5 that the Mylar balloon is characterized by being a

surface of revolution with kμ = 2kπ. Also, in Theorem 2, we then saw that a

weightless membrane with no hoop stress is a Mylar balloon. Amazingly, there is
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Figure 3: The Namihaya Sports Hall Dome.

yet another criterion that produces the Mylar balloon and this criterion was known

years ago in the world of structural engineering. In [15] (also see [13, Example

5.2]), the structural engineer Mamoru Kawaguchi asked the following

Question 7. What shape is the pneumatic dome which has smallest height to span
ratio, meets the ground at a right angle and no wrinkles?

A pneumatic dome is a membrane-like structure which is supported by internal air

pressure slightly higher than normal atmospheric pressure. Such a dome is not a

membrane precisely, but it is common to use this approximation as an ideal model.

One famous approach to constructing these domes is called the Pantadome system.

This approach allows supporting members in the hoop direction to be removed in

order to fold the membrane for transport. Then the membrane is inflated and,

once at the desired volume, the supporting members are reinserted. Kawaguchi’s

Namihaya Sports Hall Dome is an example (see Fig. 3).

In order to answer Question 7, Kawaguchi assumes that the pneumatic dome is

“hemispherical”; that is, it is a surface of revolution about the z-axis with gener-

ating meridian meeting the x-axis orthogonally and increasing in z until it meets

the z-axis orthogonally. Of course, this is the type of surface of revolution we

have been dealing with in Section 2 and Section 3.

First, note that the Laplace-Young formula (6) holds:

σm

rμ
+

σc

rπ
= p

where we assume the weight of the dome material is negligible. Now slice the

dome horizontally by a plane to obtain a disk of radius r. The pressure p acts

upward on the disk with force F = pπr2, but since the membrane supports this
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(imaginary) disk, we can uniformly distribute F over the circumference of the

disk to obtain a stress σd = (pπr2)/(2πr) = pr/2. 3

Now, σm acts along t and σd acts in the k-direction, so to balance forces, we need

σm cos θ = σd =
pr

2

or σm = p/(2kπ). Substituting into Laplace-Young then gives

σc =
p

kπ

(
1 −

kμ

2kπ

)
. (18)

Kawaguchi notes that, for a pneumatic dome with no wrinkles, it must be the case

that σm ≥ 0 and σc ≥ 0. Therefore, it is necessary to have kπ ≥ 0 and kμ ≤ 2kπ.

In order to answer Question 7, it is easier to use rπ = 1/kπ and rμ = 1/kμ. The

conditions then become rπ ≥ 0 and rμ ≥ rπ/2. These conditions then say that

there is a function f(θ) ≥ 0 with rμ = rπ/2 + f(θ).

For the shallowest dome, we must minimize h/R where h = z(s1) is the height

of the dome (i.e., the z-coordinate of the intersection of the meridian with the

z-axis). We then can calculate as follows.

h

R
=

1

R

∫ s1

0
z′(s) ds =

∫ π/2

0
z′(s)

ds

dθ
dθ =

∫ π/2

0

cos θ

θ′
dθ

=
1

R

∫ π/2

0

cos θ

kμ
dθ =

1

R

∫ π/2

0
rμ cos θ dθ =

1

R

∫ π/2

0

(rπ

2
+ f

)
cos θ dθ

=
1

R

∫ π/2

0

rπ

2
cos θ dθ +

1

R

∫ π/2

0
f cos θ dθ.

For h/R to be a minimum, we therefore need f = 0; that is, rμ = rπ/2. Hence,

we have

Theorem 8. The shallowest pneumatic dome has kμ = 2kπ. That is, it is a Mylar
balloon.

Remark 9. Note that (18) implies that σc = 0, so Kawaguchi’s analysis corre-
lates with Theorem 2.

3Thanks to Frank Baginski for explaining this argument to us.
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4.2. Interpolating Between Sphere and Mylar Balloon

Kawaguchi interpolates between the sphere (i.e., kμ = kπ) and the Mylar balloon

(i.e., kμ = 2kπ). He supposes a relation

σc = σme−εθ. (19)

Recalling σm = p/(2kπ) and σc = (p/kπ)(1 − kμ/(2kπ)), we obtain

kπ

(
2 − e−εθ

)
= kμ. (20)

Note that, when ε = 0, then kμ = kπ and we have a sphere (see [22, Theorem

3.5.2]). When ε = ∞, then kμ = 2kπ and this is the Mylar balloon by Theorem 5.

The ε’s between 0 and ∞ then give interesting new domes. For the parametriza-

tion

x(s, v) = (r(s) cos v, r(s) sin v, z(s)) = r(s)e1(v) + z(s)e3(v)

with r′(s) = − sin θ(s) and z′(s) = cos θ(s), where θ(s) is the angle between t

and k, we compute

kμ = kπ

(
2 − e−εθ

)
θ′ =

cos θ

r

(
2 − e−εθ

)
1

cos θ (2 − e−εθ)
dθ =

1

r

ds

dr
dr

1

cos θ (2 − e−εθ)
dθ =

1

r

(
−

1

sin θ

)
dr (21)

−tanθ

(2 − e−εθ)
dθ =

1

r
dr∫ θ

0

−tanu

(2 − e−εu)
du =

∫ r

R

1

r
dr = ln

( r

R

)
r = R · exp

(
−

∫ θ

0

tanu

(2 − e−εu)
du

)
·

We have thus obtained r, albeit defined using an integral. Now, z ′ = cos θ, so the

chain rule gives
dz

dθ
=

cos θ

θ′
· (22)
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Now, using (20) and the relations kμ = θ′, kπ = cos θ/r, we get

dz

dθ
=

cos θ

cos θ (2 − e−εθ) /r
=

r

(2 − e−εθ)
(23)

= R
exp

(
−
∫ θ
0

tanu
(2−e−εu)

du
)

(2 − e−εθ)
·

4.3. The Interpolations and Maple

We can use Maple to visualize the domes described by (21) and (23) which are

presented in Figs. 4-9.

> with(plots):with(DEtools):with(LinearAlgebra):

The following procedure pneumdome creates a profile curve for a pneumatic dome

with radius R and ε = k.

> pneumdome:=proc(R,k)
local rr,zz,dz,zzdsol,dsol,vars,zic;
rr:=s->R*exp(-evalf(Int(tan(w)/(2-exp(-k*w)),
w=0..s)));
dz:=s->rr(s)/(2-exp(-k*s));
zzdsol:=proc(N,t,Y,YP)
YP[1] := dz(t);
end proc:
zic:= array([0]):
vars:= [z(t)]:
dsol:= dsolve(numeric, number=1, procedure=zzdsol,
start=0,
initial=zic, procvars=vars,output=listprocedure,
method= dverk78,abserr=1e-8);
zz:=subs(dsol,z(t));
plot([rr(t),zz(t),t=0..Pi/2],scaling=constrained);
end:

Now we can compute dome profile curves for many values of ε and see the pro-

gression from sphere to Mylar balloon. Note that we cannot input ∞, so we must

choose a large value for ε to approximate it.

The following procedure pneumdomerev revolves profile curves about the z-axis

to generate Kawaguchi domes.

> pneumdomerev:=proc(R,k)
local rr,zz,dz,zzdsol,dsol,vars,zic;
rr:=s->R*exp(-evalf(Int(tan(w)/(2-exp(-k*w)),
w=0..s)));
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Figure 4: Dome profile curves.
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Figure 5: A spherical dome, ε = 0.

dz:=s->rr(s)/(2-exp(-k*s));
zzdsol:=proc(N,t,Y,YP)
YP[1] := dz(t);
end proc:
zic:= array([0]):
vars:= [z(t)]:
dsol:= dsolve(numeric, number=1, procedure=zzdsol,
start=0,
initial=zic, procvars=vars,output=listprocedure,
method= dverk78,abserr=1e-8);
zz:=subs(dsol,z(t));
plot3d([rr(t)*cos(v),rr(t)*sin(v),zz(t)],t=0..Pi/2,
v=0..2*Pi,scaling=constrained,shading=xy,lightmodel=
light2,orientation=[78,78],axes=framed);
end:

> p1:=pneumdome(1,0):

> p2:=pneumdome(1,0.44):

> p3:=pneumdome(1,1):

> p4:=pneumdome(1,2):

> p5:=pneumdome(1,3):

> p6:=pneumdome(1,10):

> p7:=pneumdome(1,50):

> p8:=pneumdome(1,1000000):

> display(p1,p2,p3,p4,p5,p6,p7,p8);

Here is the sphere.
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Figure 6: Almost spherical dome,

ε = 0.44.
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Figure 7: Another dome, ε = 1.
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Figure 8: A dome approaching the

Mylar dome, ε = 50.
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Figure 9: A dome very close to the

Mylar dome, ε = 1000000.

> pneumdomerev(1,0);

> pneumdomerev(1,0.44);

> pneumdomerev(1,1);

> pneumdomerev(1,50);

> pneumdomerev(1,1000000);

The reader will note that the tops of the domes do not appear. This is not simply

a product of numerically solving the differential equation (23). Kawaguchi notes

that the meridian tension must approach a singularity at the top of the dome, so

there is real trouble in trying to solve the differential equation. Of course, for real

domes, the extensibility of the fabric allows some curvature.
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5. Delaunay Surfaces

In what follows we will continue to neglect the film weight contribution (i.e., we

will suppose again that w(s) ≡ 0), and in that case we obtain from equations (4)

and (5),

d(σm(s)r(s))

ds
= −σc(s) sin θ(s) (24)

(σm(s)r(s))
dθ(s)

ds
= −σc(s) cos θ(s) + p(s)r(s). (25)

As we said previously, a solution is obtained if σm(s) = σc(s) = σ are constant,

and then the mean curvature is given by

H(s) =
p(s)

2σ
· (26)

Furthermore, if we can arrange that the hydrostatic pressure is also a constant (i.e.,

p(s) = po = constant), then we end up with a surface of revolution of constant

mean curvature

H =
po

2σ
= λ = constant. (27)

Such a surface is called a surface of Delaunay.

Using the definition of λ and writing (25) as rr′θ′ = −r′ cos θ + 2λrr′, integra-

tion of the system gives us a geometrical relation (in which μ is some integration

constant)

cos θ(s) = λr(s) +
μ

r(s)
(28)

that can be recognized as the Gauss map of the Delaunay surfaces (for details

see [8, Section 2]). Without any loss of generality we can assume that λ > 0,

relying either on physical experiments with membranes and balloons or taking

into account the mathematical fact that r ≡ r(s) is always positive and that we

can measure θ ≡ θ(s) only in two ways - clockwise or counterclockwise. The

case when λ ≡ 0 will be treated separately below.

Differentiating (28) twice with respect to s and using r′ = − sin θ, we get

θ′ = λ −
μ

r2
(29)

and

θ′′ = −
2μ

r3
sin θ. (30)
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Taking into account that θ′(s) is the curvature κ ≡ κ(s) = kμ(s) of the profile

curve of the surface in the xz-plane, (30) can be rewritten in the form

κ′ = 2(λ − κ)

√
λ − κ

μ
− (2λ − κ)2 (31)

where we have chosen the negative square root. This is the intrinsic equation of

the meridian curve we seek. By introducing a new variable, ξ = λ − κ, the cor-

responding integral reduces to [7, Integral 380.111] and we obtain the following

solution

κ(s) = λ
1 − 4λμ +

√
1 − 4λμ sin(2λs)

1 − 2λμ +
√

1 − 4λμ sin(2λs)
, −∞ ≤ μ ≤

1

4λ
(32)

which further implies (via (29) and various algebraic manipulations) that

r(s) =

√
1 − 2λμ +

√
1 − 4λμ sin(2λs)

λ
√

2
· (33)

Having this in hand, the Gauss map (i.e., equation (28)) tell us that

cos θ(s) =
1 +

√
1 − 4λμ sin(2λs)

√
2
√

1 − 2λμ +
√

1 − 4λμ sin(2λs)
(34)

while (30) leads to

sin θ(s) = −

√
1 − 4λμ cos(2λs)

√
2
√

1 − 2λμ +
√

1 − 4λμ sin(2λs)
· (35)

Inserting the above expressions into (1) and integrating produces (33), (as, of

course, should be the case!) and we have the following.

Theorem 10. Delaunay surfaces are given by (r(s) cos v, r(s) sin v, z(s)) with

r(s) =

√
1 − 2λμ +

√
1 − 4λμ sin(2λs)

λ
√

2
(36)

and

z(s) =
μ

m(λ, μ)
F (λs −

π

4
, k) +

m(λ, μ)

λ
E(λs −

π

4
, k) (37)

where F and E are elliptic integrals of the first and second kind respectively and

m(λ, μ) =

√
1 − 2λμ +

√
1 − 4λμ

√
2

, k =

√
2
√

1 − 4λμ

1 − 2λμ +
√

1 − 4λμ
. (38)
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Now consider the case when the differential hydrostatic pressure across the mem-

brane vanishes (i.e., λ ≡ 0). In this case, the intrinsic equation (31) reduces to

κ̃′ = −2κ̃

√
−

κ̃

μ
− κ̃2 (39)

and its solution is

κ̃(s) = −
μ

s2 + μ2
· (40)

This time (29) and (28) produce

r̃(s) =
√

s2 + μ2 and z̃(s) = μ ln

(
s +

√
s2 + μ2

μ

)
· (41)

Figure 10: The open parts of the cylinder, sphere, catenoid, unduloid and nodoid

shown here are drawn via the profile curves (33) and (37) or (41) and various

combinations of the parameters λ and μ.

6. Some Useful Formulas

The formulas given in the previous section are easily checked in certain cases:

by taking μ = 1
4λ we get a cylinder, and by taking μ = 0 we get a sphere. The

intermediate cases when 0 < μ < 1
4λ generate unduloids and the ones with μ < 0

lead to nodoids. The cases λ = 0, μ > 0 give catenoids. The whole family of

non-trivial Delaunay surfaces (omitting the plane) is depicted in Fig. 10.

However, having the explicit form of the parametrization of these surfaces pro-

vided by Theorem 10 (and (41)), one can find, in principle, any other geometric



74 Ivaïlo M. Mladenov and John Oprea

characteristic of the surface. This follows by a general theorem in classical dif-

ferential geometry which says that such geometric characteristics are determined

by the first and the second fundamental forms of the surface (having respective

coefficients (E, F, G) and (L, M, N)).

Actually, in our case it is quite easy to see that E = 1, F = 0, G = r2(s),
L = θ′(s), M = 0 and further direct computations (in the case λ �= 0) produce

N =
1 +

√
1 − 4λμ sin(2λs)

2λ
(42)

and

kπ(s) = λ
1 +

√
1 − 4λμ sin(2λs)

1 − 2λμ +
√

1 − 4λμ sin(2λs)
· (43)

In the case of the catenoids, one has E = 1, F = 0, G = s2 + μ2 and L =
− μ

s2+μ2 , M = 0, N = μ.

If we are interested in the solution of the inverse problem (i.e., how to find the

corresponding parameters λ, μ if the maximal rmax and minimal rmin distances

from the symmetry axis are given), then we can see that, in the case of unduloids,

we have

λ =
1

rmax + rmin
, μ =

rmaxrmin

rmax + rmin

(44)

rmax =

√
1 − 2λμ +

√
1 − 4λμ

λ
√

2
, rmin =

√
1 − 2λμ −

√
1 − 4λμ

λ
√

2

and the respective nodoid with the same geometric data can be built with

λ =
1

rmax − rmin
, μ = −

rmaxrmin

rmax − rmin
· (45)

The parameters for the cylinders and spheres are recovered directly via (44), tak-

ing into account their geometries specified respectively by rmax = rmin for cylin-

ders and rmax ∈ R
+, rmin = 0 for spheres. Analogously, by taking μ = rmin > 0

in (41), we recover the explicit parameterization of the catenoid whose neck ra-

dius is rmin. Notice also that we can find θ(s) in explicit form. In the case λ �= 0,

we have

θ(s)= λs + arctan

√
1 − 4λμ

2λμ
− arctan

√
1 − 4λμ + (1 − 2λμ)tan(sλ)

2λμ

= arcsin

√
1 − 4λμ

√
2
√

1 − 2λμ
− arcsin

√
1 − 4λμ cos(2sλ)

√
2
√

1 − 2λμ +
√

1 − 4λμ sin(2sλ)
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= arccos
1

√
2
√

1 − 2λμ
− arccos

1 +
√

1 − 4λμ sin(2sλ)
√

2
√

1 − 2λμ +
√

1 − 4λμ sin(2sλ)

= arctan
√

1 − 4λμ − arctan

√
1 − 4λμ cos(2sλ)

1 +
√

1 − 4λμ sin(2sλ)

of which the first is obtained by a direct integration of (29) and the rest are results

of purely trigonometric considerations. The above expressions comply with the

initial condition

θ(0) = 0. (46)

The real value of these formulas however is that they provide (probably new) quite

interesting relationships between the well known transcendental functions of the

classical analysis.

For the catenoids we have

θ̃(s) = − arctan
s

μ
(47)

and obviously the initial condition

θ̃(0) = 0 (48)

is satisfied as well. By inverting (47) we find s = −μtanθ̃, and substituting

in (41), we obtain the profile curve of the so-called Whewell parameterization

(see [25, 26]). The profile curves of the unduloid and the nodoid surfaces can be

written (at least in the vicinity of the origin) in this parameterization as well. The

abovementioned parameterization of the Mylar balloon can be found in [12].

All the formulas above are also indispensable in problems such as finding the

length, lateral surface area or the volume inside arbitrarily chosen segments of

Delaunay surfaces (for more details see [10] and [11]). The following is a Maple

procedure for creating Delaunay surfaces from the parametrization above. We list

some examples (while omitting pictures) that the reader can try.

> delaunay:=proc(mu,lambda)
local rr,mm,kk,phi,zz,slimup,slimdown,X;
if lambda=0 then
rr:=(s^2+mu^2)^(1/2);
zz:=mu*ln((s+(s^2+mu^2)^(1/2))/mu);
plot3d([rr*cos(v),rr*sin(v),zz],s=-1..1,v=0..2*Pi,
scaling= constrained,shading=xy,lightmodel=light2,
orientation= [49,69]);
else
rr:=1/2^(1/2)*(1-2*mu*lambda+(1-4*mu*lambda)^(1/2)*
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sin(2*lambda*s))^(1/2)/lambda;
mm:=(1-2*mu*lambda+
(1-4*mu*lambda)^(1/2))^(1/2)/2^(1/2);
kk:=(2*(1-4*mu*lambda)^(1/2)/(1-2*mu*lambda+
(1- 4*mu*lambda)^(1/2)))^(1/2);
phi:=lambda*s-Pi/4;
zz:=mu/mm*EllipticF(sin(phi),kk)+mm/lambda*
EllipticE(sin(phi),kk);
slimup:=fsolve(sin(phi)=1,s);
slimdown:=fsolve(sin(phi)=0,s);
X:=[rr*cos(v),rr*sin(v),zz];
if mu<0 then
plot3d(subs({s=s(t),v=v(t)},X),s=-slimdown..slimup,
v=0..1.75*Pi,scaling=constrained,shading=xy,
lightmodel= light2,orientation=[0,60]);
else
plot3d(subs({s=s(t),v=v(t)},X),s=-slimdown..slimup,
v=0..2*Pi,scaling=constrained,shading=xy,
lightmodel= light2,orientation=[49,69]);
fi;
fi;
end:

> delaunay(0.2,1);

> delaunay(0.24,1);

> delaunay(0,1);

> delaunay(0.25,1);

> delaunay(0.25,0);

> delaunay(-0.1,1);

> delaunay(-.1,5);

7. The case w �= 0

Up until now, we have considered the equilibrium equation

∂

∂s
(σm(s)r(s)t(s, v)) − σc(s)e1(v) + p(s)r(s)n̄(s, v) − w(s)r(s)k = 0 (49)

under the assumption that w = 0. In this final section, we want to give the reader

an idea of the practical implications inherent in considering w �= 0. More specif-

ically, we will consider a model for large scientific balloons. The model we de-

scribe may be found in [4] (with the convention r′ = sin θ instead of ours) where
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a shooting method for finding numerical solutions is given. We shall present an

alternative interactive Maple approach to finding solutions of this model.

Definition 11. If the hoop stress σc is identically zero for a “balloon-shape”, then
the resulting surface is called a natural shape.

We have seen previously that the Mylar balloon and Kawaguchi’s domes are nat-

ural shapes. Here, let’s look at natural shape large scientific balloons. These

balloons can be as large as 40 million cubic feet in volume with surface area of

around 20 acres (see [4]). Such a balloon can carry a load of 5000 pounds to an

altitude of 126000 feet.

Now, as in Subsection 2.2, we can project (49) in particular directions to obtain

defining equations for a model. Here, taking σc = 0, we project onto the k and e1

directions (omitting details) to obtain the respective equations:

∂

∂s
(σmr cos θ) + pr sin θ − wr = 0 (50)

−
∂

∂s
(σmr sin θ) + pr cos θ = 0. (51)

After carrying out the differentiation in the first terms, we obtain the following.

d(σmr)

ds
cos θ − σmr sin θ

dθ

ds
+ pr sin θ − wr = 0 (52)

−
d(σmr)

ds
sin θ − σmr cos θ

dθ

ds
+ pr cos θ = 0. (53)

Then, considering this system as a pair of simultaneous equations in the variables,

d(σmr)/ds and dθ/ds, we can solve to obtain the following

dθ

ds
= −

w sin θ

σm
+

p

σm
,

d(σmr)

ds
= wr cos θ. (54)

There are two added ingredients for the model. First, we recognize that the shape

of a balloon changes as it ascends until it reaches a float altitude where the buoy-

ancy force balances gravity. This produces the formula w = wdρ(s) for the

weight density of the balloon, where the subscript “d” will always refer to the

situation at the float altitude. Furthermore, the function ρ(s) can be taken to be

ρ(s) = rd(s)/r(s), where rd(s) is the radius function for the float shape. We also

can identify the pressure function in the balloon case as p(z) = b(z + a), where

b is the buoyancy and a is the distance from the zero-pressure level to the bottom
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of the balloon. (This is why these balloons are sometimes called zero-pressure

natural shape balloons.)

In order to get numerical solutions to this system of equations, it is convenient to

non-dimensionalize as follows (see [4]). Archimedes’s principle says that wdAd+
L = bdVd; that is, at float, the total weight of the balloon is balanced by the

buoyancy times the volume displaced. Of course, the gross weight G = wdAd+L
is the same at all altitudes. Divide by the load L to get the unitless quantity

(wd/L)Ad + 1 = (bd/L)Vd. Hence, bd/L has units of 1/length3 and if we let

λ =

(
L

bd

)1/3

, Σ = (2π)1/3 wd

bdλ

then λ has units of length and we can non-dimensionalize by defining:

ā =
a

λ
, r̄ =

r

λ
, z̄ =

z

λ
, s̄ =

s

λ
, Σ̂ =

Σ

(2π)1/3
=

wd

bdλ
, σ̄m =

σm

bdλ2
·

We further note that

ds̄

ds
=

1

λ
,

dθ

ds
=

dθ

ds̄

1

λ
,

dr

ds
=

dr

ds̄
,

dz

ds
=

dz

ds̄

and that ρ is invariant under this scaling. Putting these into (54) gives

dθ

ds̄
= −

Σ̂ρr̄ sin θ

σ̄mr̄
+

τbr̄(z̄ + ā)

σ̄mr̄
,

d(σ̄mr̄)

ds̄
= Σ̂ρr̄ cos θ (55)

where τb = b/bd is the relative buoyancy. Note that, at float, τb = 1, ρ = 1 and,

since it will be very small, a = 0.

Now define m̄ = 1/(σmr̄) and calculate

dm̄

ds̄
= −Σ̂ρr̄m̄2 cos θ

to obtain the following final set of model equations for the natural shape balloon

(where we now drop the bars above the variables).

Theorem 12 ([4]) The following system models the natural shape balloon.

dθ

ds
= −Σ̂ρrm sin θ + mτbr(z + a) (56)

dm

ds
= −Σ̂ρrm2 cos θ (57)
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dr

ds
= − sin θ (58)

dz

ds
= cos θ (59)

with initial conditions

θ(0) = −θ0, m(0) = 2π cos θ0, r(0) = 0, z(0) = 0 (60)

and boundary conditions

θ(�) = ±π/2, r(�) = 0 (61)

where � is the length of the meridian curve on the balloon (which we assume to be
constant during ascent to float).

Proof: We have shown the derivation of the equations already and explained the

negative in the initial angle. The boundary conditions arise from physical con-

siderations; namely, we want the balloon to be closed and unwrinkled at the top,

so it must be “flat” there. The second initial condition arises as follows. The

total film load at s = 0 is L/ cos θ0 since the load L is attached to the bottom

of the balloon. This stress is distributed around a parallel circle, so we have

L/ cos θ0 = 2π(σmr)(0). Now we obtain,

m̄(0) =
1

(σ̄mr̄)(0)
=

1

( σm

bdλ2 · r
λ)(0)

=
bdλ

3

(σmr)(0)
=

L
L

2π cos θ0

= 2π cos θ0.

�

As stated in [4], in practice, � and the float shape are known at the start, so

ρ(s) = rd(s)/r(s) is defined in terms of r(s) and τb is determined by the altitude.

Therefore, a shooting method can be used to solve the system while satisfying the

boundary conditions. The results of just such a shooting method are given in [4].

Here we give a simple Maple procedure which allows the user to change a and θ0

interactively to satisfy the boundary conditions (61). The examples we give are

chosen simply for comparison with the results of [4]. The method consists of two

parts. We first use Maple to solve the system of Theorem 12 numerically for the

float shape: that is, the shape with τb = 1, ρ = 1 and a = 0. This gives the rd(s)
that allows us to define ρ(s) for the ascending balloon. Note that we still need to

interactively satisfy the boundary conditions here to obtain the float shape. Once

we have the correct θ0 for float, we can feed this into the general system, thus

defining ρ(s), and interactively determine θ0 and a for the ascending balloon so
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that the boundary conditions are satisfied. Here is the procedure and examples

(see also the Figs. 11-16).

> with(plots):with(LinearAlgebra):

The following are the float equations.

> floatballooneqs:=proc(Sigma)
local eq1,eq2,eq3,eq4;
eq1:=diff(theta(s),s)=-m(s)*Sigma/(2*Pi)^(1/3)*r(s)*
sin(theta(s)) + m(s)*r(s)*(z(s));
eq2:=diff(m(s),s)=-Sigma/(2*Pi)^(1/3)*r(s)*m(s)^2*
cos(theta(s));
eq3:=diff(r(s),s)=-sin(theta(s));
eq4:=diff(z(s),s)=cos(theta(s));
eq1,eq2,eq3,eq4;
end:

These can now be solved numerically for different θ0’s. Of course, the correct θ0

satisfies the boundary conditions (61) and so we interactively search for this θ0.

The interactive nature of Maple allows for much easier programming.

> floatballoonshape:=proc(Sigma,theta0,leng,phi1,
phi2) local sys,desys,theta1,r1,z1,X,bshape;
sys:=floatballooneqs(Sigma);
desys:=dsolve({sys,theta(0)=-theta0,
m(0)=2*Pi*cos(theta0),
r(0)=0,z(0)=0},{theta(s),m(s),r(s),z(s)},
type=numeric, output=listprocedure);
theta1:=subs(desys,theta(s)); r1:=subs(desys,r(s));
z1:=subs(desys,z(s));
print(‘theta0 =‘, evalf(theta0*180/Pi),
‘Length is‘, leng,
‘theta at top is‘,evalf(theta1(leng)*180/Pi),
‘r at top is‘, r1(leng)); X:=[r*cos(v),r*sin(v),z];
bshape:=plot3d(subs(r=’r1’(t),z=’z1’(t),X),t=0..leng,
v=0..
2*Pi,shading=XY,lightmodel=light3,
scaling=constrained,
orientation=[phi1,phi2],axes=boxed):
end:

Here are some float shapes for the reader to explore. We provide output only for

the case Σ = 0.4 below however.

> floatballoonshape(0.01,0.882415,2.009001055,0,90);
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Figure 11: Balloon at float, Σ = 0.4.
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Figure 12: Balloon right before

float, Σ = 0.4, τ = 1.1.

> floatballoonshape(0.1,0.94931,2.154547,0,90);

> floatballoonshape(0.4,evalf(67.9215*Pi/180),
2.8706,0,90);

> floatballoonshape(0.8,1.41261,4.4009637,0,90);

Now we look at some ascent shapes. We begin with the float shape to determine

what is called “floattheta0” in the procedure.

> ascentshape:=proc(Sigma,tau,a,floattheta0,theta0,
leng, phi1,phi2)
local Feq1,Feq2,Feq3,Feq4,Fsys,Fdesys,Fr1,eq1,eq2,
eq3,eq4, sys,desys,theta1,r1,z1,X,bshape;
Feq1:=diff(theta(s),s)=-m(s)*Sigma/(2*Pi)^(1/3)*r(s)*
sin(theta(s))+m(s)*r(s)*(z(s));
Feq2:=diff(m(s),s)=-Sigma/(2*Pi)^(1/3)*r(s)*m(s)^2*
cos(theta(s));
Feq3:=diff(r(s),s)=-sin(theta(s));
Feq4:=diff(z(s),s)=cos(theta(s));
Fsys:=Feq1,Feq2,Feq3,Feq4;
Fdesys:=dsolve({Fsys,theta(0)=-floattheta0,m(0)=
2*Pi*cos(floattheta0),r(0)=0,z(0)=0},{theta(s),
m(s),r(s),z(s)},type=numeric,output=listprocedure);
Fr1:=subs(Fdesys,r(s));
eq1:=diff(theta(s),s)=-m(s)*Sigma/(2*Pi)^(1/3)*Fr1(s)
* sin(theta(s)) + tau*m(s)*r(s)*(z(s)+a);
eq2:=diff(m(s),s)=-Sigma/(2*Pi)^(1/3)*Fr1(s)*m(s)^2*
cos(theta(s));
eq3:=diff(r(s),s)=-sin(theta(s));
eq4:=diff(z(s),s)=cos(theta(s));
sys:=eq1,eq2,eq3,eq4;
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Figure 13: Balloon before float,

Σ = 0.4, τ = 1.4.
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Figure 14: Balloon before float,

Σ = 0.4, τ = 2.5.

desys:=dsolve({sys,theta(0)=-theta0,m(0)=2*Pi*
cos(theta0),r(0)=0,z(0)=0},{theta(s),m(s),r(s),z(s)},
type=numeric,output=listprocedure);
theta1:=subs(desys,theta(s)); r1:=subs(desys,r(s));
z1:=subs(desys,z(s));
print(‘theta0 =‘, evalf(theta0*180/Pi), ‘Length is‘,
leng, ‘theta at top is‘,evalf(theta1(leng)*180/Pi),
‘r at top is‘, r1(leng));
X:=[r*cos(v),r*sin(v),z];
bshape:=plot3d(subs(r=’r1’(t),z=’z1’(t),X),t=0..leng,
v=0..
2*Pi,shading=XY,lightmodel=light3,
scaling=constrained,
orientation=[phi1,phi2],axes=boxed):
end:

> floatballoonshape(0.4,evalf(67.9215*Pi/180),
2.8706,0,90);

theta0 =, 67.92149998, Length is, 2.8706, theta at top is, 90.00340531,

r at top is, 0.956111355577627180 10−5

> ascentshape(0.4,1.1,-0.47,evalf(67.9215*Pi/180),
evalf(50.9175*Pi/180),2.8706,0,90);

theta0 =, 50.91750001, Length is, 2.8706, theta at top is, 90.01011223,

r at top is, 0.000234004842540770989
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Figure 15: Balloon before float,

Σ = 0.4, τ = 6.
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Figure 16: Balloon soon after

launch, Σ = 0.4, τ = 15.

> ascentshape(0.4,1.4,-0.84659,evalf(67.9215*Pi/180)
evalf(27.60182*Pi/180),2.8706,0,90);

theta0 =, 27.60181999, Length is,2.8706,theta at top is,90.00000318,

r at top is, 0.0000988085877405243604

> ascentshape(0.4,2.5,-1.254,evalf(67.9215*Pi/180),
evalf(5.26965*Pi/180),2.8706,0,90);

theta0 =, 5.269650000, Length is, 2.8706, theta at top is, 90.09962756,

r at top is, 0.00115205297864118240

> ascentshape(0.4,6,-1.6546,evalf(67.9215*Pi/180),
evalf(0.09758*Pi/180),2.8706,0,90);

theta0 =, 0.09757999996, Length is, 2.8706, theta at top is, 90.00008817,

r at top is, 0.000993707755309609052

> ascentshape(0.4,15,-1.96503,evalf(67.9215*Pi/180),
evalf(0.000069008*Pi/180),2.8706,0,90);

theta0 =, 0.00006900799997, Length is, 2.8706,

theta at top is, 90.00603570, r at top is, 0.000134893472887379508



84 Ivaïlo M. Mladenov and John Oprea

8. Appendix: Recollections of Elliptic Functions

In order to help the reader with certain aspects of this paper, we recall some very

basic information about elliptic functions. The easiest way to understand elliptic

functions is to consider them as analogues of the ordinary trigonometric func-

tions. Just as the arcsin x is given by an integral with sin t the inverse function for

that integral, we can construct elliptic functions as inverse functions for certain

integrals. Begin by fixing some k with 0 ≤ k ≤ 1 (called the modulus).

Definition 13. The Jacobi sine function sn(u, k) is the inverse function of the
following integral:

F (z, k) =

∫ z

0

dt
√

1 − t2
√

1 − k2t2
· (62)

More specifically,

u =

∫ sn(u,k)

0

dt
√

1 − t2
√

1 − k2t2
· (63)

We call F (z, k) an elliptic integral of the first kind. An elliptic integral of the

second kind has the form E(z, k) in

E(z, k) =

∫ z

0

√
1 − k2t2
√

1 − t2
dt.

When z = 1 in F (z, k) and E(z, k), these integrals are respectively denoted by
K(k) and E(k) and called the complete elliptic integrals of the first and second
kind, respectively.

The Jacobi cosine function cn(u, k) may be defined in terms of sn(u, k) by means

of an identity (with square root taken appropriately):

sn2(u, k) + cn2(u, k) = 1.

A third Jacobi elliptic function dn(u, k) is defined by the equation

dn2(u, k) + k2 sn2(u, k) = 1.

The integral definition of sn(u, k) makes it clear that sn(u, 0) = sinu. Of course,

cn(u, 0) = cos u as well. The case k = 1 gives something interesting as well.

Namely, we have sn(u, 1) = tanhu and cn(u, 1) = sech u.
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The derivatives of the elliptic functions can be found from the definitions. For

instance, the derivative of sn(u, k) may be computed as follows. Suppose that

z = z(u). Then

dF

du
=

dF

dz

dz

du
=

1
√

1 − z2
√

1 − k2z2

dz

du
·

But we know that for z = sn(u, k) we have F (z, k) = u, so, replacing z by

sn(u, k) and using du/du = 1, we obtain:

1 =
1√

1 − sn(u, k)2
√

1 − k2sn(u, k)2
d sn(u, k)

du

d sn(u, k)

du
=

√
1 − sn(u, k)2

√
1 − k2sn(u, k)2

d sn(u, k)

du
= cn(u, k) dn(u, k).

We also have

d cn(u, k)

du
= −sn(u, k) dn(u, k) ,

ddn(u, k)

du
= −k2sn(u, k) cn(u, k).

The functions sn(u, k) and cn(u, k) are periodic and such that K(k) is 1/4 of the

period of sn(u, k). Here are two simple examples where elliptic functions arise.

Example 14 (The pendulum equation) Let the angle of a pendulum swing be
denoted by x. Then it is straightforward to determine the equation of motion:

ẍ + (g/l) sin x = 0, where g is the acceleration due to gravity and l is the length
of the pendulum. Here we take units that give g/l = 1. The pendulum equation
then becomes ẍ + sinx = 0. We can multiply by ẋ to obtain

ẋ(ẍ + sin(x)) = 0

ẋẍ + 4 sin
(x

2

)
cos
(x

2

) ẋ

2
= 0

which leads to
1

2
ẋ2 + 2 sin2

(x

2

)
= c

by integrating. (Note that, with a unit mass and using 2 sin2(x/2) = 1 − cos(x),
the last equation expresses the conservation of energy.) Now let y = sin(x/2)
with 2ẏ = cos(x/2)ẋ =

√
1 − y2 ẋ. Then

4ẏ2 = (1 − y2)ẋ2 = ẋ2 − sin2
(x

2

)
ẋ2 = ẋ2 cos2

(x

2

)
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so

ẏ2 =
1

4
ẋ2 cos2

(x

2

)
.

By the first part of the calculation, we have

1

4
ẋ2 =

1

2
c − sin2

(x

2

)
=

1

2
c − y2 , cos2

(x

2

)
= 1 − y2.

Hence, ẏ2 = (A − y2)(1 − y2), where A = c/2. Taking a square root and
separating variables gives

t =

∫ y

0

dy√
(A − y2)(1 − y2)

=

∫ √
Au

0

√
Adu√

(1 − u2)(1 − Au2)

=
√

A · F (
√

Au,
√

A).

Example 15 (The ellipse) We parametrize an ellipse by α(t) = (a sin t, b cos t),
where 0 ≤ t ≤ 2π and a ≥ b. The arclength integral is then

L =

∫ 2π

0

√
ẋ2 + ẏ2 dt

= 4a

∫ 2π

0

√
1 − ε2 sin2(t) dt

in which ε =
√

a2 − b2/a is the eccentricity of the ellipse. If we substitute u =
sin t with du/

√
1 − u2 = dt, we then obtain

L = 4a

∫ 1

0

√
1 − ε2u2

√
1 − u2

du = 4a E(ε).
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