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ON SPECTRAL THEORY OF LAX OPERATORS
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Abstract. We outline several specific issues concerning the theory of multi-

component nonlinear Schrödinger equations with vanishing and constant bound-

ary conditions. We start with the spectral properties of the Lax operator L for

vanishing boundary conditions. We introduce the fundamental analytic solutions

(FAS) and demonstrate their importance for relating the scattering problem to a

Riemann-Hilbert problem, and for the construction of the resolvent of L. Then

we generalize this procedure to constant boundary conditions case. We start with

the structure of the class of allowed potentials M and give a recipe of how FAS

can be constructed on each of the leafs of the relevant Riemannian surface. This

allows us to relate the scattering problem to a Riemann-Hilbert problem posed on

a Riemannian surface. Next we use these FAS to construct the resolvent of L and

study its spectral properties. We also introduce the minimal set of scattering data

on the continuous spectrum of L which generically has varying multiplicity. The

general construction is illustrated by three representative examples related to A.III,

C.II and D.III symmetric spaces. Finally we consider regularized Wronskian re-

lations which allow us to analyze the mapping between the potential of L and the

scattering data.
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1. Introduction

The nonlinear Schrödinger equation (NLSE) with constant boundary conditions
(CBC) is well known [18, 28, 29, 31]. Here we address the so called multicom-
ponent NLSE (MNLSE) with CBC whose dark soliton solutions [26] recently

attracted attention with possible applications to Bose-Einstein condensates [22].

We start with the formulation of the vector NLSE with CBC:

i
∂q

∂t
+
∂2q

∂x2
− 2(q†, q)q(x, t) + ρ2q(x, t) + (q†

±, q(x, t))q± = 0. (1)

Here q(x, t) is an n-component vector-valued function tending to the constant

vectors q±, i.e., limx→±∞ q(x, t) = q± and ρ2 = (q†
±, q±). The additional linear

in q terms in (1) are used as a regularization which avoids the strong oscillations

of q(x, t) in t for x→ ±∞.

The equation (1) allows a Lax representation [L(λ),M(λ)] = 0 which is similar

to the one for the Manakov model [25]. The Lax operator L is a special form of
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the generalized block-matrix Zakharov-Shabat system

Lψ(x, λ) ≡ i
dψ

dx
+ q(x)ψ(x, λ) − λJψ(x, λ) = 0

q(x, t) =

(
0 qT (x, t)

−q∗(x, t) 0

)
, J =

(
1 0
0 −11n

)
.

(2)

All the considerations displayed below are valid for any choice of the block di-

mensions; in some of the specific examples we take n = 3 for simplicity.

The M -operator is given by

Mψ ≡ i
dψ

dt
+
(
V0(x, t)−V0,+ + 2λq(x, t)−2λ2J

)
ψ(x, t, λ) = ψ(x, t, λ)C(λ)

(3)
V0(x, t) =

[
ad−1

J q, q(x, t)
]
+ 2iad−1

J qx, V0,± = lim
x→±∞

V0(x, t).

The formal expressions for the Lax pair are written down for the vector NLSE.

However with minor modifications they can be made to hold true for several types

of symmetric spaces: A.III, C.II, D.III and BD.I. Indeed, let us choose a slightly

more general form of L. It is based on the choice of the simple Lie algebra g and a

Cartan involution that specifies the corresponding symmetric space. As it is well

known [21] each symmetric space is a factor space G/H, where G is the simple

Lie group with Lie algebra g and H is a normal subgroup of G. In fact, H is the

invariant subspace of the Cartan involution (automorphism of second order). On

algebraic level we can say that the Cartan involution splits the root system Δ of g

into two subsets

Δ = Δ0 ∪ Δ1, Δ+ = Δ+
0 ∪ Δ+

1 (4)

according to the choice of J ∈ h – constant real element of the Cartan subalgebra

of g. The set of roots in Δ0 are such that α(J) = 0 for any α ∈ Δ0, whereas

β1(J) = β2(J) > 0 for any two roots β1, β2 ∈ Δ+
1 . Below we will specify the

sets Δ±
0 , Δ±

1 and J for each of the relevant symmetric spaces.

The next step is to relate to each symmetric space a Lax operator of the form

Lψ(x, λ) ≡ i
dψ

dx
+ q(x, t)ψ(x, λ) − λJψ(x, λ) = 0 (5a)

where the potential q(x, t) (6) can always be represented as

q(x, t) = [J,Q(x, t)]. (5b)

Here Q(x, t) is a generic element of g. In fact q(x, t) provides local coordinates

in the space tangent to G/H at a given point and can be written down as:

q(x, t) =
∑

α∈Δ+

1

(qα(x, t)Eα + pα(x, t)E−α). (6)
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The Lax operator (2) is a particular case of (5) corresponding to a specific sym-

metric space of A.III type SU(n+ 1)/S(U(1)×U(n)); its spectral properties for

vanishing boundary conditions (VBC) were analyzed in [25].

The purpose of the present paper is to outline the spectral properties of L for two

classes of potentials:

i) q(x, t) is a Schwartz-type function of x and t taking values in g/h.

ii) q(x, t) is a smooth function of x and t taking values in g/h and satisfying

constant boundary conditions

lim
x→±∞

q(x, t) = q± (7)

where q± are properly chosen constant elements of g/k.

iii) We also impose one more implicit condition on the potentials, namely

we assume that q(x, t) is such, that the corresponding Lax operator L
has a finite number of simple eigenvalues.

Next we will use these results for the analysis of the NLEE generated by these

Lax operators.

In doing so we will need somewhat different approaches depending on the choice

of J . The first one applies to J’s given by equation (11) and satisfying the char-

acteristic equation J2 = 11. Such choice of J is relevant for symmetric spaces of

types A.III, C.II and D.III in the Cartan classification. The second approach deals

with J’s of the form

J =

⎛⎝ 1 0 0
0 0n 0
0 0 −1

⎞⎠ (8)

where 0n is an n×nmatrix whose matrix elements are all vanishing, i.e., the van-

ishing eigenvalue has multiplicity n. Such J’s satisfy the characteristic equation

Jn(J2 − 11) = 0 and are relevant for the class of BD.I type symmetric spaces of

the form SO(n+ 2)/(SO(n) ⊗ SO(2)). Such spaces exist both for odd and even

values of n. The element J inevitably has vanishing eigenvalues and is dual to the

vector e1.

Of course, in analyzing the spectral properties of the Lax operators we will use

the typical (i.e., lowest dimensional) representations of the relevant algebras.

In the next Section 2 we provide some algebraic preliminaries for the symmetric

spaces of type A.I, C.II, D.III, and for completeness, also for BD.I-type spaces.
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In Section 3 we outline the construction of the Jost solutions, scattering matrix

and the fundamental analytic solutions (FAS) of L for VBC. Most of the consid-

erations are done in the typical representations of the corresponding simple Lie

algebras. However these results can be generalized to any irreducible representa-

tion. In particular we propose a formulation of the minimal set of scattering data

which is invariant with respect to the choice of the representation. In Section 4 we

construct the Jost solutions, the scattering matrix and the FAS for the CBC case.

Section 5 is dedicated to several examples for specific choices of the symmetric

spaces of A.III, C.II and D.III-types.

2. Algebraic Preliminaries

In order to proceed with the symmetric spaces we mentioned above we will need

to introduce their Cartan-Weyl basis in the typical representations and the corre-

sponding Cartan involution definitions. In fact it will be sufficient to specify the

sets of roots forming Δ+
0 and Δ+

1 along with the corresponding choice of the real

constant element J .

First we start with the A.III series; the corresponding Lie algebras are g � sl(r +
1). Their set of positive roots is provided by

Δ+ = {ei − ej ; 1 ≤ i < j ≤ r + 1}. (9)

In fact the root space of sl(r+1) is the r-dimensional subspace of E
r+1 orthogonal

to the vector �ε0 =
∑r+1

k=1 ek. The Cartan-Weyl basis in the typical representation

is given by

Hα = Eii−Ej,j , Eα = Eij , E−α = ET
α , 1 ≤ i < j ≤ r+1 (10)

where Eij is an r + 1 × r + 1 matrix with matrix elements (Eij)kl = δikδjl. For

the A.III type symmetric spaces we choose

J =

(
11s 0
0 −11s′

)
, s+ s′ = r + 1 (11)

the element J is dual to the vector
∑s

k=1 ek −
∑r+1

k=s+1 ek + (s′ − s)/(r + 1)�ε0
in the root space.

In what follows we will use slightly different definition of the orthogonal and

symplectic Lie algebras, namely

g ≡
{
X ; X + S0X

TS−1
0 = 0

}
(12)
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where

S0 =

2r+1∑
s=1

(−1)s+1Ess̄ for g � so(2r + 1) (13)

S0 =

r∑
s=1

(−1)s+1 (Ess̄ − Es̄s) for g � sp(2r) (14)

S0 =
r∑

s=1

(−1)s+1 (Ess̄ + Es̄s) for g � so(2r). (15)

If we denote by N the dimension of the typical representation of the correspond-

ing algebra then s̄ = N + 1 − s and Eks are N × N matrices defined by

(Eks)jl = δkjδsl. For g � so(2r + 1) we have N = 2r + 1; for g � so(2r)
and g � sp(2r) we have N = 2r.

Note that S2
0 = 11 for so(2r + 1) and so(2r) and S2

0 = −11 for sp(2r).

In what follows we denote by ek, k = 1, . . . , r the vectors forming an orthonormal

basis in the root spaces E
r of the corresponding algebra. The above definitions of

g (12) has the advantage that the Cartan generatorsHk are diagonal. In particular,

if Hk is dual to ek it is given by

Hk = Ekk −Ek̄k̄, k̄ = N + 1 − k. (16)

The root systems of these algebras Δ = Δ+ ∪ (−Δ+) are well known [21]:

Δ+ = {ei − ej ; 1 ≤ i < j ≤ r + 1} for sl(r + 1) (17)

Δ+ = {ei ± ej , ej ; 1 ≤ i < j ≤ r} for so(2r + 1) (18)

Δ+ = {ei ± ej ; 1 ≤ i < ej ≤ r} for so(2r) (19)

Δ+ = {ei ± ej , 2ej ; 1 ≤ i < j ≤ r} for sp(2r). (20)

We also remind that to each element J ∈ h there corresponds a dual vector �a in

the root space E
r. We choose the element J in the Lax operator in such a way that

α(J) = (α,�a) > 0 for all roots α ∈ Δ+.

The Cartan-Weyl basis in the typical representations are given by

Hk = Ekk −
1

r + 1
11, Eei−ej

= Eij (21)

for sl(r + 1);

Hk = Ekk −Ek̄k̄, Eei−ej
= Eij − (−1)i+jEj̄ī

Eei+ej
= Eij̄ − (−1)i+jEjī, Eej

= Er+1,j − (−1)r+jEj̄,r+1

(22)
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for so(2r + 1);

Hk = Ekk −Ek̄k̄, Eei−ej
= Eij − (−1)i+jEj̄ī

Eei+ej
= Eij̄ + (−1)i+jEjī, E2ej

= Ej,j̄

(23)

for sp(2r);

Hk =Ekk−Ek̄k̄, Eei−ej
=Eij−(−1)i+jEj̄ī, Eei+ej

=Eij̄−(−1)i+jEjī (24)

for so(2r).

Most of the symmetric spaces which will used below are characterized by an

element J such that J2 = 11, see (11). J is dual to the �a ∈ h∗, J =
∑r

k=1Hk.

Using J we can split the set of positive roots into two subsets Δ+ = Δ+
0 ∪ Δ+

1 .

As we mentioned above, for the A.III-type symmetric spaces we choose J to be

dual to the vector �a =
∑s

p=1 ep −
∑r+1

p=s+1 ep + (s′ − s)/(r + 1)�ε0

Δ+
0 = {ei − ej ; 1 ≤ j ≤ s and s+ 1 ≤ i < j ≤ N}

Δ+
1 = {ei − ej ; 1 ≤ j ≤ s and s+ 1 ≤ i < j ≤ N}.

(25)

We will pay special attention to the case when r + 1 = 2s and s′ = s. Such

choice allows one also to treat two other classes of symmetric spaces: i) C.II with

g � sp(2r) and

Δ+
0 = {ei − ej}, Δ+

1 = {2ei ; ei + ej}, 1 ≤ i < j ≤ r (26)

and also ii) D.III with g � so(2r) and

Δ+
0 = {ei − ej}, Δ+

1 = {ei + ej}, 1 ≤ i < j ≤ r. (27)

The corresponding J in both cases is dual to
∑r

p=1 ep. For completeness we

include here also the case of BD.I-type symmetric spaces which are of the form

SO(n + 2)/(SO(n) ⊗ SO(2)) and exist both for odd and even values of n. The

element J satisfies the characteristic equation J 3 − J = 0 and inevitably has

vanishing eigenvalues, see equation (8). As a result we have two possibilities

Δ+
0 = {e1 ± ej , e1 ; 1 ≤ j ≤ r}, Δ+

1 = {ei ± ej , ei ; 2 ≤ i < j ≤ r}

(28)
Δ+

0 = {e1 ± ej ; 1 ≤ j ≤ r}, Δ+
1 = {ei ± ej ; 2 ≤ i < j ≤ r}

where the first line in equation (28) is valid for n = 2r + 1 and the second one –

for n = 2r.
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3. Spectral Properties of Lax Operators on Symmetric Spaces.
Vanishing Boundary Conditions

3.1. Jost Solutions, Scattering Matrix and FAS

The spectral theory of the Lax operators related to the symmetric spaces of A.III,

C.II and D.III-types can be constructed along the same lines1. Their continuous

spectrum for vanishing boundary conditions fills up the real axis of the complex

λ-plane, see [4, 5, 10, 25]; more recently the topic was covered in [2]. The corre-

sponding Jost solutions and FAS are also constructed rather straightforwardly. In

our considerations below we will use the lowest-dimensional nontrivial represen-

tation of the corresponding Lie algebras.

In our consideration t plays the role of an additional parameter; for the sake of

brevity the t-dependence is mostly suppressed. Condition iii) on page 4 can not

be formulated as a set of explicit conditions on q(x); its precise meaning will

become clear below. The main tool here are the Jost solutions defined by their

asymptotics at x→ ±∞

lim
x→∞

ψ(x, λ)eiλJx = 11, lim
x→−∞

φ(x, λ)eiλJx = 11. (29)

Along with the Jost solutions we introduce

ξ(x, λ) = ψ(x, λ)eiλJx, ϕ(x, λ) = φ(x, λ)eiλJx (30)

which satisfy the following linear integral equations

ξ(x, λ) = 11 + i

∫ x

∞

dy e−iλJ(x−y)q(y)ξ(y, λ)eiλJ(x−y) (31)

ϕ(x, λ) = 11 + i

∫ x

−∞

dy e−iλJ(x−y)q(y)ϕ(y, λ)eiλJ(x−y). (32)

These are Volterra type equations which, as is well known always have solutions,

provided one can ensure the convergence of the integrals in the right hand side.

For λ real the exponential factors in (31) and (32) are just oscillating and the

convergence is ensured by condition i) on page 4.

Obviously the Jost solutions as whole can not be extended for imλ 
= 0. However

some of their columns can be extended for λ ∈ C+, others – for λ ∈ C−. Indeed,

the equation (31) for the first s columns of ξ(x, λ) contains only the exponential

1Due to the fact that the element J for the BD.I-type symmetric spaces has vanishing eigenval-
ues, the corresponding spectral problem requires additional considerations.
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factor eiλ(x−y) which falls off for imλ < 0. More precisely we can write down

the Jost solutions ψ(x, λ) and φ(x, λ) in the following block-matrix form

ψ(x, λ)=
(
|ψ−(x, λ)〉, |ψ+(x, λ)〉

)
, φ(x, λ)=

(
|φ+(x, λ)〉, |φ−(x, λ)〉

)
(33)

where the superscript + (respectively −) shows that the corresponding block-

matrix allows analytic extension for λ ∈ C+ (respectively λ ∈ C−).

Solving the direct scattering problem means given the potential q(x) to find the

scattering matrix T (λ). By definition T (λ) relates the two Jost solutions

φ(x, λ) = ψ(x, λ)T (λ), T (λ) =

(
a+(λ) −b−(λ)
b+(λ) a−(λ)

)
(34)

and has compatible block-matrix structure. In what follows we will need also the

inverse of the scattering matrix

ψ(x, λ) = φ(x, λ)T̂ (λ), T̂ (λ) ≡

(
c−(λ) d−(λ)
−d+(λ) c+(λ)

)
(35)

where

c−(λ) = â+(λ)(11 + ρ−ρ+)−1 = (11 + τ+τ−)−1â+(λ)

d−(λ) = â+(λ)ρ−(λ)(11 + ρ+ρ−)−1 = (11 + τ+τ−)−1τ+(λ)â−(λ)

c+(λ) = â−(λ)(11 + ρ+ρ−)−1 = (11 + τ−τ+)−1â−(λ)

d+(λ) = â−(λ)ρ+(λ)(11 + ρ−ρ+)−1 = (11 + τ−τ+)−1τ−(λ)â+(λ).

(36)

The diagonal blocks of both T (λ) and T̂ (λ) allow analytic continuation off the

real axis, namely a+(λ), c+(λ) are analytic functions of λ for λ ∈ C±, while

a−(λ), c−(λ) are analytic functions of λ for λ ∈ C±.

By ρ±(λ) and τ±(λ) above we have denoted the multicomponent generalizations

of the reflection coefficients [4, 5], generalizing the ones for the scalar case, see

[1, 15, 23]

ρ±(λ) = b±â±(λ) = ĉ±d±(λ), τ±(λ) = â±b∓(λ) = d∓ĉ±(λ). (37)

We will need also the asymptotics for λ→ ∞

lim
λ→−∞

φ(x, λ)eiλJx = lim
λ→∞

ψ(x, λ)eiλJx = 11, lim
λ→∞

T (λ) = 11

lim
λ→∞

a+(λ) = lim
λ→∞

c−(λ) = 11, lim
λ→∞

a−(λ) = lim
λ→∞

c+(λ) = 11.
(38)
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The inverse to the Jost solutions ψ̂(x, λ) and φ̂(x, λ) are solutions to

i
dψ̂

dx
− ψ̂(x, λ)(q(x) − λJ) = 0 (39)

satisfying the conditions

lim
x→∞

e−iλJxψ̂(x, λ) = 11, lim
x→−∞

e−iλJxφ̂(x, λ) = 11. (40)

Now it is the collections of rows of ψ̂(x, λ) and φ̂(x, λ) that possess analytic pro-

perties in λ

ψ̂(x, λ) =

(
〈ψ̂+(x, λ)|

〈ψ̂−(x, λ)|

)
, φ̂(x, λ) =

(
〈φ̂−(x, λ)|

〈φ̂+(x, λ)|

)
. (41)

Just like the Jost solutions, their inverse (41) are solutions to linear equations (39)

with regular boundary conditions (40). Therefore, they can have no singularities

in their regions of analyticity. The same holds true also for the scattering matrix

T (λ) = ψ̂(x, λ)φ(x, λ) and its inverse T̂ (λ) = φ̂(x, λ)ψ(x, λ), i.e.,

a+(λ) = 〈ψ̂+(x, λ)|φ+(x, λ)〉, a−(λ) = 〈ψ̂−(x, λ)|φ−(x, λ)〉 (42)

as well as

c+(λ) = 〈φ̂+(x, λ)|ψ+(x, λ)〉, c−(λ) = 〈φ̂−(x, λ)|ψ−(x, λ)〉 (43)

are analytic for λ ∈ C± and have no singularities in their regions of analyticity.

However they may become degenerate (i.e., their determinants may vanish) for

some values λ±j ∈ C± of λ. Below we analyze the structure of these degeneracies.

3.2. The Fundamental Analytic Solutions

The next step is to construct the fundamental analytic solutions of L. In our case

this is done simply by combining the blocks of Jost solutions with the same ana-

lytic properties

χ+(x, λ) = φ(x, λ)S+(λ) = ψ(x, λ)T−(λ)D+(λ)

χ−(x, λ) = φ(x, λ)S−(λ) = ψ(x, λ)T+(λ)D−(λ)
(44)

where the block-triangular functions S±(λ) and T±(λ) are given by

S+(λ) =

(
11 τ+(λ)
0 11

)
, T−(λ) =

(
11 0

ρ+(λ) 11

)
S−(λ) =

(
11 0

−τ−(λ) 11

)
, T+(λ) =

(
11 −ρ−(λ)
0 11

)
D+(λ) =

(
a+(λ) 0

0 ĉ+(λ)

)
, D−(λ) =

(
ĉ−(λ) 0

0 a−(λ)

) (45)
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and ρ±(λ) and τ±(λ) are given by equation (37).

The factors S±(λ), T±(λ) and D±(λ) are related to the scattering matrix T (λ)
and its inverse T̂ (λ) by

T (λ) = T−(λ)D+(λ)Ŝ+(λ) = T+(λ)D−(λ)Ŝ−(λ)

T̂ (λ) = S+(λ)D̂+(λ)T̂−(λ) = S−(λ)D̂−(λ)T̂+(λ).
(46)

In other words equation (46) and can be viewed as generalized Gauss decomposi-

tions (see [21]) of T (λ) and its inverse.

The relations between c±(λ), d±(λ) and a±(λ), b±(λ) in equation (36) ensure

that equations (46) become identities. From equations (44), (45) we derive

χ+(x, λ) = χ−(x, λ)G0(λ), χ−(x, λ) = χ+(x, λ)Ĝ0(λ) (47)

G0(λ) = Ŝ−S+(λ) =

(
11 τ+(λ)

τ−(λ) 11 + τ−(λ)τ+(λ)

)
(48)

Ĝ0(λ) = Ŝ+S−(λ) =

(
11 + τ+(λ)τ−(λ) τ+(λ)

−τ−(λ) 11

)
(49)

valid for λ ∈ R, where the block-triangular factors S+(λ) and S−(λ) are given

by equation (45).

Note that the block-diagonal factorsD+(λ) andD−(λ) are matrix-valued analytic

functions for λ ∈ C±, whereas S±(λ) and T±(λ) are defined only for real λ ∈ R.

Another well known fact about the FAS χ±(x, λ) concerns their asymptotic be-

havior for λ→ ±∞, namely, if we introduce

X±(x, λ) = χ±(x, λ)eiλJx (50)

then

lim
λ→∞

X±(x, λ) = 11. (51)

With these notations equation (47) can be rewritten in the form

X+(x, λ) = X−(x, λ)G(x, λ), λ ∈ R (52)

where

G(x, λ) = e−iλJxG0(λ)eiλJx =

(
11 τ+(λ)e−2iλx

τ−(λ)e2iλx 11 + τ−(λ)τ+(λ)

)
. (53)

From our considerations if χ±(x, λ) are the FAS of the Lax operatorL constructed

above, then X±(x, λ) will satisfy equation (52). The inverse is also true. Indeed,
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suppose we can construct two matrix-valued functions X±(x, λ) which are ana-

lytic for λ ∈ C± respectively, and which satisfy equations (52) and (51). Then

one can show [11, 30, 32] that X±(x, λ) satisfy the equation

i
dX±

dx
+ q(x)X±(x, λ) − λ[J,X±(x, λ)] = 0 (54)

and using the relation (50) we can recover the FAS of L. This important fact,

along with the construction of the FAS for generalized Zakharov-Shabat systems

has been discovered by Shabat [27].

Equation (52) is known as a Riemann-Hilbert problem (RHP). The additional con-

straint given by equation (51) is known as a canonical normalization of the RHP.

In the derivations that follow the analyticity properties of X±(x, λ) for λ ∈ C±

and equation (52) will play crucial role.

Definition 1. We will say that X±(x, λ) are regular solution to the RHP with
canonical normalization if they have no singularities or zeroes in their regions of
analyticity.

Then the following theorem holds.

Theorem 2. The RHP (52) has unique regular solution with canonical normal-
ization condition (51).

Proof: Let us assume that along with X±(x, λ) we have a second regular so-

lution X±
(1)(x, λ) for the same RHP, and let Y ±(x, λ) = X±

(1)(x, λ)X̂±(x, λ).

From equation (52) it is obvious that Y +(x, λ) = Y −(x, λ) for λ ∈ R and also

limλ→∞ Y ±(x, λ) = 11. Since both solutions X±(x, λ) and X±
(1)(x, λ) are regu-

lar, then Y ±(x, λ) have neither zeroes nor singularities anywhere in the complex

plane. Thus, from Liouville theorem there follows that Y ±(x, λ) = 11, or

X±
(1)(x, λ) = X±(x, λ). (55)

The theorem is proved. �

In what follows we will find out that the RHP allows nontrivial singular solutions,

whose zeroes and singularities are located on the discrete spectrum of L. For the

sake of simplicity in what follows we will reformulate the condition iii) on page 4

as follows

iii′) Let the potential q(x) of the operator L be such that the corre-

sponding FAS X±(x, λ) have finite number of simple zeroes and

singularities, located at the positions λ±k ∈ C±, k = 1, . . . , N .
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Remark 3. We will denote the set of the points λ±k by S. As we will see below,
each of these points is a discrete eigenvalue of L.

Note that the Jost solutions have no singularities, therefore singularities and zeroes

of X±(x, λ) can come up only if the matrices a±(λ), c±(λ) become degenerate

and, as a result, their inverse â±(λ), ĉ±(λ) acquire singularities. By simple zeroes

and singularities in condition iii′) above we mean that a±(λ), c±(λ) and their

inverse â±(λ), ĉ±(λ) have the following behavior in the vicinity of λ±k

a±(λ) = a±
k + (λ− λ±k )ȧ±

k + O
(
(λ− λ±k )2

)
c±(λ) = c±k + (λ− λ±k )ċ±k + O

(
(λ− λ±k )2

)
â±(λ) =

â±
k

λ− λ±k
+ ˆ̇a±

k + O
(
(λ− λ±k )

)
ĉ±(λ) =

ĉ±k

λ− λ±k
+ ˆ̇c±k + O

(
(λ− λ±k )

)
.

(56)

Obviously, since we must have a±(λ)â±(λ) = 11 for all λ ∈ C± the matrices

a±
k , ȧ±

k , â±
k , ˆ̇a±

k must satisfy

a±
k

ˆ̇a±
k = 0, â±

k ȧ±
k + ˆ̇a±

k a±
k = 11 (57)

and similarly for the coefficients of c±(λ), ĉ±(λ)

c±k
ˆ̇c±k = 0, ĉ±k ċ±k + ˆ̇c±k c±k = 11. (58)

Remark 4. A good tool for treating the scattering data related to the discrete
spectrum of L is based on the following. Consider first potentials on finite sup-
port. For such potentials not only the Jost solutions but also the scattering matrix
elements allow analytic extension to the whole complex λ-plane. In that case the
constant matrices b±k , d±

k will be just the values of the functions b±(λ), d±(λ) for
λ = λ±k :

b±k = b±(λ)
∣∣
λ=λ±

k

, d±
k = d±(λ)

∣∣
λ=λ∓

k

. (59)

Next one is to extend the support of the potential to the infinite line. This limit
substantially changes the picture and the functions b±(λ), d±(λ) can no more be
extended outside λ ∈ R. Therefore, in this limit b±

k , d±
k must be understood just

as appropriate matrix-valued constants.
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3.3. The FAS and Higher Representations

Here we briefly outline the construction of the FAS for higher irreducible repre-

sentations of g. To this end we will make use of the Cartan-Weyl basis and the

possibility to represent the Gauss factors S±(λ) and T±(λ) in the form

S±=exp

⎛⎝±
∑

α∈Δ+

1

τ±α (λ)E±α

⎞⎠ , T±=exp

⎛⎝∓
∑

α∈Δ+

1

ρ∓α (λ)E±α

⎞⎠ . (60)

The first step will be to interrelate the coefficients τ∓α (λ), ρ∓α (λ) to the matrix

elements of τ±(λ), ρ±(λ) in the typical representations of g.

To this end we calculate:

Ŝ±JS±(λ) = J + 2
∑

α∈Δ+

1

τ±α (λ)E±α

T̂±JT±(λ) = J + 2
∑

α∈Δ+

1

ρ∓α (λ)E±α.
(61)

Here we made use of the specific property of the symmetric spaces, namely for

any two roots β1 and β2 belonging to Δ+
1 their sum β1 + β2 /∈ Δ is not a root.

Thus we derive the following, invariant with respect to the choice of the represen-

tation expressions for the coefficients τ±α (λ), ρ±α (λ)

τ±α (λ) =
〈Ŝ±JS±(λ), E±α〉

〈Eα, E−α〉
, ρ∓α (λ) =

〈T̂±JT±(λ), E±α〉

〈Eα, E−α〉
(62)

where 〈X,Y 〉 is the Killing form evaluated for X,Y ∈ g. These formulae hold

for any choice of the irreducible representation of g.

It is also important to derive similar expressions for the coefficients of the varia-

tions δτ∓α (λ), δρ∓α (λ). Using similar arguments as above we get

Ŝ±δS±(λ) = ±
∑

α∈Δ+

1

δτ±α (λ)E±α, T̂±δT±(λ) = ∓
∑

α∈Δ+

1

δρ∓α (λ)E±α.

(63)

Therefore,

δτ±α (λ) = ±
〈Ŝ±δS±(λ), E±α〉

〈Eα, E−α〉
, δρ∓α (λ) = ∓

〈T̂±δT±(λ), E±α〉

〈Eα, E−α〉
]· (64)

Such expressions are important in deriving the explicit of the action-angle vari-

ables for the corresponding MNLSE, as well as in analyzing their gauge equivalent

nonlinear evolution equations of Heisenberg ferromagnet type.
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3.4. Typical Reductions

The typical reductions of the Lax pair and, as a consequence, the typical reduc-

tions of the MNLSE are of the form

C0U
†(x, t, λ∗)Ĉ0 = U(x, t, λ), U(x, t, λ) = q(x, t) − λJ (65)

where C2
0 = 11. Two possible choices for C0 are most important

a) C0 = 11, i.e., q = q†

b) C0 = J, i.e., q = Jq†J.
(66)

Of course, for symmetric spaces of rank higher than 1 one can choose as C0 also

Weyl group element, corresponding to a reflection with respect to a root α1 such,

that α1(J) = 0. Such reductions have been analyzed in [14].

Each of the above mentioned reductions imposes restriction on the scattering ma-

trix T (λ) and the scattering data as follows

C0T
†(t, λ∗)Ĉ0 = T̂ (t, λ) (67)

or, in terms of the block-components

(a+(λ∗))† = c−(λ), (a−(λ∗))† = c+(λ)

(b+(λ∗))† = εd−(λ), (b−(λ∗))† = εd+(λ)

(ρ−(λ∗))† = ερ+(λ), (τ−(λ∗))† = ετ+(λ)

(68)

where ε = 1 in case a) and ε = −1 in case b). From (56) there follows that

λ+
k = (λ−k )∗ (69)

besides, relations similar to (68) hold true also for the coefficients a±
k , b±k , c±k , d±

k

(a+
k )† = c−k , (a−

k )† = c+
k

(b+
k )† = εd−

k , (b−k )† = εd+
k

(ρ−k )† = ερ+
k , (τ−k )† = ετ+

k

ρ±k = b±k â±
k = ĉ±k d±

k , τ−k = d∓
k ĉ±k = â±

k b∓k .

(70)

We provide also the corresponding constraints which the typical reductions im-

pose on the coefficients τ±α (λ) and ρ±α (λ)

τ−α (λ) = ε(τ+
α (λ∗))∗, ρ−α (λ) = ε(ρ+

α (λ∗))∗. (71)
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Remark 5. Reduction (66a) is typical for the MNLSE with vanishing boundary
conditions (VBC). An important property of the other reduction (66b), which is
typical for the MNLSE with CBC, consist in the fact that the Lax equation (2)

becomes equivalent to a self-adjoint eigenvalue problem

Lψ(x, λ) ≡ iJ
dψ

dx
+ Jq(x)ψ(x, λ) = λψ(x, λ) (72)

since Jq(x, t) = (Jq(x, t))†. The spectrum of such operators must lie on the real
λ-axis. However, for VBC the real λ-axis is already filled up by the continuous
spectrum of L which leaves “no space” for discrete eigenvalues of L. That is why
the corresponding MNLSE do not have soliton solutions. When we go to CBC the
situation changes. As we shall see below, the continuous spectrum of L with CBC

has lacunae on the real λ-axis and they admit real discrete eigenvalues inside
these lacunae. The corresponding soliton solutions of the MNLSE with CBC are
known as dark solitons.

3.5. The Resolvent of L and the Minimal Sets of Scattering Data

The FAS allow one to construct explicitly the resolvent Rλ of L. The resolvent is

an integral operator acting in the space of vector-valued functions �f(x) by

(Rλ
�f)(x) =

∫ ∞

−∞

dy R±(x, y, λ)�f(y) (73)

where the superscript + (respectively −) corresponds to λ ∈ C+ (respectively

λ ∈ C−). For real values of λ we use

R(x, y, λ) =
1

2

(
R+(x, y, λ) +R−(x, y, λ)

)
, λ ∈ R. (74)

The kernel of the resolvent is provided by

R±(x, y, λ) =
1

i
χ±(x, λ)Θ±(x− y)χ̂±(y, λ), λ ∈ C± (75)

where

Θ+(x− y) =

(
−θ(y − x)11s 0

0 θ(x− y)11s′

)
Θ−(x− y) =

(
θ(x− y)11s 0

0 −θ(y − x)11s′

)
.

(76)

Skipping the details, we formulate the properties of Rλ (see [9, 11, 12]).



On Spectral Theory of Lax Operators: VBC versus CBC 17

Theorem 6. Let q(x) satisfy conditions i) and iii′) and let λ±j be the simple zeroes
of deta±(λ) and detc±(λ). Then

1. R±(x, y, λ) is an analytic function of λ for λ ∈ C± having pole singular-
ities at λ±j ∈ C±;

2. R±(x, y, λ) is a kernel of a bounded integral operator for imλ 
= 0;

3. R±(x, y, λ) is uniformly bounded function for λ ∈ R and provides a
kernel of an unbounded integral operator;

4. R±(x, y, λ) satisfy the equation

L(λ)R±(x, y, λ) = 11δ(x− y). (77)

Sketch of the proof:

1. is obvious from the fact that χ±(x, λ) are the FAS of L(λ). From defini-

tion (44) it follows χ±(x, λ) and χ̂±(y, λ), and consequently, R±(x, y, λ)
will develop pole singularities for all λ±j for which deta±(λ) = 0.

2. Assume that imλ > 0 and consider the asymptotic behavior of R+(x, y, λ)
for x, y → ∞. From equations (44), (45) we find that

R+(x, y, λ) =
n∑

p=1

X+(x, λ)e−iλJ(x−y)Θ+(x− y)X̂+(y, λ). (78)

Due to the fact that χ+(x, λ) has block-triangular asymptotics for x → ∞
and λ ∈ C+ and for the correct choice of Θ+(x − y) (76) we check that

the right hand side of (78) falls off exponentially for x → ∞ and arbitrary

choice of y. All other possibilities are treated analogously.

3. For λ ∈ R the arguments of item 2) can not be applied because the expo-

nentials in the right hand side of (78) for imλ = 0 only oscillate. Thus

we conclude that R±(x, y, λ) for λ ∈ R is only a bounded function for

x → ±∞ and thus the corresponding operator R(λ) is an unbounded inte-

gral operator.

4. The proof of equation (77) follows from the fact that L(λ)χ+(x, λ) = 0
and

dΘ±(x− y)

dx
= 11δ(x− y) (79)
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which concludes the proof.

From Theorem 6, item 3) there follows that the continuous spectrum of L fills up

the whole real λ-axis with multiplicity n. By definition the operator L may also

have discrete eigenvalues at the points at which R±(x, y, λ) have pole singulari-

ties. From item 1) it follows that these are precisely the points λ±j .

Let us now outline the structure of these singularities and evaluate the correspond-

ing residues. The result is that R±(x, y, λ) have poles of first order in the neigh-

borhood of λ±j with residues [12]

Resλ=λ±
j
R±(x, y, λ) = ±i|ψ±

j (x)〉ρ±j 〈ψ
±
j (y)| (80)

where ρ±j are defined in equation (70).

Now we can derive the completeness relation for the eigenfunctions of the Lax

operator by applying the contour integration method (see, e.g., [1,18]) to the inte-

gral

J (x, y) =
1

2πi

∮
γ+

dλR+(x, y, λ) −
1

2πi

∮
γ−

dλR−(x, y, λ) (81)

where the contours γ± are shown in Figure 1. Skipping the details we get

δ(x− y)J

=
1

2π

∫ ∞

−∞

dλ
{
|φ+(x, λ)〉â+(λ)〈ψ̂+(y, λ)| − |φ−(x, λ)〉â−(λ)〈ψ̂−(y, λ)|

}
− i

N∑
j=1

(
|ψ+

j (x)〉ρ+
j 〈ψ

+
j (y)| − |ψ−

j (x)〉ρ−j 〈ψ
−
j (y)|

)
. (82)

The completeness relation (82) is a natural generalization of the one in [18] for the

sl(2) case. An important difference here is that now we have matrix-valued spec-

tral functions a±(λ) whose zeroes determine the location of the discrete eigen-

values. It also allows us to introduce the minimal sets of scattering data.

Lemma 7. Let the potential q(x) is such that the Lax operator L satisfies the
involution (66a) and has a finite number of discrete eigenvalues. Then as minimal
set of scattering data which determines uniquely the scattering matrix T (λ) and
the corresponding potential q(x) one can consider either one of the sets Ti, i =
1, 2

T1 ≡ {τ+
α (λ), α ∈ Δ+

1 λ ∈ R; λ+
k , τ+

k , k = 1, . . . , N}

T2 ≡ {ρ+(λ), α ∈ Δ+
1 λ ∈ R; λ+

k , ρ+
k , k = 1, . . . , N}.

(83)
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Figure 1. The contours γ± = R ∪ γ±∞.

Outline of the proof: First we consider the class of potentials for which the Lax

operator has no discrete eigenvalues, i.e., N = 0.

Let T1 be given. Using the involution (68) we determine also τ−(λ). Thus we

easily construct S±(λ) and the sewing functionsG0,J(λ) andGJ(x, λ), see equa-

tion (53). The next step consists in solving the RHP with canonical normaliza-

tion for the FAS X±(x, λ). Since the Lax operator has no discrete eigenvalues,

X±(x, λ) are regular solutions of the RHP and therefore are uniquely determined.

The next step is to use the asymptotics of X±(x, λ) for x → ±∞. From equa-

tions (44), (50) we have

lim
x→±∞

X±(x, λ) = T∓D±(λ) (84)

whose block diagonal part gives us bothD+(λ) andD−(λ). Finally from the right

hand sides of (84) we recover uniquely also T∓(λ) and T2. The reconstruction of

T (λ) is easily done, since we know its Gauss factors.

Let us explain how, given the solutions X±(x, λ) one recovers the corresponding

potential q(x). Since X±(x, λ) are solution of a RHP with canonical normaliza-

tion they allow asymptotic expansions for λ→ ∞

X±(x, λ) = 11 +
∞∑

k=1

λ−kX±
k (x), X̂±(x, λ) = 11 +

∞∑
k=1

λ−kX̂±
k (x). (85)
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It remains to remember that χ±(x, λ) = X±(x, t, λ)eiλJx is a fundamental solu-

tion of L. Inserting it into equation (2) and taking the limit λ→ ∞ we get

q(x) = lim
λ→∞

λ
(
J −X±JX̂±(x, λ)

)
= [J,X±

1 (x)] (86)

where we took into account that X±
1 (x) = −X̂±

1 (x).

The reconstruction of T (λ) and q(x) from T2 can be done in an analogous way

using the FAS

X ′,±(x, λ) ≡ X±(x, λ)D̂± = ψ±(x, λ)T∓(λ) = φ±(x, λ)S±(λ)D̂±(λ). (87)

If N > 1 the FAS are solutions of singular RHP. In this case we have to give

additional considerations to show that ρ+
k and λ+

k fix up uniquely the correspond-

ing singular solutions of the RHP. Such considerations are based on the dressing

Zakharov-Shabat method [32].

We finish this Section by noting, that using the FAS one can construct the “squared

solutions” of Lwhich map the potential q(x) to the corresponding sets of minimal

scattering data Ti, i = 1, 2. Then one can prove the completeness relation for the

“squared solutions” and interpret the mapping q(x) → Ti as a generalized Fourier

transform. In fact the completeness relation of the “squared solutions” provides

the spectral decomposition for the operators Λ± that generate the corresponding

class of NLEE.

4. Spectral Properties of Lax Operators on Symmetric Spaces.
Constant Boundary Conditions

Here we show that the constant boundary conditions substantially modify the form

of the spectrum of L and the construction of the FAS. Nevertheless our aim is

to demonstrate that FAS can be constructed also in this case and the programm

outlined above can be implemented also for soliton equations with CBC.

We start by defining the notion of an admissible potential q(x) satisfying the above

conditions and ensuring regular solutions to the direct and inverse scattering prob-

lems for L. First we note that the manifold M of all admissible potentials is a

nonlinear one, i.e., linear combination of two admissible potentials generically is

not admissible.
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4.1. Jost Solutions and Continuous Spectrum of L

Like for the case of VBC, the Jost solutions of L with CBC are determined by

their asymptotics for x → ±∞. This is the crucial point which is the source

of the substantial differences between the two cases. In order to determine these

asymptotics we need to find the eigenfunctions of the two asymptotic operators

L+ψas(x, λ) ≡ i
dψas

dx
+ q+ψas(x, λ) − λJψas(x, λ) = 0

L−φas(x, λ) ≡ i
dφas

dx
+ q−φas(x, λ) − λJφas(x, λ) = 0

q± = lim
x→±∞

q(x) =

(
0 qT

±(x, t)
−q∗

±(x, t) 0

)
, J =

(
1 0
0 −11

)
.

(88)

Here we already imposed on the Lax operator the involution (66b), see also Re-

mark 5.

The two asymptotic operators L± are ordinary differential operators with constant

coefficients. In order to calculate their fundamental solutions we need to diago-

nalize the matrices U± ≡ q± − λJ and find their eigenvalues. The answer is as

follows

U+(λ)ψ0(λ) = −ψ0(λ)J(λ), U−(λ)φ0(λ) = −φ0(λ)J(λ) (89)

where the eigenvalues are

±jk(λ) = ±
√
λ2 − ρ2

k, k = 1, . . . , s

and an eigenvalue λ with multiplicity s′ − s. We will arrange them in a diagonal

matrix J(λ) as follows

J(λ) = diag

⎛⎝j1(λ), . . . , js(λ), λ, . . . , λ,︸ ︷︷ ︸
s′−s

−js(λ), . . . ,−j1(λ)

⎞⎠ . (90)

The matrices ψ0(λ) and φ0(λ) are of the form

ψ0(λ) = ϕ+
0 U0(λ), φ0(λ) = ϕ−

0 U0(λ)

ϕ±
0 =

(
ϕ±

1
0

0 ϕ±
2

)
, U0(λ) =

⎛⎝A 0 B
0 11s′−s 0
B 0 A

⎞⎠ .
(91)
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Here the s× s matrix ϕ±
1

and s′ × s′ matrix ϕ±
2

are determined by

q±q
†
±ϕ

±

1
= ϕ±

1
ρ, q

†
±q±ϕ

±

2
= ϕ±

2
ρ′

Ajk = Akδj,k, Bjk = Bkδj,s+1−k

Ak =

√
λ+ jk
2jk

, Bk =

√
λ− jk
2jk

ρ = diag(ρ2
1, . . . , ρ

2
s), ρ′ = diag(0, . . . , 0︸ ︷︷ ︸

s′−s

, ρ2
s, . . . , ρ

2
1).

(92)

Remark 8. Without loss of generality we can consider ψ0(λ) and φ0(λ) as group
elements. In the case of A.III symmetric spaces we assume that ϕ±

1
and ϕ±

2
are

elements of the groups SU(s) and SU(s′), respectively. Similarly, for C.II-type
(respectively D.III-type) symmetric spaces we will choose n = 2(s + s′) and
ϕ±

1
∈ Sp(2s), ϕ±

2
∈ Sp(2s′) (respectively ϕ±

1
∈ SO(2s), ϕ±

2
∈ SO(2s′)).

Remark 9. For reasons, that will become clear below, we require that the two
asymptotic operators have the same spectrum, i.e., we imposed the condition q2

+ =

q2−, which in block components gives q
†
+q+ = q

†
−q− and q+q

†
+ = q−q

†
−.

More specifically, we assume that there exist a block diagonal matrix W0 which

is an integral of motion for the MNLSE which commutes with J(λ), i.e.,

q− = W−1
0 q+W0, W0 =

⎛⎝w01 0 0
0 w02 0
0 0 s0w01ŝ0

⎞⎠
w01 = diag(w01;1, . . . , w01;s), w02 ∈ SU(s′ − s).

(93)

Generalizing the ideas, developed by Faddeev and Takhtadjan in [28] we split the

manifold M into the union of disjoint submanifolds [17]

M =
⋃

W0,q+

MW0,q+
(94)

on each of which besides the limiting value q+ also the integral of motion W0 is

fixed up. More precisely, the elements of MW0,q+
are the matrix-valued functions

q(x) of the form as in (2) and satisfying (93).

The operators L± have purely continuous spectrum, determined by the eigenval-

ues ρ2
k of the matrices ψ0(λ) and φ0(λ), which due to the involution, must be real.
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For definiteness we will choose them to be all different

ρ1 > ρ2 > · · · > ρs > 0. (95)

Cases when subsets of {ρk} are equal can be considered analogously.

Obviously, each of the eigenvalues jk(λ) in fact introduces a Riemannian surface

Rk which has two leafs Rk = R+
k ∪ R−

k corresponding to the sign of imjk(λ).
So in fact we have to deal with the collection of Riemannian surfaces R

R = C ∪
s⋃

k=1

Rk. (96)

With all this the solutions of equation (88) take the form

ψas(x, λ) = ψ0(λ)e−iJ(λ)x, φas(x, λ) = φ0(λ)e−iJ(λ)x. (97)

Note that the exponential factors in the right hand side of equation (97) become

oscillating for different intervals on the real λ-axis. Indeed, exp(±ijk(λ)x) oscil-

lates on two semi-intervals on the real λ-axis

�−k ≡ (−∞ < Reλ ≤ −ρk], �+k ≡ [ρk ≤ Reλ <∞). (98)

In fact these are the cuts that determine the Riemannian surface Rk. So it is natural

to introduce the projectors

Pk(λ) = θ(|Reλ| − ρk), k = 1, . . . , s (99)

which, when applied to the real axis, pick up �k = �−k ∪ �+k .

Now we are ready to state that the continuous spectrum of L± consists of the

union ∪s
k=1�s ∪ R. The multiplicity of the spectrum on each �k is two.

The continuous spectrum of L coincides with the spectra of L±, see Figure 2.

4.2. Jost Solutions, Scattering Matrix and FAS

We introduce the Jost solutions as follows

lim
x→∞

ψ(x, λ)eiJ(λ)x = ψ0(λ)P (λ)

lim
x→−∞

φ(x, λ)eiJ(λ)x = φ0(λ)P (λ)
(100)

P (λ) =
s∑

k=1

Pk(λ)(Ek,k +Ek̄,k̄) + P0, P0 =
s′∑

k=s+1

Ek,k (101)
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�

�

ρs, . . . , ρ1

�λ

−ρ1, . . . ,−ρs

Figure 2. The continuous spectrum of the operators L± and L.

with k̄ = n+ 1 − k.

The presence of the projector P (λ) in the definition of the Jost solutions reflects

the first important difference between the VBC and CBC case: it reflects the fact

that the multiplicity of the continuous spectrum of L is no more constant. It means

also that the rank of the Jost solution varies with λ ∈ R

rankψ(x, λ) = rankφ(x, λ) = n for |Reλ| ≥ ρ1

rankψ(x, λ) = rankφ(x, λ) = n− 2k for ρk > |Reλ| ≥ ρk+1

rankψ(x, λ) = rankφ(x, λ) = s′ − s for ρs > |Reλ|.

(102)

This means also that the Jost solution does not have inverse for any λ. Therefore,

we slightly modify the definitions of ψ̂(x, λ) and φ̂(x, λ) so that they exist on the

image of P (λ). We consider them as the Jost solutions of the dual linear problem

i
dψ̂

dx
− ψ̂(x, λ)(q(x) − λJ) = 0. (103)

This linear problem also has Jost solutions which are introduced by

lim
x→∞

e−iJ(λ)xψ(x, λ) = P (λ)ψ̂0(λ) (104)

lim
x→−∞

e−iJ(λ)xφ(x, λ) = P (λ)φ̂0(λ) (105)

ψ̂0(λ) = ϕ̂+
0 Û0(λ), φ̂0(λ) = ϕ̂−

0 Û0(λ). (106)
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Note also that ψ0(λ) and φ0(λ) and their inverse depend on λ only through U0(λ)
and that

Û0(λ) =

⎛⎝ A 0 −BT

0 11s′−s 0

−BT 0 A

⎞⎠ . (107)

In proving that Û0(λ)U0(λ) = 11 we use the relations

A2
k −B2

k = 1, k = 1, . . . , s. (108)

Next we derive the integral equations for the Jost solutions. To this end it is

convenient to introduce the quantities

X(x, λ) = ψ̂0ψ(x, λ)eiJ(λ)x, Y (x, λ) = φ̂0φ(x, λ)eiJ(λ)x (109)

which satisfy the equations

i
dX

dx
+Q+(x, λ)X(x, λ) − [J(λ), X(x, λ)] = 0

i
dY

dx
+Q−(x, λ)Y (x, λ) − [J(λ), Y (x, λ)] = 0

(110)

where the “potentials” Q±(x, λ)

Q+(x, λ) = ψ̂0(q(x)− q+)ψ0(λ), Q−(x, λ) = φ̂0(q(x)− q−)φ0(λ) (111)

now depend also on the spectral parameter. Since from equation (100) there fol-

lows that

lim
x→∞

X(x, λ) = 11, lim
x→−∞

Y (x, λ) = 11 (112)

we are able to derive the following integral equations for X(x, λ) and Y (x, λ)

X(x, λ) = 11 + i

∫ x

∞

dy e−iJ(λ)(x−y)Q+(x, λ)X(x, λ)eiJ(λ)(x−y) (113)

Y (x, λ) = 11 + i

∫ x

−∞

dy e−iJ(λ)(x−y)Q−(x, λ)Y (x, λ)eiJ(λ)(x−y). (114)

The scattering matrix is introduced like in the VBC case

T (λ) = ψ̂(x, λ)φ(x, λ). (115)

The important difference as compare to the VBC case concerns the analyticity

properties of the different columns of the Jost solutions. For VBC we verified
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(see equation (33)) that each of the columns of the Jost solutions can be extended

analytically either for λ ∈ C+ or for λ ∈ C−.

For CBC the picture is substantially different. First, now we are dealing with

analyticity on the sheets of the Riemannian surface described above. The second

difference is in the fact, that now J(λ) has more than two different eigenvalues.

From this point of view the problem of constructing the FAS for CBC resembles

the one for N -wave problem [27,30]. The first step of the solution is to introduce

an ordering in the matrix elements of J(λ). From equation (95) we find, that

an ordering imJk(λ) > imJl(λ) for k < l can be introduced on the main leaf

R+ = C+ ∪ ∪s
k=1R

+
k of the Riemannian surface. Indeed, one can check that

from equation (95) there follows

imj1(λ) > imj2(λ) > · · · > imjs(λ) > 0, λ ∈ R+. (116)

Using this ordering we will outline how it is possible to construct a FAS on the

main leaf R+ and on its antipode leaf R− = C− ∪ ∪s
k=1R

−
k . Similar procedure

exists for each of the other leafs of the Riemannian surface. In order to simplify

the analysis we assume that s′ = s.

Skipping the details we formulate the procedure of constructing the FASZ±(x, λ)
on the leafs R±. Since any two fundamental solutions must be linearly related we

first introduce them by

Z±(x, λ) = φ(x, λ)S±(λ) = ψ(x, λ)T∓(λ)D∓(λ) (117)

where S±(λ), T±(λ) and D±(λ) are the factors of the Gauss decomposition [21]

of the scattering matrix

T (λ) = T−(λ)D+(λ)Ŝ+(λ). (118)

In other words, T+ and S+ (respectively T− and S−) are upper- (respectively

lower-) triangular matrices taking values in the corresponding group and D±(λ)
are diagonal matrices (i.e., elements of the Cartan subgroup).

The proof of the fact thatZ+(x, λ) (respectivelyZ−(x, λ)) is analytic for λ ∈ R+

(respectively for λ ∈ R−) is based on the analysis of the set of integral equations

that Z±(x, λ) satisfy. It is more convenient to write down those equations for

Z̃±(x, λ) = φ̂0(λ)Z±(x, λ)eiJ(λ)x

Z̃+
kp(x, λ) = δkp + i

∫ x

−∞

dy e−i(Jk(λ)−Jp(λ))(x−y)
n∑

a=1

Q−;ka(y, λ)Z̃+
ap(y, λ)

(119a)



On Spectral Theory of Lax Operators: VBC versus CBC 27

for k ≥ p and

Z̃+
kp(x, λ) = i

∫ x

∞

dy e−i(Jk(λ)−Jp(λ))(x−y)
n∑

a=1

Q−;ka(y, λ)Z̃+
ap(y, λ) (119b)

for k < p and λ ∈ R+. Similarly we have

Z̃−
kp(x, λ) = δkp + i

∫ x

−∞

dy e−i(Jk(λ)−Jp(λ))(x−y)
n∑

a=1

Q−;ka(y, λ)Z̃−
ap(y, λ)

(120a)

for k ≤ p and

Z̃−
kp(x, λ) = i

∫ x

−∞

dy e−i(Jk(λ)−Jp(λ))(x−y)
n∑

a=1

Q−;ka(y, λ)Z̃−
ap(y, λ) (120b)

for k > p and λ ∈ R−.

The analyticity properties follow from the fact that with the above ordering of

the imjk(λ) all exponential factors in the integrands of (119) (respectively in the

integrands of (120)) fall off for λ ∈ R+ (respectively for λ ∈ R−).

It remains to note that the matrix elements of the Gaussian factors T±(λ), S±(λ)
and D±(λ) can be expressed explicitly as functions of the matrix elements of

T (λ). The corresponding formulae are well known [11, 21]. Here we will write

down only the expressions for the matrix elements of D±(λ) for the case when

T (λ) ∈ SL(n):

D+
kp(λ) =

m+
k (λ)

m+
k−1(λ)

δkp, D−
kp(λ) =

m−
n−k+1(λ)

m−
n−k(λ)

δkp (121)

where m+
k (λ) (respectively m−

k (λ)) is the principal upper-minor (respectively

principle lower-minor) of T (λ). Here we assume that m±
0 (λ) = 1; recall also

that detT (λ) = 1, i.e., m±
n (λ) = 1.

Since Z̃+(x, λ) (respectively Z̃−(x, λ)) are analytic for λ ∈ R+ (respectively for

λ ∈ R−) we find, that also their asymptotics for x → ∞ are also analytic. As a

result the next lemma follows.

Lemma 10. The principle minorsm+
k (λ), k = 1, . . . , n−1 (respectivelym−

k (λ),
k = 1, . . . , n − 1) are analytic functions of λ for λ ∈ R+ (respectively for
λ ∈ R−).



28 Vladimir S. Gerdjikov

Remark 11. There exist FAS on each of the leafs of the Riemannian surface.
Their construction is done using the same ideas. On each of these leafs we have
different ordering of the imjk(λ). So, the first step should be to make a permuta-
tion of the rows and columns of the matrices in Q±(x, λ), and in J(λ) so that the
eigenvalues of the new matrix J(λ) are ordered like in equation (116). The rest
of the construction remains the same. At the end one should revert to the initial
ordering of columns and rows.

4.3. The Resolvent of L and Minimal Set of Scattering Data

The detailed analysis for the CBC in the general situation is rather involved and

will be presented elsewhere. Here we just outline some of the ideas along which

it should be done.

The first one is to show that the spectral problem for the Lax operator with CBC

can be reduced to an RHP on the Riemannian surface R. We outlined above how

one can construct the FAS not only on the main leaf R+ of R, but on any of the

leafs Rk. If we denote by Z̃±
(k)(x, λ) the FAS on the leaf Rk then any two FAS

will be linearly related on the intersection of the two leafs by

Z̃±
(k)(x, λ) = Z̃±

(k)(x, λ)G̃(k,m)(x, λ), λ ∈ Rk ∩ Rm

G̃(k,m)(x, λ) = e−iJ(λ)xŜ+
(k)(λ)S+

(m)(λ)eiJ(λ)x.
(122)

This RHP also has unique regular solution with canonical normalization. An im-

portant problem is to generalize the Zakharov-Shabat dressing method [32] and to

construct explicitly the singular solutions of these RHP. For the one-component

case this has been done [18,28,29] and some particular multicomponent cases has

also been treated, see [2, 19, 24] but a lot still has to be done.

The FAS constructed above can be used to construct the kernel of the resolvent of

L. On the main leaf this kernel is similar to the one in equation (75)

R±
(1)(x, y, λ) =

1

i
Z±

(1)(x, λ)Θ+(x− y)Ẑ±
(1)(y, λ), λ ∈ R+ (123)

where the matrix Θ+(x − y) is given by equation (76). What is important to

do here is the derivation of the completeness relation for L with CBC. This can

be done again by using the contour integration method. There are two difficulties

which must be resolved here. The first one is to evaluate explicitly the asymptotics

of R±
(1)(x, y, λ) for λ → ∞. The second one is the evaluation of the jump of the

resolvent through the cuts �k.
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Finally one can construct the minimal set of scattering data. Like in the VBC case,
we can consider the minimal sets of scattering data on the continuous spectrum to
be

T1 ≡ {τ+
α (λ) ; α ∈ Δ+

1 , λ ∈ �}, T2 ≡ {ρ+(λ) ; α ∈ Δ+
1 , λ ∈ �} (124)

where � = ∪s
k=1�s ∪ R. The coefficients τ±

α (λ), ρ±α (λ) are introduced by

τ+
α (λ) =

〈Ŝ+
(1)JS+

(1)(λ), E±α〉

〈Eα, E−α〉
, ρ+

α (λ) =
〈T̂−

(1)JT−
(1)(λ), E±α〉

〈Eα, E−α〉
· (125)

Due to the varying multiplicity of the continuous spectrum here one has to take
into account that each of the functions τ+

α (λ) and ρ+
α (λ) has its own domain of

definition. In addition one has to add also the data corresponding to the discrete
spectrum of L.

Here we stop with the general theory and give some more concrete examples.

5. Examples

5.1. Symmetric Spaces of A.III-Type and Vector NLSE

We start with the symmetric spaces SU(n+1)/S(U(1)⊗U(n)). The correspond-
ing potential q(x) and J take the form

q(x) =

(
0 �qT (x)

−�q ∗(x) 0n

)
, J =

(
1 0
0 −11n

)
. (126)

So we have to set in the general case considered above s = 1 and s = n; we also
put ρ1 = ρ. Then formulae (90)–(92) simplify into

J(λ) = diag

⎛⎝j1(λ), λ, . . . , λ︸ ︷︷ ︸
n−1

,−j1(λ)

⎞⎠ (127)

ϕ±
0 =

(
1 0
0 ϕ±

2

)
, U0(λ) =

⎛⎝A1 0 B1

0 11n−1 0
B1 0 A1

⎞⎠ . (128)

Since �q is a vector the set of eigenvectors ϕ±
2

of �q ∗�q ∗T consist of n−1 normalized
vectors orthogonal to �q ∗. The last eigenvector corresponding to the only non-
vanishing eigenvalue ρ2

1 is proportional to �q ∗. The Riemann surface has four
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leafs R = R+
1 ∪ R−

1 ∪ C+ ∪ C−. We will need also the uniformization variable

z = (λ+ j(λ))/ρ, 1/z = (λ− j(λ))/ρ and for n = 3 we get

Q±(x, z) =
1

4ρ

(
2zA±

2 + 2A±
1 −

2

z
A±

−2 +
B±

1

z + 1
+

B±
−1

z − 1

)
(129)

where B±
±1 = A±

2 ∓A±
1 +A±

0 ∓A±
−1 +A±

−2 and

A±
2 =

⎛⎜⎜⎝
0 0 0 −a±1
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠, A±
−2 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 a±1

⎞⎟⎟⎠, A±
1 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 a±3
0 0 0 a±2
0 0 0 0

⎞⎟⎟⎠
(130)

A±
−1 =

⎛⎜⎜⎝
0 0 0 0

−a±3 0 0 0
−a±2 0 0 0

0 0 0 0

⎞⎟⎟⎠ , A±
0 =

⎛⎜⎜⎝
−h±1 b±3 b±2 −a±,∗

1

0 0 0 0
0 0 0 0

a±,∗
1 −b±3 −b±2 h±1

⎞⎟⎟⎠
a±1 = (q†(x)q±) − ρ2, a±2,3 =

q∗
2,3;±(q†, q±) − q∗

2,3(x)ρ
2

q1,±ρ

b±2,3 = q1(x)q2,3;± − q2,3(x)q1,±, h±1 = a±1 (x) + a±,∗
1 (x).

(131)

Then using the uniformizing variable z we rewrite the Lax operator in the form

i
dψ̃

dx
+Q+(x, z)ψ̃(x, z) − J(z)ψ̃(x, z) = 0

i
dφ̃

dx
+Q−(x, z)φ̃(x, λ) − J(z)φ̃(x, z) = 0

J(z) =
ρ

2
diag

(
z −

1

z
,−z −

1

z
,−z −

1

z
,−z +

1

z

) (132)

where the new potential function has special dependence on z with its coefficient

functions A±
j , B±

k tend to zero for x→ ±∞.

Next we introduce Jost solutions and scattering matrix as

lim
x→∞

ψ̃(x, z)eiJ(z)x = 11, lim
x→−∞

φ̃(x, z)eiJ(z)x = 11, T (z) =
̂̃
ψφ̃(x, z).

(133)

The continuous spectrum of L coincides with the continuous spectrum of the

asymptotic operators L±,as. To this end we have to find out the curves on the
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complex λ-plane (respectively complex z-plane) on which e−iJ(λ)x (respectively

e−iJ(z)x) oscillates, i.e., we have to solve the equation

imJk(z) = 0, k = 1, 2, 3, 4. (134)

Figure 3. The continuous spectrum of L on the complex z-plane.

In terms of the uniformizing variable fills up the real z-axis and the circle S1

with radius 1. This spectrum splits the complex z-plane into four regions Rk,

k = 1, . . . , 4 (see also Figure 3)

R1 ≡ {imz < 0, |z| > 1}, R2 ≡ {imz < 0, |z| < 1}

R3 ≡ {imz > 0, |z| < 1}, R4 ≡ {imz > 0, |z| > 1}.
(135)

In each of these regions the imaginary parts of Jk(z) are ordered as follows

R1 ⇒ imJ1(z) > imJ2(z) > 0 > imJ4(z)

R2 ⇒ imJ1(z) > 0 > imJ2(z) > imJ4(z)

R3 ⇒ imJ4(z) > imJ2(z) > 0 > imJ1(z)

R4 ⇒ imJ4(z) > 0 > imJ2(z) > imJ1(z).

(136)

Remark 12. The continuous spectrum of L has variable multiplicity. Note that
the conformal map from λ to z maps the semiaxis |Reλ| > ρ1 onto the real axis
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in the z-plane whereas the interval −ρ1 ≤ Reλ ≤ ρ1 is mapped onto the circle
with radius 1.

The construction of FAS is done again by using equation (117). The difference is

that now we have to make use of a generalized Gauss decomposition (GGD) of

the scattering matrix T (λ) and its inverse T̂ (λ). More specifically, let us introduce

the block-matrix notations

T (z) =

⎛⎝T11 T12 T13

T21 T22 T23

T31 T32 T33

⎞⎠ , T̂ (z) =

⎛⎝T̂11 T̂12 T̂13

T̂21 T̂22 T̂23

T̂31 T̂32 T̂33

⎞⎠ (137)

where T21, T23, T T
12, and T T

32 are n − 1-component vectors, T11, T13, T31, T33,

are scalar functions and T22 is an (n − 1) × (n − 1) matrix. Notice that this is

compatible with the block-matrix structure of J(z). Then the above mentioned

GGD takes the form

T (z) = T−(z)D+(z)Ŝ+(z), Ŝ+(z) = (S+)−1(z) (138)

where T− (respectively S+) is lower- (respectively upper-) block-triangular ma-

trices

T−(z) =

⎛⎝ 1 0 0
τ−21 11 0
τ−31 τ−32 1

⎞⎠ , S+(z) =

⎛⎝1 s+12 s+13

0 11 s+23

0 0 1

⎞⎠
D+(z) = diag(m+

1 ,m
+
2 ,m

+
3 ), D̂+(z) = diag(1/m+

1 , m̂
+
2 , 1/m

+
3 )

(139)

where

s+12 = −
T12

m+
1

, s23 = T̂23m
+
3 , s13 = T̂13m

+
3

τ−21 = −
T21

m+
1

, τ32 = T̂32m
+
3 , τ31 =

T31

m+
1

m+
1 = T11, m+

2 = T22 −
T21T12

m+
1

, m̂+
2 = T̂22 − T̂21T̂12m

+
3 .

(140)

As a consequence of the analyticity of Z±(x, λ) we establish that m+
1 (λ) and

m+
2 (λ) are analytic functions on R+

1 ∩ C+

Remark 13. A more detailed analysis shows that the number of independent ma-
trix elements of Gauss factors S+ and T− is n, the same as the number of inde-
pendent elements in the potential q.
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Remark 14. The Jost solutions and the scattering matrix T (z) are well defined
on the continuous spectrum of L. Thus the factors S+(z) and T−(z) in (138) are
defined on the boundary of R1, whereas χ̃(1)(x, z) allows analytical continuation
for any z ∈ R1.

The construction of the FAS in any other of the sections Rk, k = 2, 3, 4 requires

one additional procedure. Namely, we start first by reordering the columns and

the rows of q(x, z)− J(z) so that after the reordering the imaginary parts of J(z)
satisfy the first line of equation (136). Obviously the same reordering must be

applied also to T (z) and T̂ (z). Then we apply the same GGD to the reordered

T (z) and T̂ (z) and determine the corresponding χ̃(k)(x, z).

The set of FAS Z̃(k)(x, z) satisfy the relations

Z̃(k)(x, z) = Z̃(m)(x, z)G(k,m)(x, z), z ∈ Rk ∩Rm (141)

where the sewing function G(k,m)(x, z) is given by

G(k,m)(x, z) = eiJ(z)xŜ+
(m)S

+
(k)e

−iJ(z)x. (142)

Imposing the condition limz→∞ ξ̃(1)(x, z) = 11 we can treat the set of equa-

tions (141) as a generalized Riemann-Hilbert problem with canonical normaliza-

tion. Thus the Inverse Scattering Problem (ISP) for the Lax operator L is reduced

to a RHP. We also assume that the RHP (141) has unique regular solution, i.e.,

solution for which detξ̃(k)(x, z) 
= 0 for all z ∈ Rk. Then the set of sewing func-

tionsG(k,m)(x, z) uniquely determines the corresponding potential q(x, z) via the

first asymptotic coefficients of ξ̃(k)(x, z) around the points z = 1, z = −1, z = 0
and z = ∞.

5.2. Symmetric Spaces of C.II and D.III Type

The first example here will be the case of g � sp(4) where the potential q(x, t) is

parametrized by three functions

q(x, t) =

(
0 q(x, t)

−q†(x, t) 0

)
, q(x, t) =

(
q12 q1
q2 q12

)
(143)

while the one for g � so(8) contains six independent functions

q(x, t) =

(
0 q(x, t)

−q†(x, t) 0

)
, q(x, t) =

⎛⎜⎜⎝
q14 q13 q12 0
q24 q23 0 q12

q34 0 q23 −q13

0 q34 −q24 q14

⎞⎟⎟⎠ .

(144)
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The corresponding sets of MNLSE for these two choices of q(x, t) and for VBC

were first derived in [8]. For CBC with the involution (66b) they take the form

i
∂q

∂t
+
∂2q

∂x2
− 2(q†, q)q(x, t)q(x, t) + (q†

±, q±)q(x, t) + (q†
±, q(x, t))q± = 0.

(145)

The additional linear in q terms ensure regular behavior for t→ ±∞ [19].

Here we briefly describe the spectrum of the corresponding Lax operators. To

this end we start by determining the corresponding eigenvalues of the asymptotic

matrices q±.

These eigenvalues for q(x) ∈ sp(4) are the roots of the characteristic equation

(see equation (92))

ρ2 −K0ρ+K1 = 0, K0 = trq±q
†
±, K1 = detq±q

†
± (146)

and determine the end points of the spectrum. Taking q± to be 2 × 2 constant

matrices as in (143) we get

K0 = |q1;±|
2 + |q2;±|

2 + 2|q12;±|
2, K1 =

∣∣(q12;±)2 − q1;±q2;±

∣∣2 . (147)

Since K0 > 0 and K1 > 0 both roots or equation (146) must be positive. Thus

we have two possibilities for the roots ρ2
1, ρ2

2 of equation (146):

a) ρ2
1 > ρ2

2, i.e., the branch points are different and positive. The continuous

spectrum of L fills up two pairs of rays on the real axis |Reλ| > ρ1 and

|Reλ| > Re ρ2;

b) ρ2
1 = ρ2

2, i.e., the branch points now coincide; the total multiplicity of the

spectrum is 4.

One can expect that the corresponding characteristic polynomial for so(8) is of

fourth degree. However, due to the orthogonal symmetry it takes more simple

form

det(q±q
†
± − ρ) = (ρ2 −K0ρ+K1)

2 (148)

and reduces to a polynomial of second order. Now the coefficients Kj are given

by

K0 = tr(q±q
†
±) =

∑
1≤i<j≤4

|qij;±|
2

K1 = (det(q±q
†
±))1/2 = |q±13q

±
24 − q±34q

±
12 − q±23q

±
14|

2.

(149)
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Again it is obvious that both coefficients K0 > 0 and K1 > 0 are positive and

therefore both roots of the characteristic polynomial are positive. So we again

have the same two options listed above. The difference between the two symmet-

ric spaces on the level of spectra of L± consists in the fact that in the so(8) case

each of the roots has multiplicity 2. Therefore, the multiplicities of the continuous

spectra of so(8) MNLSE are twice higher than for the so(4) case.

5.3. The Principal Minors and Fundamental Representations

The function D+(λ) is analytic function of λ in R+ which generates the integrals

of motion for the MNLSE. Using the properties of the fundamental representa-

tions of the Cr and Dr series we have [10]

〈ωj |T (λ)|ωj〉 = 〈ωj |D
+(λ)|ωj〉 = exp((ωj , �δ

+(λ))) (150)

where ωj is the j-th fundamental weight of g and �δ+(λ) =
∑r

k=1 δ
+
k (λ)ek. Note

that the simple roots αk and the fundamental weights ωj satisfy the relation

2(ωj , αk)/(αk, αk) = δjk.

More specifically for our examples we have

δ+1 (λ) = lnT11(λ), δ+2 (λ) = ln

(
1 2
1 2

)
T (λ)

(151)

for sp(4) and

δ+1 (λ) = lnT11(λ), δ+2 (λ) = ln

{
1 2
1 2

}
T (λ)

δ+3 (λ) = ln

{
1 2 3
1 2 3

}
T (λ)

− δ+4 (λ), δ+4 (λ) =
1

2
ln

{
1 2 3 4
1 2 3 4

}
T (λ)

(152)

for so(8). Here by

{
1 . . . k
1 . . . k

}
T (λ)

we denote the upper principal minor of

order k of the scattering matrix T (λ).

Note that due to the orthogonal symmetry inherent inD4 all functions exp(δ+
k (λ))

are polynomial expressions in terms of the matrix elements of T (λ).
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6. Discussion

Here we briefly outline another important application of the FAS which is based

on the Wronskian relations. It allows one to analyze the mapping F : M → T
between the class of allowed potentials M and the scattering data T of L [4, 5].

They are the tool that allows us to show that the Inverse Scattering Method (ISM)

is a generalized Fourier transform. For the constant boundary conditions case they

require an additional regularization. Therefore we use the identity [3, 13]

χ̂ (q(x, t) − λJ) χ(x, λ)|∞x=−∞ = −i

∫ ∞

−∞

dy χ̂(y, λ) qyχ(y, λ) (153)

which follows from equation (2). Here χ(x, λ) can be any fundamental solution

of L. For convenience we choose it to be the FAS in the region R1. The left

hand side of (153) can be calculated explicitly by using the asymptotic of FAS for

x → ±∞. It would be expressed by the matrix elements of the factors S+(λ),
T−(λ) and D+(λ) which determine the scattering data of L. Thus for our first

example

s+12;p(z) = −
iz

ρ

∫ ∞

−∞

dy tr (qyχEp+1,1χ̂(x, z))

s+23;p(z) =
i

ρz

∫ ∞

−∞

dy tr (qyχEn+1,p+1χ̂(x, z))

(154)

where Ekm is an (n+ 1)× (n+ 1) matrix given by (Ekm)pl = δkpδml. Note that

the integrands in the right hand sides of equations (154) are analytic functions in

z in the region R1 that tend to zero for y → ±∞. This ensures the existence of

the integrals.

The second set of Wronskian relations which we consider relates the variation of

the potential δq to the corresponding variations of the scattering data δρ and δT .

For this purpose we use the identity

χ̂ δχ(x, λ) |∞x=−∞ = −

∫ ∞

−∞

dy χ̂δq(y)χ(y, λ). (155)

Here we consider the special class of variations of q(x) which preserve q±, i.e.,
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δq± = 0. Then δw0,± = 0 and we arrive at

δs+12;p(z) = i

∫ ∞

−∞

dy tr (δq(y)χEp+1,1χ̂(x, z))

δs+23;p(z) = i

∫ ∞

−∞

dy tr (δq(y)χEn+1,p+1χ̂(x, z))

δ lnm+
1 (z) = i

∫ ∞

−∞

dy tr (δq(y)χE1,1χ̂(x, z)) .

(156)

We finish by some comments on the Hamiltonian properties of equation (1). We

already mentioned the nontrivial structure of the space of allowed potentials M
which plays the role of a phase space for the MNLSE, due to the nontrivial bound-

ary conditions. It reflects also on the integrals of motion and on the Hamiltonian

vector fields that they generate. To be more specific we list the first three integrals

of motion of equation (1)

I1 =
1

2

∫ ∞

−∞

dy
(
(q†, q(y)) − ρ2

)
I2 =

i

4

∫ ∞

−∞

dy
(
(q†

y, q(y)) − (q†, qy)
)

I3 =
3

8

∫ ∞

−∞

dy
(
(q†

y, qy) + (q†, q(y))2 − ρ4
)
.

(157)

Note that though all the integrals in (157) are convergent, their variational deriv-

atives δIk/δq
† are not necessarily vanishing for x → ±∞. This is true only for

δI2/δq
†. Therefore, in order to generate regular Hamiltonian dynamics I3, which

is the candidate for a Hamiltonian for (1), needs to be regularized. This can be

done by using one additional integral of motion which is proportional to I1 for the

scalar case [19]

Ĩ1 =

∫ ∞

−∞

dy
(
(q†, q±)(q†

±, q(y)) − ρ4
)
. (158)

Then we obtain the Hamiltonian of (1) to be

Hreg =
8

3
I3 − ρ2I1 − Ĩ1

=

∫ ∞

−∞

dy
(
(q†

y, qy) + (q†, q)2 − ρ2(q†, q) − (q†, q±)(q†
±, q) + ρ4

)
. (159)

The regularized Wronskian relations along with the FAS of L can be used to

construct the ‘squared solutions’ and then to interpret the ISM as a generalized

Fourier transform. For the scalar case see [24].



38 Vladimir S. Gerdjikov

It will be instructive to derive the dark-dark and dark-bright soliton solutions [26]

of (1) by modifying the dressing Zakharov-Shabat method [30] to systems of the

form (132), or by using the Darboux transformation method [7].

Another challenge is to extend this analysis also for the class of Lax operators

whose potentials take values in Lie super-algebras, see [6, 20] and the references

therein. This will allow one to treat the supersymmetric generalizations of MNLS

and N -wave equations with constant boundary conditions.
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