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Abstract. Misra-Prigogine-Courbage theory of irreversibility is revisited on the

basis of Nagy-Foiaş dilation theory and Halmos-Helson theory of invariant sub-

spaces. Universal models for intrinsically random dynamics are given as well as

equivalent conditions to the existence of internal time operators, where innovation

processes and Lax-Phillips scattering appear in a natural way.

1. Introduction

The problem of reconciling the apparent irreversible behavior of (macroscopic)

systems with the reversible nature of fundamental microscopic laws of physics,

including both classical and quantum mechanics, is far from being completely

solved. Even experimental evidences of the irreversible behavior at microscopic

level associated to chaotic behavior and with no requirement that the dynamical

equations violate time-reversal symmetry or the system be coupled to a source of

external noise have been recently found [9]. In the late 1970’s Misra, Prigogine

and Courbage (MPC) [7,8] already discussed the question of the dynamical mean-

ing of the second law of thermodynamics at microscopic level expressing intrinsic

irreversibility in terms of the existence of Lyapounov operators – i.e., observables

varying monotonically in time – and their close links with the inherent random-

ness of the system, its dynamical instability – for instance, mixing property is

necessary – and the existence of internal time operators.

This work is a mathematical approach to MPC theory of irreversibility in the con-

text of statistical mechanics. Universal models for intrinsically random dynamics

are given in Section 2 on the basis of Nagy-Foiaş dilation theory [10]. Equivalent

conditions to the existence of internal time operators are derived in Section 3 in

terms of Halmos-Helson theory of invariant subspaces [4, 5], where innovation

processes [11] and Lax-Phillips scattering [6] appear as alternative descriptions.
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2. Intrinsic Randomness

Let us consider abstract dynamical systems (Ω,A, μ, {St}), where Ω is the phase

space of the system equipped with the σ-algebra A and {St} is a group of mea-

surable point transformations on Ω preserving the probability measure μ (auto-

morphic case). As usual in statistical mechanics and ergodic theory, trajectories

are replaced by density functions (states ρ) and {St} by the induced group {Ut}
of unitary operators in L2 = L2(Ω,A, μ) given by

Utρ(ω) := ρ(S−tω), ρ ∈ L2.

EachUt preserves positivity (ρ ≥ 0 impliesUtρ ≥ 0) and normalization (
∫
ρ dμ =∫

Utρ dμ = 1, for states ρ), and Ut1 = 1. On the other hand, every Markov

process on Ω with stationary distribution μ is associated with a semigroup of con-

tractions {Wt} onL2 which also preserves positivity and satisfiesWt1 = 1, where

now the constant density 1 is the equilibrium state. From the point of view of

the second law of thermodynamics, we are interested only in irreversible Markov

processes which correspond to monotonic Markov semigroups, i.e.,

||Wtρ− 1|| decreases monotonically to 0 as t→ ∞ (1)

for all states ρ �= 1.

MPC demonstrated the possibility of obtaining stochastic Markov processes from

deterministic dynamics simply through a change of representation which involves

no loss of information provided the dynamical system under consideration has a

suitably high degree of instability of motion. MPC intrinsic randomness is based

on the existence of positivity preserving quasi-affinities Λ relating unitary groups

{Ut} to monotonic Markovian semigroups {Wt} on L2 by means of an intertwin-

ing relation of the form

WtΛ = ΛUt , t ≥ 0 . (2)

In such case, the deterministic dynamics {Ut} is said to be intrinsically random
and {Wt} is called a random image of {Ut}. For intrinsically random dynamics

M = Λ∗Λ is a Lyapounov operator. Here by a quasi-affinity we mean a linear,

one-to-one and continuous transformation Λ from L2 onto a dense subspace of

L2, so that Λ−1 exists on this dense domain, but is not necessarily continuous.

Relation (2) implies that Λ preserves positivity and normalization, and Λ1 = 1.

In what follows the superfluous one-dimensional subspace of L2 spanned by the

constant functions shall be denoted by C.
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Universal models for intrinsically random unitary dynamics can be given in terms

of Nagy-Foiaş dilation theory and the corresponding functional calculus [10]. For

it, recall that every contraction W on L2 has a minimal isometric dilation U+ on

some Hilbert space K+ ⊃ L2, determined up to isomorphism. Being an isometry,

U+,K+ admits a unique Wold decomposition [10, Theorem I.1.1] into a unitary

part and a unilateral shift, where the unitary part R,R is given by

R := U+|R , R :=

∞⋂
n=0

Un
+L

2

and is called the residual part of U+,K+. In particular, if the cogenerator of a

random image {Wt} on L2, i.e., is the Cayley transform, i.e., W = (A+ I)(A−
I)−1 of the infinitesimal generator A of {Wt}, then R is the cogenerator of the

unitary group {Rt} on R, where Rt is the residual part corresponding to Wt for

each t ≥ 0. See [10, Section III.8-9] for details. In what follows we assume that

kerW = {0}. Next theorem states that residual groups are universal models for

intrinsically random unitary dynamics, whereas random images must belong to a

concrete class of contraction semigroups [2]

Theorem 1. Let {Ut}t∈R be an intrinsically random unitary dynamics with ran-
dom image {Wt}t≥0 on L2. Then

a) {Ut}t∈R is unitarily equivalent to the residual group {Rt}t∈R of the mini-
mal isometric dilation of {Wt}t≥0

b) {Wt|(L2�C)}t≥0 is a contraction semigroup of class C01, i.e.,

s-limt→∞Wt|(L2�C) = 0 and

s-limWt
∗
|(L2�C)ρ �= 0 for every nonzero ρ ∈ L2 � C

(asterisk ∗ denotes adjoint).

Also functional models may be given in terms of the characteristic function ΘW ,

a purely contractive analytic operator-valued function on the standard unit disc

D := {λ ∈ C; |λ| < 1}. In order to define ΘW , let us consider the defect opera-

tors DW := (IH −W ∗W )1/2 and DW ∗ := (IH −WW ∗)1/2, and defect spaces

DW := DWL2 DW ∗ := DW ∗L2 (overbar denotes adherence). The characteristic

function of W is defined by

ΘW (λ) := [−W + λDW ∗(I − λW ∗)−1DW ]|DW
, λ ∈ D.

The non-tangential limits s-limλ→ω ΘW (λ) =: ΘW (ω) exist for almost all ω in

the boundary ∂D and induce a decomposable operator [ΘW v](ω) := ΘW (ω)v(ω)
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from L2(DW ) into L2(DW ∗), where L2(DW ) denotes the Hilbert space of square

integrable DW -valued functions on ∂D (with respect to the normalized Lebesgue

measure and modulo sets of measure zero). Let H2(DW ) denote the Hardy class

of functions in L2(DW ) whose kth Fourier coefficients vanish for all negative k.

Corollary 2. Let {Ut}t∈R be an intrinsically random unitary dynamics with ran-
dom image {Wt}t≥0 on L2. Let W be the cogenerator of {Wt}t≥0. Then

a) {Ut|(L2�C)}t∈R is unitarily equivalent to the functional model

R̂ := ΔWL2(DW ), R̂t(v) := exp

(
t
ω + 1

ω − 1

)
v(ω), v ∈ R̂, t ∈ R

where ΔW (ω) := [I − ΘW (ω)∗ΘW (ω)]1/2

b) the characteristic function ΘW of W is outer and ∗-inner (see [10, Sec-

tion V.2] for definitions of outer and ∗-inner functions), and

kerΘW ∩H2(DW ) = {0} .

Clear advantages derive from the existence of universal representatives, as for

example determining spectral properties and relations. In the following result

ε(Wt|(L2�C)) denotes the set of points ω ∈ ∂D at which ΘW
t|(L2�C)

exists and

is not isometric. Its essential support, denoted by “ess supp ε(Wt|(L2�C))”, is

defined as the complement with respect to ∂D of the maximal open subset of ∂D
whose intersection with ε(Wt|(L2�C)) is of zero Lebesgue measure.

Corollary 3. Let {Ut}t∈R be an intrinsically random unitary dynamics with ran-
dom image {Wt}t≥0 on L2. Then

a) the spectrum σ(Wt|(L2�C)) of Wt|(L2�C) coincides with the set of points
λ ∈ D for which the operator ΘW

t|(L2�C)
is not boundedly invertible, to-

gether with those ω ∈ ∂D not lying on any of the open arcs of ∂D on which
ΘW

t|(L2�C)
is unitary. The point spectrum σp(Wt|(L2�C)) is the set of points

λ ∈ D for which ΘW
t|(L2�C)

is not invertible at all.

b) σp(Ut) = σp(Wt) ∩ C = {1} and the eigenspace is C, for every t ≥ 0

c) σ(Ut|(L2�C)) = σac(Ut|(L2�C)) = ess supp ε(Wt|(L2�C)), for every t ≥ 0.
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3. Time Operator, Scattering and Innovation

Following a suggestion by Misra [7], intrinsically random unitary evolutions {Ut}
on L2 have been qualified by the existence of an internal time operator T , a self-

adjoint operator satisfying the following relation: for every ρ ∈ Dom(T ) (the

domain of T ) and t ∈ R, one has Utρ ∈ Dom(T ) and

U−tTUt ρ = (T + tI) ρ. (3)

The time operator T allows the attribution of an average age (ρ, Tρ) to the states

ρ ∈ L2 which keeps step with the external clock time t for the evolved state Utρ:

(Utρ, TUtρ) = (ρ, Tρ) + t, where (·, ·) denotes the inner product in L2.

Actually, not only the expectation value but the entire probability distribution of

ages is shifted by the external time, i.e., the time operator T satisfy, for any t ∈ R,

U−tET (·)Ut = ET (· − t) (4)

where ET (·) denotes the (projection-valued) spectral measure of T . Relation (3)

is equivalent to (4) as well as to the usual Weyl commutation relation: if A is the

selfadjoint generator of the time evolution {Ut = eitA}t∈R, for all s, t ∈ R,

eitAeisT = eitseisT eitA. (5)

Moreover, relation (3), (4) or (5) implies the Heisenberg or canonical commuta-
tion relation: for every ρ ∈ Dom(TA) ∩ Dom(AT )

[T,A]ρ := TAρ−ATρ = iρ (6)

but the converse is not true in general.

It is also well known that every pair (T,A) of selfadjoint operators satisfying (5)

is unitarily equivalent to the momentum-position Schrödinger couple (P,Q) on

L2(R) or a direct sum of such couples. This is equivalent to the fact that T and A
have absolutely continuous and uniform spectra spanning the entire real line.

The functional model given in Corollary 2 together with Halmos-Helson theory

of invariant subspaces [4, 5] shed light on the connection between intrinsic ran-

domness and internal time operators. For it, recall that a closed subspace M of

L2(DW ) is called invariant if ω · v(ω) ∈ M for every v ∈ M, M is called dou-
bly invariant if ω · v(ω) and ω−1 · v(ω) belong to M for each v ∈ M, and M
is called simply invariant if it is invariant but not doubly invariant. On the other

hand, let L(DW ) denote the space of bounded linear operators on DW . A weakly

measurable L(DW )-valued function U on ∂D is called a rigid operator function
if U(ω) is for almost all ω ∈ ∂D a partial isometry on DW with the same initial

space.
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Theorem 4. Let {Ut}t∈R be a unitary dynamics on L2. The following assertions
are equivalent

a) there exists an internal time operator for {Ut|(L2�C)}t∈R

b) {Ut}t∈R is intrinsically random and, moreover, for the functional model
{R̂t} of {Ut|(L2�C)} given in Corollary 2.(a) there exists a simply invariant

subspace M̂ ⊆ R̂ of L2(DW ) such that⋂
n∈Z

R̂n M̂ = {0} ,
⋃
n∈Z

R̂n M̂ = R̂

where R̂ is the cogenerator of {R̂t} on R̂

c) {Ut}t∈R is intrinsically random and, moreover, there exists a rigid L(DW )-
valued function Û on ∂D such that⋃

n∈Z

R̂n ÛH2(DW ) = R̂ .

See [3] and references therein for details.

On the basis of Theorem 4, unitary dynamics {Ut} without time operator but

satisfying the intertwining relation (2) with dissipative evolutions {Wt} have been

constructed in [1].

It is also clear from Theorem 4.(b) that unitary evolutions {Ut}t∈R with time

operators are characterized by the existence of incoming and outgoing subspaces,

i.e., closed subspaces M− and M+ of L2 � C with the following properties

UtM± ⊆ M±, for all t ∈ R
±⋂

t∈R

Ut M± = {0},
⋃
t∈R

Ut M± = L2 � C .

To see this, notice that the subspace M− ⊆ L2 � C corresponding to the simply

invariant subspace M̂ ⊆ R̂ of the functional model is an incoming subspace for

{Ut|(L2�C)}t∈R. Since the existence of outgoing and incoming subspaces charac-

terizes the unitary evolutions the Lax-Phillips scattering theory deals with [6], one

has the following

Corollary 5. For every Lax-Phillips scattering process there exists an internal
time operator and conversely.
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Distinguished translation and spectral representations are associated to different

outgoing and incoming subspaces, so that representations derived from mutually

orthogonal subspaces are related by means of a scattering operator S. The opera-

tor S is usually interpreted as connecting the behavior in the remote past with that

in the distant future.

Another type of dynamics with internal time operators are the purely nondeter-
ministic innovative unitary evolutions [11] described by unitary groups {Ut}t∈R

for which there exists an increasing family of closed subspaces {Mt}t∈R such

that

Ut1Mt2 = Ut2Mt1 , t1, t2 ∈ R,
⋂
t∈R

Mt = {0}.

Since the subspace M0 is an incoming subspace for such evolutions, one has the

following:

Corollary 6. The purely nondeterministic innovative unitary evolutions are qua-
lified by the existence of internal time operators and conversely.

Particular cases of such innovative processes are the so-called Kolmogorov flows,

where the spectral projections of the internal time operator are coarse-graining

projections of conditional expectation over the cells of the K-partition.
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