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Abstract. We give a survey of infinite dimensional Lie groups and show some
applications and examples in mathematical physics. This includes diffeomorphism
groups and their natural subgroups like volume preserving, symplectic and con-
tact transformations, as well as gauge groups, quantomorphisms and loop groups.
Various applications include fluid dynamics, Maxwell’s equations, plasma physics
and BRST symmetries in quantum field theory. We discuss the Lie group struc-
tures of pseudodifferential and Fourier integral operators, both on compact and non-
compact manifolds and give applications to the KdV equation and quantization.

1. Introduction

Lie Groups play an important role in physical systems both as phase spaces and as
symmetry groups. Infinite dimensional Lie groups occur in the study of dynam-
ical systems with an infinite number of degrees of freedom such as PDEs and in
field theories. For such infinite dimensional dynamical systems diffeomorphism
groups and various extensions and variations thereof, such as gauge groups, loop
groups and groups of Fourier integral operators occur as symmetry groups and
phase spaces. Symmetries are fundamental for Hamiltonian systems. They pro-
vide conservation laws (Noether currents) and reduce the number of degrees of
freedom, i.e. the dimension of the phase space. Cohomological aspects of Lie
groups come into the picture when studying anomalies and BRST symmetries in
quantum field theory.

This paper is based on a series of lectures given at the 4th International Conference
on Geometry, Integrability and Quantization in Sts Constantine and Elena (Varna)
Bulgaria, June 5–16, 2002. We thank the organizers for their good work and their
hospitality.

The topics selected for these lectures aim to illustrate some of the ways infinite
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dimensional geometry and global analysis can be used in mathematical problems
of physical interest.

1. Infinite dimensional Lie groups

2. Diffeomorphism groups

3. Subgroups of diffeomorphism groups and applications

4. BRST symmetries

5. Lie groups of pseudodifferential- and Fourier integral operators

6. Diffeomorphism groups and FIO for non compact manifolds

7. Applications to fluid dynamics and quantization.

2. Infinite Dimensional Lie Groups

In physics Lie groups appear as symmetry groups or configuration spaces of dy-
namical systems. Some classical, finite dimensional examples are: The linear
and angular momentum are related to the groups of translations and rotations; a
rigid body’s positionf(x, t) at timet is determined byf(x, t) = A(t) · x, where
A(t) ∈ SO(3) is a proper rotation. The groupSO(3) is configuration space and
symmetry group. The heavy top has as configuration space alsoSO(3) and in ad-
dition the circle groupS1 as a symmetry group, which represents rotations about
the direction of gravity. “Eliminating” thisS1 symmetry leaves the Euclidean
groupE(3) of rigid motions.

Some infinite dimensional examples are: For an incompressible fluid the configu-
ration space isDiffvol(Ω), the volume preserving diffeomorphisms of a regionΩ.
This is an infinite dimensional “Lie group”. For compressible fluids the configura-
tion space isDiff(Ω) and as symmetry group actsDiffρ(Ω) the densityρ preserv-
ing diffeomorphisms. For plasma physics, which is governed my the Maxwell–
Vlasov equations the configuration space isSym(R6) the infinite dimensional Lie
group of canonical transformations. For the Maxwell’s and Yang–Mills equations
the group of gauge transformations is an infinite dimensional Lie group which
acts a symmetry group. Soliton equations (KdV) can be described as Hamiltonian
systems on coadjoint orbits of the Lie group of pseudodifferential operator and
the Lie group of Fourier integral operators.
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2.1. Basic Definitions and Properties

2.1.1. Lie Group G
An infinite dimensionalLie group G is a group and an infinite dimensional man-
ifold such that the two structures are compatible, in the sense that the group oper-
ations multiplication and inversion are smooth maps

µ : G × G → G : µ(g, h) = gh multiplication is C∞

ν : G → G : ν(g) = g−1 inversion isC∞.

In finite dimensions, the second condition follows from the implicit function theo-
rem! The group operations satisfy associativity of the productg(hk) = (gh)k and
ge = eg = e , gg−1 = g−1g = e. As a manifold,G is locally diffeomorphic to
an infinite dimensional vector spaceV , which can be a Banach space (with norm
‖.‖), a Hilbert space (with inner product< ., . > and norm‖x‖2 =< x, x >),
or a Frechet space (with metricd(., .) but no norm). Correspondingly we call
these Banach Lie groups, Hilbert Lie groups or Frechet Lie groups. IfG is locally
diffeomorphic toR

n, n < ∞, thenG is a finite dimensional Lie group.

2.1.2. The Differentiable Structure of G
For g ∈ G consider left and right translations,Lg : G → G; Lg(h) = gh and
Rg : G → G; Rg(h) = hg. These are diffeomorphisms with inverses given
by (Lg)−1 = Lg−1 and (Rg)−1 = Rg−1 . Let (U, φ) be a chart at the identity
e ∈ G and define a chart(Ug, φg) at g ∈ G by Ug = Lg(U) = {Lgh ; h ∈ U}
andφg = φ ◦ Lg−1 : Ug → V, h �→ φ(g−1h). So a single chart at the identity
defines the differentiable structure ofG with smooth transition maps (change of
coordinates) given byφg ◦ φ−1

h = φ ◦ Lg−1h ◦ φ−1.

2.1.3. The Lie Algebra g of a Lie Group G
The Lie algebrag of a Lie groupG is defined as the space of left invariant vector
fields onG, which is isomorphic toTeG the tangent space at the identitye. Let
X(G) denote the space of all vector fields onG, which is an infinite dimensional
Lie algebra with Lie bracket given by the commutator bracket[X,Y ] = XY −
Y X for X,Y ∈ X(G). A vector fieldX ∈ X(G) is called left invariant iff
Lg∗X = X. If X,Y are left invariant, thenLg∗ [X,Y ] = [Lg∗X,Lg∗Y ] = [X,Y ],
i.e. [X,Y ] is left invariant. Hence the space of left invariant vector fieldsXL(G)
is a Lie subalgebra ofX(G).
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The Lie algebra g of G is defined asg = XL(G). Let ξ ∈ TeG, thenXξ(g) :=
TeLg(ξ) ∈ TgG defines a left invariant vector field andXξ(e) = ξ. This defines
a isomorphism betweenTeG andXL(G). We define the Lie bracket for anyξ, η ∈
TeG by

[ξ, η] := [Xξ ,Xη](e). (1)

This bracket satisfies the conditions for a Lie algebra, i.e.[ , ] is

• bilinear: [tξ1 + sξ2, η] = t[ξ1, η] + s[ξ2, η] t, s ∈ R

• skew symmetric:[ξ, η] = −[η, ξ]
• Jacobi identity[[ξ, η], ζ] + [[η, ζ], ξ] + [[ζ, ξ], η] = 0 is satisfied.

With this we can identifyg � TeG as Lie algebras.

2.1.4. The Exponential Map

The exponential mapexp : TeG � g → G is defined as follows: Forξ ∈ TeG
let Xξ be the associated left invariant vector field. Letϕξ(t) be the flow ofXξ

throughe ∈ G i.e. ϕξ(0) = e , ϕ̇ξ(t) = Xξ(ϕ(t)). Then we define

exp(ξ) := ϕξ(1). (2)

If G is finite dimensional thenexp defines a local diffeomorphism from a neigh-
borhood of0 ∈ g onto a neighborhood ofe ∈ G. So in finite dimensions, the
exponential map defines a local chart aboute ∈ G (called canonical chart), hence
the differential structure ofG. In infinite dimensions this isnot the case in general.

2.2. Classical Lie Groups

We examine these structures and constructions on some examples.

2.2.1. Vector Groups

Let G = V be a Banach space withµ(x, y) = x+ y, ν(x) = −x, e = 0, which
makesG into an abelian Lie group, i.e.µ(x, y) = µ(y, x). For the Lie algebra we
haveg � TeV � V . Foru ∈ TeV the corresponding left invariant vector fieldXu
is given byXu(v) = u,∀v ∈ V , i.e. Xu = const. Hence the Lie algebrag = V
with the trivial Lie bracket[u, v] = 0 is abelian. For the exponential map we get
exp : V → V , exp = id V .
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2.2.2. Matrix Groups

A) The general linear group GL(n,R) is defined by

G = GL(n,R) := {A ∈ L(Rn,Rn) ; detA �= 0}
which is just the group of invertiblen × n matrices. The determinant mapdet :
L(Rn,Rn) → R is continuous, henceGL(n,R) = det−1(R\{0}) ⊂ L(Rn,Rn)
is an open submanifold. It is disconnected anddimGL(n,R) = n2. The group
multiplication µ(A,B) = AB (matrix multiplication) isC∞ as the restriction
of the continuous bilinear map(A,B) ∈ L(Rn,Rn) × L(Rn,Rn) → AB ∈
L(Rn,Rn). The group inversionν(A) = A−1 (matrix inversion) isC∞ by the
implicit function theorem, indeedµ(A, ν(A)) = e = I the identity.

The Lie algebra: Since GL(n,R) ⊂ L(Rn,Rn) is open TIGL(n,R) �
L(Rn,Rn) with the Lie bracket[A,B] = AB − BA. ForA ∈ L(Rn,Rn) the
corresponding vector fieldXA on onGL(n,R) given byXA : GL(n,R) →
L(Rn,Rn), XA(Y )=Y A is left invariant (linear), indeedXA(LZY )=XA(ZY )
= ZY A = (TY LZ)XA(Y ). Hence the Lie bracket onTIGL(n,R) defined by
[A,B] = [XA,XB ](I) = DXB(I)XA(I) − DXA(I)XB(I). SinceXB(Z) is
linear we haveDXB(I)Z = ZB andDXB(I)XA(I) = AB. So [A,B] =
AB −BA is the the usual commutator bracket.

The exponential map: For A ∈ L(Rn,Rn) the curveγA : R → GL(n,R) :

γA(t) =
∑∞

i=0

ti

i!
Ai is a one-parameter subgroup withγA(0) = I and γ̇A(t) =∑∞

i=1

ti−1

(i− 1)!A
i = γA(t)A. HenceγA is the (unique) integral curve ofXA

and the exponential mapexp : L(Rn,Rn) → GL(n,R) : exp(A) = γA(1) =∑∞
i=0

1
i!
Ai, becomesexp(A) = eA.

2.2.3. Lie Subgroups of GL(n, R)

A) The special linear group SL(n,R) is defined as

SL(n,R) := {A ∈ GL(n,R); detA = 1} = det−1{1}.
SL(n,R) is a closed Lie subgroup ofGL(n,R). It is non-compact, connected
anddimSL(n,R) = n2 − 1.
The Lie algebra: sl(n,R) = {A ∈ L(Rn,Rn) ; traceA = 0} with the commu-
tator bracket[A,B] = AB −BA.



Infinite Dimensional Lie Groups with Applications to Mathematical Physics 59

B) The orthogonal group O(n) is defined as

O(n) := {A ∈ L(Rn,Rn) ; < Ax,Ay >=< x, y >⇔ AAT = I}.
A ∈ O(n) ⇒ detA = ±1. O(n) is compact, disconnected (2 components) and
dimO(n) = n(n− 1)/2.
The Lie algebra: o(n,R) = {A ∈ L(Rn,Rn); A skew symmetric}.
C) The special orthogonal group SO(n) is defined as

SO(n) = {A ∈ L(Rn,Rn) ; AAT = I & detA = +1}
= O(n) ∩ SL(n,R) ≡ Identity component ofO(n).

SO(n) is compact, connected anddimSO(n) =
1
2
n(n− 1).

The Lie algebra: so(n,R) = {A ∈ L(Rn,Rn);A skew symmetric} = o(n,R).
D) The symplectic group Sp(2n) is defined as

Sp(2n,R) = {A ∈ L(R2n,R2n) ; ATJA = J}

whereJ =
(

O I
−I 0

)
. Sp(2n,R) is noncompact anddimSp(2n) = 2n2 + n.

The Lie algebra: sp(2n,R) = {A ∈ L(Rn,Rn) ; ATJ + JA = 0}. Similar
constructions and results hold for the complex matrix groupsGL(n,C) and their
corresponding subgroups.

2.3. Classical Results in Finite Dimensions which are NOT True
in Infinite Dimensions:

1) There is NO Implicit Function Theorem or Inverse Function Theorem in infi-
nite dimensions (except Nash–Moser type theorems!).
2) The exponential mapexp : g → G defined byexp(ξ) = ϕξ(1), whereϕξ(t) is
the flow of the left invariant vector fieldXξ for ξ ∈ g, is a local diffeomorphism in
finite dimensions⇒ canonical coordinates. This is not true in infinite dimensions.
3) If G,H are finite dimensional Lie groups andf1, f2 : G → H are smooth Lie
group homomorphisms (G connected) i.e.fi(gh) = fi(g) · fi(h), i = 1, 2, with
Tef1 = Tef2, then locallyf1 = f2.
4) If f : G → H is a continuous group homomorphism between finite dimen-
sional Lie groups thenf is smooth.
5) If G is a finite dimensional Lie group andH ⊂ G a closed subgroup thenH is
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a Lie subgroup (Lie group and submanifold).
6) If G is a finite dimensional Lie group with Lie algebrag andh ⊂ g is a subal-
gebra, then there exists a unique connected Lie subgroupH ⊂ G with h as its Lie
algebra, i.eh � TeH.
7) If g is any finite dimensional Lie algebra the there exists a connected finite
dimensional Lie groupG with g as its Lie algebra i.e.g � TeG.

2.4. Infinite Dimensional Examples

2.4.1. The General Linear Group

Let V be a Banach space andL(V, V ) the space of bounded linear operators
A : V → V . ThenL(V, V ) is a Banach space with the operator norm‖A‖ =
sup‖x‖≤1 ‖A(x)‖ and the groupG = GL(V, V ) of invertible elements is open in
L(V, V ). SoGL(V, V ) is a smooth Lie group withµ(f, g) = f ◦ g, ν(f) =
f−1, e = id V . Its Lie algebra isg = L(V, V ) with the commutator bracket
[A,B] = AB −BA and exponential mapexpA = eA.

2.4.2. Abelian Gauge Groups with Application

Let M be finite dimensional manifold andG = C∞(M) with µ(f, g) = f + g
and ν(f) = −f, e = 0. This is an infinite dimensional (abelian) vector group.
The Lie algebra isg = TeC

∞(M) � C∞(M), with trivial bracket[ξ, η] = 0
(abelian) and exponential mapexp = id : C∞(M) → C∞(M). This is aC∞-
Frechet Lie group (vector group). We can norm-completeC∞(M)with respect to
theCk-norm,k <∞, and obtain the Banach Lie groupCk(M), or with respect to

theHs-Sobolev norm,s >
1
2
dimM , and obtain the Hilbert Lie groupHs(M).

For example, if(M,g) is a Riemannian manifold with Levi-Civita connection
∇ the Hs(M) is the completion ofC∞(M) with respect to the norm‖f‖s =
(
∫
M

∑s
i=1 |∇if |2x dvolx(g))1/2 < ∞.

Application: Maxwell’s Equations

Let E, B be the electric and magnetic fields respectively. Then the vacuum
Maxwell equations are

Ė = curlB, Ḃ = −curlE, divB = 0, divE = ρ. (3)

Let V be the space of vector fields (potentials) onR
3 and the phase spaceP =

T ∗V = V × V ∗ � (A,E), with theL2 pairing 〈A,E〉 = ∫
A(x)E(x)dx. The
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canonical Poisson bracket forF,H : P → R is given by

{F,H}(A,E) =
∫ (

δF

δA

δH

δE
− δH

δA

δF

δE

)
dx. (4)

The canonical Hamilton equations onP = T∗V are

Ȧ =
δH

δE
, Ė = −δH

δA
. (5)

With the Hamiltonian (energy)H(A,E) =
1
2

∫
(|curlA|2+ |E|2)dx andB :=

−curlA we get divB=−div curlA=0 and Hamiltons equationṡA=
δH

δE
=E ⇒

Ḃ=−curl E andĖ = −δH

δA
= −curl curlA = curlB. These are the first three

of Maxwells’ equations, the fourth equation divE = ρ is obtained from gauge
symmetry and reduction.

Gauge invariance: The Lie groupG = C∞(R3) acts onV by ϕ · A = A+∇ϕ
(ϕ ∈ G, A ∈ V ). We lift this action toP = V × V ∗ as followsϕ · (A,E) =
(A + ∇ϕ,E). The HamiltonianH is G invariant and has a momentum map
J : V × V ∗ → g∗ given byJ(A,E) = divE. We identify the dual of the Lie
algebrag∗ with charge densities onR3. The reduced phase space forρ ∈ g∗

becomesPρ = J−1(ρ)/G = {(E,B);divE = ρ,divB = 0} and the reduced

Hamiltonian becomesHρ(E,B) =
1
2

∫
(|E|2+ |B|2)dx . Computing the reduced

Poisson bracket onPρ we get

{F,H}ρ(E,B) =
∫ (

δF

δE
· curl

δH

δB
− δH

δE
· curl

δF

δB

)
dx. (6)

Now Hamilton’s equations on the reduced phasePρ space becomeMaxwell’s
equations

Ḟ = {F,Hρ}ρ ⇔
{
Ė = curlB, Ḃ = −curlE

divB = 0, divE = ρ.
(7)

2.4.3. Loop Groups

LetM be a finite dimensional manifold andG = C∞(M,R\{0}) with µ(f, g) =
f ·g andν(f) = f−1 , e = 1. Ck(M,R\{0}) is open inC∞(M,R). If M is com-
pact thenCk(M,R\{0}) is a Banach Lie group fork < ∞ andHs(M,R\{0})
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(diffeomorphisms ofHs Sobolev class) is closed under multiplication ifs >
1
2
dimM . ThenHs(M,R\{0}) is a Hilbert Lie group.

As a generalization we replaceR − {0} by any finite dimensional Lie groupG
with Lie algebrag. ThenG = Ck(M,G) with pointwise defined multiplication
and inversion, (i.e. forf, g ∈ G, x ∈ M , µ(f, g)(x) = f(x) ·g(x) andν(f)(x) =
f−1(x)) is a Banach Lie group with Lie algebrag = Ck(M, g) where the bracket
is again defined pointwise[ξ, η]g(x) = [ξ(x), η(x)]g for ξ, η ∈ g, x ∈ M .

The exponential mapExp : g = Ck(M, g) → G = Ck(M,G) is given by
Exp (ξ) = exp ◦ξ, whereexp : g → G is the finite dimensional exponential map.
In this caseExp is a local diffeomorphism.

Special case: If M = S1 the circle thenG = Ck(S1, G) = Lk(G) is known as
the loop group andg = Ck(S1, g) = lk(g) its loop algebra, see [31] for details.

Applications: These infinite dimensional Lie groups have wide applications in
gauge theories and quantum field theory. Their Lie algebras and their representa-
tion theory play an important role to affine Lie algebras, Kac–Moody Lie algebras
(central extensions), vertex algebras, completely integrable systems and soliton
equations (Toda, KdV, KP equations).

3. Diffeomorphism groups

3.1. Overview of Diff(M)

Diffeomorphism groups and their subgroups provide an important and wide range
of examples of infinite dimensional Lie groups with very interesting applications
to mathematical physics. LetM be a smooth manifold, and consider

Diff(M) = {f :M → M ; f diffeomorphism}. (8)

3.1.1. The Algebraic Structure of Diff(M)

Diff(M) is a group with composition as group operation

µ : Diff(M)×Diff(M)→ Diff(M), µ(f, g) = f ◦ g (9)

and inversion
ν : Diff(M)→ Diff(M) , ν(f) = f−1. (10)

The unit elemente is the identity mape = idM :M → M . We callDiff(M) the
diffeomorphism group of M . There are very interesting algebraic properties like
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cohomologies, isomorphy types, simplicity ect. studied mainly by A. Banyaga in
the 1970’s, [5]. We concentrate here on the geometric structures and its applica-
tions.

3.1.2. Geometric Structure of Diff(M)

We investigate the topology, the manifold structure and global analysis on
Diff(M). One of the main question is, in what sense isDiff(M) a Lie group?

For different types of diffeomorphisms we will obtain different structures:

• Ck, k < ∞ diffeomorphisms⇒ Diffk(M) is a Banach manifold (Palais
[30], Omori [28]).

• C∞ diffeomorphisms⇒Diff∞(M) is a Frechet manifold (Omori [28], Schmid
[35]).

• Hs SobolevHs diffeomorphims,f isHs iff in any local chart all derivatives

of f up to orders are square integrable,s >
1
2
dim M ⇒ Diffs(M) is

a Hilbert manifold (Ebin–Marsden[13], Ratiu–Schmid [32] and Eichhorn–
Schmid [15]).

In a nut shell we will prove the following result:

Theorem 1. Diffs(M) is a smooth infinite dimensional manifold and a Lie group
in the following sense: The group multiplication µ is Ck as a map

µ : Diffs+k(M)×Diffs(M)→ Diffs(M) , µ(f, g) = f ◦ g.
The inversion ν is Ck as a map

ν : Diffs+k(M)→ Diffs(M) , ν(f) = f−1.

Note that the group operations arenot smooth between the same spaces, i.e. if
k = 0 they are only continuous. In order to obtain smoothness to some degree
one must change the space to that degree. Ass → ∞ we obtainDiff∞(M) =
lim←−
s

Diffs(M) as inverse limit a “Frechet Lie group” calledILH Lie group (Inverse

Limit of Hilbert Lie groups). We give the exact definition and properties below.

3.2. The Manifold Structure on C(M, M)

We’ll see that the diffeomorphism groupDiff(M) is an open set of the manifold
of all mapsC(M,M). So we first need to construct a manifold structure on the
spaces of mapsC∞(M,M), Ck(M,M) andCs(M,M).
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Let M be a compact andN any finite dimensional manifold and consider

C(M,N) = {f :M → N ; f differentiable}. (11)

We first consider two different manifoldsM andN to make the construction
clearer, later we’ll setN = M . Also we do not specify at the moment the differ-
entiability classC∞, Ck or Hs.

3.2.1. The Parameter Spaces of C(M, N)

In order to construct an infinite dimensional manifold structure on a set like
C(M,N) one first has to find a candidate for the parameter spaces. As for fi-
nite dimensional manifolds, these parameter spaces should be isomorphic to the
tangent spaces at the corresponding points. Heuristically one determines the tan-
gent space as follows:

Let f ∈ C(M,N) andγ : I ⊂ R → C(M,N) be a curve withγ(0) = f . Then
γ̇(0) is a tangent vector toC(M,N) at the pointf , i.e.

γ̇(0) =
dγ(t)
dt

∣∣∣∣
t=0

∈ TfC(M,N). (12)

We make the following identification to interpretγ̇(0): For eachx ∈ M let γx :
I ⊂ R → N be the curve inN defined byγx(t) = γ(t)(x). Thenγx(0) = f(x)
and γ̇x(0) ∈ Tf(x)N , i.e. γ̇x(0) is a tangent vector toN at the pointf(x). We
identify γ̇x(0) ≡ γ̇(0)(x); hence we can regarḋγ(0) as a maṗγ(0) : M → TN
such thatγ̇(0)(x) ∈ Tf(x)N . That meanṡγ(0) is a vector field alongf . With this
motivation we define the tangent space ofC(M,N) at the pointf ∈ C(M,N)
by

TfC(M,N) = {ξf ∈ C(M,TN) ; τN ◦ ξf = f} (13)

whereτn : TN → N is the canonical projection. We can identifyTfC(M,N)
with the spaceΓ(f∗τN ) of sections of the pull back bundlef∗τN . This is the
parameter space at the pointf ∈ C(M,N), i.e. TfC(M,N) ∼= Γ(f∗τN ) which
is an infinite dimensional vector space.

Note, forN = M andf = id : M → M we haveTidC(M,M) = Γ(τM ) =
X(M) the space of vector fields onM .

For different differentiability types off : M → N we choose the corresponding
topologies on the vector spacesΓ(f∗τM ) as follows:

a) C∞(M,N): The spaceΓ∞(f∗τM ) of C∞ sections with the uniformC∞-
topology is a Frechet space; i.e. a metrizable topological vector space. This
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topology is defined by the sequence of seminorms(| |p)p∈N

|ξ|p = max
0≤i≤p,0≤j≤p

sup
x∈Ui

‖Djξi(x)‖ < ∞ (14)

whereξi is the local representative ofξ ∈ Γ∞(f∗τM ) in a chartUi of M . Note
there is no single norm defining this topology, but it is metrizable and complete.

b) Ck(M,N), 0 ≤ k < ∞: The spaceΓk(f∗τM ) of Ck-differentiable sections
with the uniformCk-topology is a Banach space with norm

‖ξ‖ = max
0≤p≤k

|ξ|p , with |ξ|p as above. (15)

c) Cs(M,N), s >
1
2
dimM : The spaceΓs(f∗τM ) of Hs-Sobolev differentiable

sections is a Hilbert space with inner product

< ξ, η >= max
i

∫
Ui

 ∑
0≤|k|≤s

Dkξi(x)Dkηi(x)

 dx. (16)

3.2.2. Local Charts (coordinates) of C(M, M)

Now letN = M in the above construction. We choose a Riemannian metric on
M , which allows us to define a (Riemannian) exponential mapexp : TM → M
as follows. For eachvx ∈ TxM there is a unique geodesicαx throughx whose
tangent vector atx is vx, i.eαx(0) = x andα̇x(0) = vx. Then define

expx(vx) := αx(1) , vx ∈ TxM. (17)

In generalexpx is a local diffeomorphism from a neighborhood of0 ∈ TxM onto
a neighborhood ofx ∈ M . However, sinceM is compact,expx is defined on all
of TxM and can be extended to a mapexp : TM → M such that the map

Exp := (τM , exp) : TM → M ×M, Exp(vx) = (x, expx(vx))

is a diffeomorphism from a neighborhoodO(0) of the zero section inTM onto
neighborhoodU(∆) of diagonal∆ ⊂ M ×M ,

Exp : TM ⊃ O(0) � U(∆) ⊂ M ×M. (18)

We definef : M → M to be close to the identityid : M → M iff graph(f) ⊂
U(∆). This defines a neighborhoodV(idM ) in C(M,M) by

V(idM ) = {f ∈ C(M,M) ; graph(f) ⊂ U(∆)}. (19)
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We defineξ : M → TM to be close to the zero section0 : M → TM iff
ξ(M) ⊂ O(0). This defines a neighborhoodW(0) in X(M) = TidC(M,M) by

W(0) = {ξ ∈ C(M,TM) ; ξ(M) ⊂ O(0)}. (20)

We want to point out thatcompactness of M is important. We have the following
lemma:

Lemma 2. If τ : E → M is any vector bundle over M , denote by Γ(τ) = {ξ :
M → E ; τ ◦ ξ = id } the space of sections. Let O ⊂ E be an open set of E.
Then the set Γ(O) := {ξ ∈ Γ(τ) ; ξ(M) ⊂ O} is open in Γ(τ) (open in any of
the topologies Γ∞,Γk,Γs) if and only if M is compact.

From this lemma follows that the neighborhoodW(0) defined above is open in
Γ(τM ) = X(M) = TidC(M,M).
DefineΦ : V(idM ) ⊂ C(M,M)→W(0) ⊂ X(M) by

Φ(f) = Exp−1 ◦ (idM , f) , f ∈ V(idM ). (21)

Φ is a bijection fromV(idM ) ontoW(0) with inverse

Φ−1(ξ) = pr2 ◦ Exp◦ ξ , ξ ∈ W(0) (22)

wherepr2 :M ×M → M is the projection onto the second factor.

Therefore we have a chart about the identityidM onC(M,M)

Φ : V(idM ) ⊂ C(M,M)→W(0) ⊂ Γ(τM ). (23)

A similar construction yields charts about anyf ∈ C(M,M), i.e. there exists
open neighborhoodsWf in Γ(f∗τM ) andVf in C(M,M) and bijectionsΦf :
Vf →Wf whereΦf (g) = Exp−1

f ◦ (idM , g) with Expf = (τf∗M , exp ◦f).

3.2.3. Change of Coordinates:

The change of charts (change of coordinates) for anyf, g ∈ C(M,N) is given by
the map

Φf,g = Φg ◦ Φ−1
f : Φf (Vf ∩ Vg) ⊂ Γ(f∗τM )→ Γ(g∗τM ) (24)

which turns out to be

Φf,g(ξf ) = Exp−1
g ◦ Expf ◦ ξf (25)
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where Expf = (τf∗M , exp ◦f) and Expg = (τg∗M , exp ◦g) are the from Exp in-
duced local diffeomorphisms in the bundlesΓ(f∗τM ) andΓ(g∗τM) respectively.
To show that these transition mapsΦf,g are smooth one needs theΩ-Lemma
(Palais [30]).

Lemma 3. (Ω-Lemma)Let τ : E → M and τ ′ : E′ → M be vector bundles over
M (compact!) and let O ⊂ E be open. Let ω : O ⊂ E → E′ be a C∞-vector
bundle map. Then the induced map

Ωω : Γ(O) ⊂ Γ(τ)→ Γ(τ ′) , Ωω(ξ) := ω ◦ ξ
is a C∞ map, with derivatives DkΩω = Ω∂kω, i.e DkΩω(ξ) = ∂kω ◦ ξ, where
∂kω denotes the fiber derivative.

Remarks: For the different topologiesΓ∞,Γk,Γs we have:

a) Γ∞: The differentiability of the mappingΩω between the Frechet spaces
Γ∞(τ) andΓ∞(τ ′) is C∞σ0

in the sense of Keller [21].
b) Γk, 0 ≤ k < ∞: If ω is C∞ thenΩω : Γk(O) ⊂ Γk(τ) → Γk(τ ′) is C∞. If

ω is Ck+p, thenΩω : Γk(O) ⊂ Γk(τ)→ Γk(τ ′) is Cp.

c) Γs, s >
1
2
dimM : If ω is C∞ thenΩω : Γs(O) ⊂ Γs(τ) → Γs(τ ′) is C∞.

If ω is SobolevHs+t, thenΩω : Γs(O) ⊂ Γs(τ)→ Γs(τ ′) is Ht.

It follows from theΩ-Lemma (3) that the change of chartsΦf,g is C∞, because
Φf,g = Ωω for ω = Exp−1

g ◦ Expf : Of ⊂ f∗TM → g∗TM andω is C∞. So
we have the following

Theorem 4. Under the above assumptions C∞(M,M), Ck(M,M), 0 ≤ k < ∞
and Cs(M,M), s >

1
2
dimM are infinite dimensional C∞ Frechet, Banach and

Hilbert manifolds, respectively.

Remark: A similar construction works for the spaceC(M,N), whereM is a
compact manifold andN is a Riemannian (not nec. compact) manifold. Again

C∞(M,N), Ck(M,N), 0 ≤ k < ∞ andCs(M,N), s >
1
2
dimM are infinite

dimensionalC∞ Frechet, Banach, Hilbert manifolds.

3.3. The Diffeomorphism Group Diff(M)

From now on we restrict our attention to the class of SobolevHs mappings. This
is convenient for physical applications because we are working locally in Hilbert
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spaces. Similar results are true for theCk, 0 ≤ k < ∞, case where locally we
have Banach spaces to work with. In these two cases we have the classical inverse
mapping theorem and implicit function theorem. In the case ofC∞ mappings the
situation is quite different. We have to work locally with Frechet spaces and there
are no easy generalizations of these theorems available; see Hamilton [20], Nash
[27], Moser [26] and Schmid [34].

3.3.1. The Lie Group Structure of Diffs(M)

Let Diffs(M) denote the set of all diffeomorphisms of SobolevHs class onM .

This set is well defined ifs >
1
2
dimM (which we always assume from now

on). Sof ∈ Diffs(M) if and only if f is bijective andf, f−1 : M → M are of
Sobolev classHs.
Diffs(M) is a group with continuous group operations

µ : Diffs(M)×Diffs(M)→ Diffs(M) , µ(f, g) = f ◦ g
ν : Diffs(M)→ Diffs(M) , ν(f) = f−1

the neutral element ise = id :M → M . SoDiffs(M) is a topological group.

The question is whether the group operationsµ andν are smoothC∞,in order to
define a Lie group structure onDiffs(M). The answer inNO! The situation is
more complicated as indicated at the beginning.

Right multiplication: Let g ∈ Diffs(M). Right multiplication is the mapRg :
Diffs(M) → Diffs(M) defined byRg(f) = f ◦ g. It’s tangent map (deriva-
tive) at anyf ∈ Diffs(M) is the mapTfRg : TfDiffs(M) → Tf◦gDiffs(M) :
TfRg(ξf ) = ξf ◦ g. SoTRg = Rg, thereforeRg is C∞ for anyg ∈ Diffs(M).
Left multiplication: Let g ∈ Diffs(M). Left multiplication is the mapLg :
Diffs(M) → Diffs(M) : Lg(f) = g ◦ f . It is tangent map (derivative) atf ∈
Diffs(M) is the mapTfLg : TfDiffs(M) → Tg◦fDiffs(M) : TfLg(ξf ) = Tg ◦
ξf . ThereforeTLg = LTg. But if g is Hs then Tg is Hs−1 thereforeLg :
Diffs+k(M)→ Diffs(M) is Ck for anyg ∈ Diffs+k(M), (Ω-Lemma).

Together we get: The group multiplicationµ is Ck as a map

µ : Diffs+k(M)×Diffs(M)→ Diffs(M). (26)

Note that fork = 0 ⇒ the multiplication is only continuous between the same
spacesDiffs(M).
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Similarly, the group inversionν is Ck as a map

ν : Diffs+k(M)→ Diffs(M) (27)

andk = 0⇒ the inversion is only continuous between the same spacesDiffs(M).

3.3.2. The Lie Algebra of Diffs(M)

Recall that for a finite dimensional Lie groupG, the Lie algebra structure ong∼=
TeG (e=identity) is defined as follows: forξ, η ∈ TeG define the corresponding
left invariant vector fieldsXξ(g) := TeLg(ξ) , Xη(g) := TeLg(η) , g ∈ G.
Then define the Lie bracket ong by [ξ, η] := [Xξ ,Xη](e), where[Xξ ,Xη] =
XξXη − XηXξ is the commutator bracket ofXξ andXη which is again a left
invariant vector field. Instead of left invariant vector fields one could use right
invariant ones and would get anti-isomorphic Lie algebras.

For the diffeomorphism groupG = Diffs(M) right multiplications isC∞ whereas
left multiplication is only continuous, therefore we useright invariant vector fields
rather then left invariant ones to define the Lie algebrag of G = Diffs(M). A
right invariant vector field onDiffs(M) is a mapY : Diffs(M)→ TDiffs(M) =
Cs(M,TM) such thatY (f) ∈ TfDiffs(M), i.e τM ◦X(f) = f is a vector field
alongf , andR∗gY = Y , g ∈ Diffs(M). Let ξ ∈ Tid M

Diffs+1(M) = Xs+1(M)
be anHs+1-vector fields onM , and define the right invariant vector fieldYξ on
Diffs(M) by

Yξ(f) := TRf (ξ) = ξ ◦ f , f ∈ Diffs(M). (28)

Yξ is aC1 vector field onDiffs(M) if ξ ∈ Xs+1(M). The bracket[Yξ, Yη] of two
right invariant vector fields is given by

[Yξ, Yη](idM ) = −[ξ, η] , ξ, η ∈ Xs+1(M) (29)

where the bracket[ξ, η] is the commutator bracket of the vector fieldsξ and
η on M , i.e. [ξ, η] = ξη − ηξ. If ξ, η ∈ Xs+1(M) the [ξ, η] ∈ Xs(M),
hence[Yξ, Yη](idM ) ∈ Xs(M) and [Yξ, Yη] is a right invariantC0 vector field
onDiffs(M). So the ordinary Lie bracket[ξ, η] = ξη − ηξ of vector fields onM
is the bracket on the Lie algebrag = Tid M

Diffs+1(M) but g is not closed under
the bracket as we loose derivatives! This type of Lie algebra structure is called
“ILH Lie algebra” which we will define below.

3.3.3. The Exponential Map exp : g → G
Recall for a finite dimensional Lie groupG with Lie algebrag = TeG the ex-
ponential mapexp : g → G is defined as follows: Forξ ∈ g let Xξ be the
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corresponding left invariant vector field andϕξ(t) its integral curve ate ∈ G,
i.e. ϕξ : R → G smooth,ϕξ(0) = e and ϕ̇ξ(t) = Xξ(ϕξ(t)). Now define
exp(ξ) := ϕξ(1). Then the mapexp is a local diffeomorphism from a neigh-
borhood of zero ing onto a neighborhood ofe in G. This is true only in finite
dimensions!

For the Lie groupG=Diffs(M) with Lie algebrag=TeDiffs+1(M)=Xs+1(M)
the exponential map

exp : TeDiffs(M) = Xs(M)→ Diffs(M) (30)

is given as follows: forξ ∈ Xs+1(M) let φt ∈ Diffs(M) be its flow. Then
the curveφ(t) = φt is an integral curve of the right invariant vector fieldYξ
on Diffs(M) through e = idM . Indeed,φ(0) = φ0 = idM , and forx ∈
M , φ̇(t)(x) =

dφ(t)(x)
dt

∣∣∣∣
t=0

=
dφt(x)

dt

∣∣∣∣
t=0

= ξ(φt(x)) = (ξ ◦ φ(t))(x) =

TRφt(x) = Yξ(φ(t))(x). Henceφ̇(t) = Yξ(φt) andφ̇(0) = ξ. Now define

exp(ξ) := φ1. (31)

Thenexp : Xs(M) → Diffs(M) is continuous, butnot C1. Moreoverexp is not
locally surjective, i.e.exp does not map onto any neighborhood of the identity in
Diffs(M). This is the reason we cannot use this exponential map to define directly
charts onDiffs(M). In other words, the diffeomorphism groupG = Diffs(M)
is not generated by exponentiating vector fields. In every neighborhood ofidM
there are diffeomorphisms which are not part of the flow of any vector field, in
short

Diffs(M) �= expXs(M).

Summarizing we have the following “Lie group” structure ofDiffs(M):
i) multiplication µ : Diffs+k(M)×Diffs(M)→ Diffs(M) , is Ck

ii) inversionν : Diffs+k(M)→ Diffs(M) , is Ck

iii) the Lie bracket forξ, η ∈ Xs+1(M) is onlyHs i.e. [ξ, η] ∈ Xs(M)
iv) the exponential mapexp : Xs+1(M)→ Diffs(M) is not locally onto.

This non-classical “Lie group” structure ofDiffs(M) leads to the definition of so
called ILH-Lie groups (Inverse Limit of Hilbert).

3.4. ILH-Lie Groups and ILH-Lie Algebras

Definition 5. A collection of groups {G∞, Gs ; s ≥ s0} is called an ILH-Lie
group (Inverse Limit of Hilbert) if:
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i) each Gs is a Hilbert manifold of class Ck(s) modeled on a Hilbert space Es,
and k(s)→∞ as s →∞
ii) for each s ≥ s0 there are linear continuous, dense inclusions Es+1 ↪→ Es

and dense inclusions of class Ck(s) : Gs+1 ↪→ Gs

iii) each Gs is a topological group and G∞ = lim←−
s

Gs is a topological group with

the inverse limit topology
iv) if (Us, ϕs, Es) is a chart of Gs then (Us

⋂
Gt, ϕs|Us∩Gt , Et) is a chart for Gt

for all t ≥ s
v) the multiplication µ : G∞×G∞ → G∞ extends to a Ck map µ : Gs+k×Gs →
Gs for all s such that k ≤ k(s)
vi) the inversion ν : G∞ → G∞ extends to a Ck map ν : Gs+k → Gs, for all s
such that k ≤ k(s)
vii) the right multiplication Rg by g ∈ Gs extends to a Ck(s) map Rg : Gs → Gs.

Definition 6. A collection of vector spaces {g∞, gs ; s ≥ s0} is called an ILH-
Lie algebraif:
i) each gs is a Hilbert space and for each s ≥ s0 there are linear, continuous,
dense inclusions gs+1 ↪→ gs and g∞ = lim←−

s

gs is a Frechet space with the inverse

limit topology
ii) there exist bilinear, continuous, antisymmetric maps [ , ] : gs+2 × gt+2 →
gmin(s,t), for all s, t ≥ s0, which satisfy the Jacobi identity on gmin(s,t,r) for
elements in gs+4 × gt+4 × gr+4.

Theorem 7. Let {G∞, Gs ; s ≥ s0} be and ILH-Lie group and for each s let
gs := TeG

s and g∞ = lim←−
s

gs. Then {g∞, gs ; s ≥ s0} is the ILH-Lie algebra of

the ILH Lie group {G∞, Gs ; s ≥ s0}.

Example: Diffeomorphism Groups

{Diff∞(M), Diffs(M) ; s >
1
2
dimM}

is an ILH-Lie group with ILH-Lie algebra

{X∞(M), Xs(M) ; s >
1
2
dimM}

wherek(s) =∞ for all s.

Remarks:
1) The Nash–Moser implicit function theorem works for ILH!
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2) Ck-diffeomorphism groups,0 ≤ k < ∞.
For the groupDiffk(M) of diffeomorphisms of classCk we have a similar situa-
tion as in the caseDiffs(M) of Hs diffeomorphisms discussed above.Diffk(M)
is a Banach manifold and one defines the notion of ILB (Inverse Limit of Banach)–
Lie groups and ILB-Lie algebras similar to ILH. Then{Diff∞(M),Diffk(M) ;
k ∈ N} is an ILB Lie group with ILB-Lie algebra{X∞(M),Xk(M) ; k ∈ N}.
3) C∞-diffeomorphisms.
For the groupDiff∞(M) of diffeomorphisms of classC∞ one can take an en-
tirely different point of view. In theHs or Ck case the major role is played by the
tower of Hilbert or Banach manifoldsDiffs(M) andDiffk(M) respectively and
Diff∞(M) is only considered as limiting topological group. In contrast to this one
can studyDiff∞(M) directly as Frechet manifold and Frechet Lie group. For this
to make sense one needs a differential calculus in Frechet spaces. Unfortunately,
there are many inequivalent ways to define this concept, and no matter what dif-
ferential calculus one uses, one is always faced with pathologies in the theory of
Frechet manifolds; e.g. the classical inverse function theorem and implicit func-
tion theorem do not hold. This point of view of differentiablity is developed in
Keller [21], Hamilton [20] and Schmid [34].

3.5. Gauge Groups

The diffeomorphism subgroups that arise in gauge theories as gauge groups be-
have nicely because they are isomorphic to subgroups of loop groups which are
not only ILH-Lie groups but actually Hilbert Lie groups.

Let π : P → M be a principalG bundle withG a finite dimensional Lie group
(structure group) acting onP from the rightp ∈ P, g ∈ G , p · g ∈ P .

TheGauge group G is the group of gauge transformations defined by

G = {φ ∈ Diff∞(P ) ; φ(p · g) = φ(p) · g and π(φ(p)) = π(p)}. (32)

G is a group under composition, hence a subgroup of the diffeomorphism group
Diff∞(P ). Since a gauge transformationφ ∈ G preserves fibers we can realize
each suchφ ∈ G via φ(p) = p · τ(p) whereτ : P → G satisfiesτ(p · g) =
g−1τ(p)g, for p ∈ P, g ∈ G. Let

Gau(P ) = {τ ∈ C∞(P,G) ; τ(p · g) = g−1τ(p)g}. (33)

Gau(P ) is a group under pointwise multiplication, hence a subgroup of the loop
group C∞(P,G) (see Section 2.4.3), which extends to a Hilbert Lie group if
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equipped with theHs-Sobolev topology. We giveGau(P ) the induced topology
and extend it to a Hilbert Lie group denoted byGaus(P ). Another interpretation
is thatGau(P ) is isomorphic toC∞(AdP ) the space of sections of the associ-
ated vector bundleAd (P ) = P ×G G. Completed in theHs Sobolev topology
we getGaus(P ) � Hs(AdP ).
Let g denote the Lie algebra ofG. Then theLie algebra gau(P ) of Gau(P ) is a
subalgebra of the loop algebraHs(P,g) under pointwise bracket ing, the finite
dimensional the Lie algebra ofG; i.e. for anyξ, η ∈ Hs(P,g) the bracket is de-
fined by[ξ, η]gau(P )(p) = [ξ(p), η(p)]g , p ∈ P . Thengaus(P ) is the subalgebra
of Ad-invariantg-valued functions onP , i.e.

gau(P ) = {ξ ∈ C∞(P,g) ; ξ(p · g) = Ad g−1ξ(p)}. (34)

The Lie algebralie G (running out of symbols) of the gauge groupG is the Lie
subalgebra ofX∞(P ) consisting of allG-invariant vertical vector fieldsX onP ,
i.e.

lie G = {X ∈ X∞(P ) ; R∗gX = X, X(p) ∈ g, g ∈ G, p ∈ P} (35)

with commutator bracket[X1,X2] = X1X2 −X2X1 ∈ lie G.
On the other hand, the Lie algebra ofC∞(Ad P ) is C∞(ad (P )) – the space of
sections of the associated vector bundlead (P ) ≡ (P ×Gg)→ M with pointwise
bracket.

We have three versions of gauge groupsG, Gau(P ) andC∞(AdP ). They are all
group isomorphic. There is a natural group isomorphismGau(P ) → G : τ �→ φ
defined byφ(p) = p · τ(p), p ∈ P which preserves the productτ1 · τ2 �→ φ1 ◦
φ2. Identifying G with Gau(P ) we can avoid the troubles with diffeomorphism
groups and we can extendG to a Hilbert Lie groupGs. SoGs is actually a Hilbert
Lie group in the classical sense, i.e. the group operations areC∞. Also the three
Lie algebraslie G, gau(P ) andC∞(adP ) are canonically isomorphic. Indeed,
for s ∈ C∞(adP ) defineξ ∈ gau(P ) ξ : P → g by ξ(p · a) := Ad a−1ξ(p); and
for ξ ∈ gau(P ) defines ∈ C∞(adP ) by s(π(p)) := [p, ξ(p)].
On the other hand, forξ ∈ gau(P ) defineZξ ∈ lie G by

Zξ(p) =
dR(p, exp tξ(p))

dt

∣∣
t=0

, (= ξ(p)∗(p))

i.e. Zξ is the fundamental vector field onP , generated byξ ∈ g. Zξ is invariant
iff ξ(p · g) = Ad g−1ξ(p).
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To topologizelie G we completeC∞(ad P ) in theHs-Sobolev norm. Ifs >
1
2
dimM thenlie Gs � Hs(ad P ) � gaus(P ) are isomorphic Hilbert Lie alge-

bras.

There is a natural exponential map Exp: gau(P ) → Gau(P ), which is a local
diffeomorphism. Letexp : g → G be the finite dimensional exponential map.
Then define

Exp : gaus(P )→ Gaus(P ) : (Exp ξ)(p) = exp(ξ(p)) , ξ ∈ gaus(P ). (36)

Or in terms ofG, Exp : lie Gs → Gs : (Exp ξ)(p) = p · exp(ξp).

Proposition 8. For s >
1
2
dimM

Gs � Gaus(P ) � Hs(Ad P )

is a smooth Hilbert Lie group with Lie algebra

lie Gs � gaus(P ) � Hs(ad P )

and smooth exponential map, which is a local diffeomorphism

Exp : lie Gs → Gs : (Exp ξ)(p) = p · exp(ξ(p)).

4. Subgroups of Diffeomorphism Groups and Applications

4.1. Volume Preserving Diffeomorphisms and Fluid Dynamics

In this section we show that the Euler equations of fluid dynamics are equivalent
to the geodesic equations on the group of volume preserving diffeomorphisms as
well as existence and uniqueness of solutions [13].

LetM be a compact manifold,dimM = n andµ a volume form onM i.e. µ is a
nondegeneraten-forms withµ(x) �= 0,∀x ∈ M . Let

Diffsµ(M) = {f ∈ Diffs(M) ; f∗µ = µ} (37)

be the set of volume preservingHs diffeomorphisms onM . Since the pull back
satisfies(f ◦ g)∗ = g∗ ◦ f∗ it follows thatDiffsµ(M) ⊂ Diffs(M) is a subgroup.
Is it a LIE SUBGROUP in the sense of ILH-Lie groups?

Let’s first look for a candidate for the corresponding Lie algebra, i.e. the tangent
space at the identityTeDiffsµ(M). Let ξ ∈ Xs(M) with flow ϕt ∈ Diffsµ(M).
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Sinceϕ∗tµ = µ it follows that0 =
dϕ∗t
dt

∣∣
t=0

= Lξµ, the Lie derivative ofµ along

ξ. Recall that the divergence divξ of a vector fieldξ is defined byLξµ = (div ξ)µ,
soLξµ = 0⇔ divξ = 0 and we get

TeDiffsµ(M) = Xsµ(M) = {ξ ∈ Xs(M); divξ = 0} (38)

the space of divergence free (incompressible) vector fields onM . SinceL[ξ,η] =
[Lξ, Lη] we conclude thatXsµ(M) ⊂ Xs(M) is a Lie subalgebra.

How do we show thatDiffsµ(M) is a Lie subgroup ofDiffs(M)? Recall in the
classical (finite dimensional) case we have the following fundamental facts:

• For any finite dimensional Lie algebrag there is a finite dimensional Lie
groupG for whichg is the Lie algebra, i.e.g � TeG. This is false in infinite
dimensions!

• Any closed subgroup of a finite dimensional Lie group is a Lie subgroup.
This is false in infinite dimension!

Nevertheless the following was shown by Ebin and Marsden [13]

Theorem 9. Diffsµ(M) is a closed smooth submanifold of Diffs(M).

Proof: (idea) The difficulty is to prove thatDiffsµ(M) is a smooth manifold. Let
us illustrate the proof thatDiffsµ(M) is a closed submanifold ofDiffs(M). This
proof is typical in the theory of diffeomorphism groups, so we outline the basic
ideas, which are simple and are based on two key facts:

LetΩn(M) denote the space ofn-forms onM and consider the map

Fµ : Diffs(M)→ Ωn(M) : Fµ(f) = f∗µ. (39)

Then one shows that for a small enough subspace[µ]s of Ωn(M) this map is a
C∞ submersion. Then for fixedµ ∈ [µ]s we haveDiffsµ(M) = F−1(µ), i.e.
Diffsµ(M) is the inverse se image of one point under a submersion, hence a closed
submanifold and “Lie subgroup”.

The first step uses the Hodge decomposition theorem to ensure that the affine
space[µ]s := µ + d(Hs+1(Ωn−1(M)) is a closed subspace inHs(Ωn(M)). We
denote byHs(Ωk(M)) the space of exteriork-forms onM of Sobolev classHs.
Define the mapFµ : Diffs(M) → [µ]s , Fµ(f) := f∗(µ). ThenFµ is well
defined, i.e.Fµ(f) ∈ [µ]s is in the right space. Indeed by the change of variable
theorem we have

∫
M (f

∗µ − µ) = 0, so that by the DeRham theorem we get
f∗µ− µ = dα for someα ∈ Hs−1(Ωn−1(M)).
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The second step uses theΩ-lemma to prove thatFµ is aC∞ submersion. The
derivative ofFµ is obtained as

TfFµ(ξf ) = f∗(Lξµ), ξf ∈ TfDiffs(M) (40)

whereξ = ξf ◦ f−1 ∈ Xs(M). HenceFµ is C∞. Forf = e = idM : TeFµ(ξ) =
Lξµ = diξµ+ iξdµ but sinceµ is a volume element onM , dµ = 0. Moreoverµ
is nondegenerate, hence the map

ξ ∈ Xsµ(M) �→ iξµ ∈ Hs(Ωn−1) (41)

is an isomorphism (iξ denotes the inner product). ThereforeTeFµ is onto, hence
Fµ is a submersion andF−1

µ (µ) = Diffsµ(M) is a closed submanifold ofDiffs(M).
Note that this proof gives the charts onDiffsµ(M) only implicitly. Omori [28]
showed the following

Theorem 10. {Diff∞µ (M), Diffsµ(M) ; s >
1
2
dimM} is an ILH Lie group with

{X∞µ (M), Xsµ(M) ; s >
1
2
dimM} its ILH Lie algebra.

Application to Fluid Dynamics: The main application ofDiffsµ(M) is based on
the fact that it is the configuration space of incompressible, homogeneous, ideal
fluids. LetM be a compact orientable, finite dimensional Riemannian manifold
and letµ be the Riemannian volume. ThenDiffsµ(M) admits the smooth weak
Riemannian metric as follows: Form ∈ M let < , >m be the inner product on
TmM . Let η ∈ Diffsµ(M) andX,Y ∈ TηDiffsµ(M). ThenX(m) andY (m) are
in Tη(m)M . The inner product on each tangent spaceTηDiffsµ(M) is defined as

(X,Y )η =
∫
M

< X(m), Y (m) >η(m) dµ(m) X,Y ∈ TηDiffsµ(M). (42)

With this weak Riemannian metric onDiffsµ(M) we can talk about geodesics
onDiffsµ(M). It turns out that this metric is right invariant and that its spray is
smooth. This remarkable fact found by Ebin and Marsden [13] has as consequence
the local existence and uniqueness of geodesics onDiffsµ(M) and their smooth
dependence on initial conditions. Moreover, ifVt is an integral curve of the spray
onDiffsµ(M) andηt = τM ◦ Vt i.e. η̇t = Vt then

vt := Vt ◦ η−1
t (43)

satisfies theEuler equations:

∂v

∂t
+∇vv = −∇p , divv = 0 (44)
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where∇v is the covariant derivative of the metric onM . The time dependent vec-
tor fieldvt onM represents the Eulerian (or spatial) velocity of the fluid, whereas
the solutionVt of the geodesic spray equation represents the material velocity of
the fluid. Incompressibility of the flow implies thatηt ∈ Diffsµ(M). In this way,
the well-posedness of the Euler equations is equivalent to the local existence and
uniqueness of solutions for the geodesic spray onDiffsµ(M). The dependence of
the solution of the Euler equations on initial conditions is continuous, because the
pull backvt = Vt ◦ η−1

t involves right composition with an inverse as well as left
translation and both operations are continuous but not smooth.

Theorem 11. (Ebin–Marsden [13])

• v satisfies the Euler equations ⇔ ηt is a geodesic on Diffsµ(M)
• existence of C∞ geodesics on Diffsµ(M) for small t
• the Euler equations has unique solution for small t, depending C∞ on the

initial condition v0.

The relationshipvt = Vt◦η−1
t represents the momentum map of the right action of

the groupDiffsµ(M) on the weak symplectic manifoldTDiffsµ(M), the symplectic
form being induced naturally by the weak metric from the canonical symplectic
structure on the cotangent bundleT∗Diffsµ(M).
We (Eichhorn and Schmid [15]) proved the same theorem for the topological Euler
equation on open (non compact) manifolds (see last chapter).

4.2. Canonical Transformations (Symplectomorphisms) and Plasma Physics

In this section we show that the Maxwell–Vlasov equations of plasma physics
are an infinite dimensional Hamiltons system on a space involving the diffeomor-
phism subgroup of canonical transformations.

LetM be a compact manifold,dimM = 2n, andω be a symplectic structureM ,
i.e. ω is a nondegenerate closed (dω = 0) 2-form onM . Consider

Diffsω(M) = {f ∈ Diffs(M) ; f∗ω = ω} (45)

the group ofsymplectomorphisms, or canonical transformations, onM . Using
similar arguments as for volume preserving diffeomorphisms it is shown that

Theorem 12. {Diff∞ω (M), Diffsω(M) ; s > n} is an ILH-Lie subgroup of the
ILH-Lie group {Diff∞(M), Diffs(M) ; s > n}, with ILH-Lie algebra {X∞ω (M),
Xsω(M); s > n}, where Xsω(M) = {ξ ∈ Xs(M);Lξω = 0} is the Lie algebra of
locally Hamiltonian Hs-vector fields.



78 Rudolf Schmid

See Ebin–Marsden [13] and Omori [28] for details. Again the charts onDiffsω(M)
are obtain only implicitly. However, in this case, there is a direct method due to
Weinstein [43] to construct explicit charts using Poincare’s generating functions.
In Schmid [33], [35] it is shown directly using the so calledΓ-differentiability for
Frechet spaces, thatDiff∞ω (M) is a Frechet manifold and Frechet Lie group with
Γ-differentiable group operations.

4.2.1. Application to Plasma Physics

A plasma is a collection of charged particles of various species (electrons, pro-
tons, ect.) moving inR3 as a “charged fluid”. For simplicity one assumes that
there is only one species of particles of chargeq and massm, and it is useful
to approximate their positionsx ∈ R

3 and velocitiesv by a density function on
phase space which may be a smooth functionf(x, v, t). Denote byE(x, t) and
B(x, t) the electric and magnetic fields respectively generated by the motion of
the charged particles. Then the plasma can be described by theMaxwell–Vlasov
equations

(MV )



∂f

∂t
+ v · ∂f

∂x
+

q

m
(E + v ×B)

∂f

∂v
= 0 (Boltzman equation)

∂B

∂t
= −curlE

∂E

∂t
=curlB−Jf , where the current densityJf =q

∫
vf(x, v, t)dv

divE = ρf , where the charge density ρf = q
∫
f(x, v, t)dv

divB = 0.

We think of this system of coupled, non-linear system of evolution equations as
an initial value problem for the variablesf,E andB. The following was shown
by Marsden and Weinstein in 1982, see [25] for a summary.

Theorem 13. The Maxwell–Vlasov equations are an infinite dimensional Hamil-
tonian system, i.e. they can be written in the form

Ḟ = {F,H}
for a certain non-canonical Poisson bracket { , } and some Hamiltonian H .
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Let us outline the ideas of the construction of this Hamiltonian structure, see [25]
and [35] for details.

4.2.2. The Poisson–Vlasov System

We first consider the limit case whereB = 0. Then the Maxwell–Vlasov system
reduces to a single equation of the field variablef(x, v, t) the Poisson–Vlasov
equation

∂f

∂t
+ v · ∂f

∂v
− q

m

∂φf
∂x

· ∂f
∂x

= 0 (46)

where the scalar potentialφf is given by∆φf = −ρf . One can show that
f(x, v, t) evolves in time by a canonical transformationηt of R

6, i.e. f(x, v, t) =
η∗t f(x, v, t0) where ηt ∈ Diffω(R6) and ω is the canonical symplectic form
on R

6. If we identify any Hamiltonian vector fieldXh(x, v) on R
6 with its

Hamiltonian functionh(x, v) : R
6 → R, we get a Lie algebra isomorphism

g = X∞ω (R6) ∼= C∞(R6) with [Xh,Xg] = X{h,g}, where{h, g} is the canonical
Poisson bracket of functions onR6. Moreover, if we identify the dual of this Lie
algebrag∗ via theL2-pairing< h, f >=

∫
h(x, v)f(x, v)dxdv with itself g, we

can regard the plasma density asf(x, v) ∈ g∗ ∼= C∞(R6).
On the dualg∗ of any Lie algebrag we have the Lie Poisson bracket for functions
F,G : g∗ → R, given by the formula

{F,G}(µ) = 〈µ , [
δF

δµ
,
δG

δµ
]〉, µ ∈ g∗ (47)

where
δF

δµ
,
δG

δµ
are regarded as elements ofg and[ , ] denotes the Lie bracket in

g and〈 , 〉 the canonical pairing betweeng∗ andg.

Now a direct computation shows that the Poisson–Vlasov equation (46) is in Lie–
Poisson form ong∗ = C∞(R6) i.e. Ḟ = {F,H} with energy

H(f) =
1
2

∫
mv2f(x, v, t)dxdv +

1
2

∫
φfρfdx (48)

and{ , } the Lie–Poisson bracket ong∗ = C∞(R6) given by

{F,G}(f) =
∫

f

{
δF

δf
,
δG

δf

}
dxdv. (49)
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4.2.3. The Maxwell Equations

As we discussed in Section 2.4.2, Maxwell’s equations

Ė = curlB , Ḃ = −curlE (50)

are canonical Hamilton’s equations onT∗A with respect to the canonical sym-

plectic structure and the HamiltonianH(E,B) =
1
2

∫
(|E|2+ |B|2)dx is the total

field energy. Here the configuration spaceA = {A : R
3 → R

3} is the space
of vector potentials onR3 andB = curl A for someA ∈ A. Then we consider
(A,E) ∈ T ∗A . The invariance of Maxwell’s equations under the gauge transfor-
mationsA �→ A+∇φ for anyφ ∈ C∞(R3) leads via the reduction procedure to
the two remaining Maxwell equations

divE = ρ , divB = 0. (51)

4.2.4. The Coupled System: The Maxwell–Vlasov Equations

Combining the Poisson–Vlasov system (46) and the Maxwell equations (50), (51)
we get the Maxwell–Vlasov system. The same symmetry groupC∞(R6) that
leaves Maxwell’s equations invariant, acts on the coupled phase space
TidDiff∞ω (R6) × T ∗A � C∞(R6) × T ∗A. Reducing by this symmetry, one
obtains a reduced phase space with a Poisson structure with respect to which the
Maxwell–Vlasov equations are a Hamiltonian system, i.e in the form

Ḟ = {F,H} (52)

with the Hamiltonian

H(f,E,B) =
1
2

∫
mv2f(x, v)dxdv+

1
2

∫
|B(x)|2dx+ 1

2

∫
|E(x)|2dx (53)

which is the total energy of the plasma. The noncanonical Poisson bracket on the
reduced phase space turns out to be the following: For any two functionsF and
G of the field variables(f,E,B) we have

{F,G}(f,E,B) =
∫

f

{
δF

δf
,
δG

δf

}
dxdv

+
∫ (

δF

δE
· curl

δG

δB
− δG

δE
· curl

δF

δB

)
dx+

∫ (
δF

δE
· ∂f
∂v

δG

δf
− δG

δE
· ∂f
∂v

δF

δf

)
dxdv

+
∫

fB ·
(

∂

∂v

δF

δf
× ∂

∂v

δG

δf

)
dxdv. (54)
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With this Poisson bracket and Hamiltonian (53) the Maxwell–Vlasov equations
are an infinite dimensional Hamiltonian system of the form

Ḟ = {F,H}.
Notice that the coupling of the plasma and electromagnetic fields appears in the
Poisson structure rather then in the Hamiltonian, and it is produced by the action
of the infinite dimensional gauge groupC∞(R6) on the uncoupled phase space of
matter and fields.

In this example where a dynamical system of infinitely many degrees of free-
dom (the Maxwell–Vlasov equations) is described as a Hamiltonian system, infi-
nite dimensional Lie groups appear as a configuration space as well as symmetry
groups. Similar structures were found for multifluid plasma, see [25] and refer-
ences therein.

4.3. Contact Transformations on Ṫ ∗M

This example of a diffeomorphism group plays an important role in our next chap-
ter, where we’ll discuss the group of invertible Fourier integral operators.

Let M be a compact manifold,dim M = n and T∗M its cotangent bundle
with the canonical symplectic structureω = dθ =

∑
dpi ∧ dqi (locally), where

θ =
∑

pidqi is the canonical 1-form onT∗M . We want to study diffeomorphisms
ϕ : T ∗M → T ∗M that preserveθ, i.e ϕ∗θ = θ. Such a diffeomorphism is
necessarily a lift, i.e. of the formϕ = T∗η for someη ∈ Diffs(M) i.e. ϕ is
just an extended point transformation. To avoid this trivial situation, we delete the
zero section inT∗M and we consideṙT ∗M := T ∗M\{0}. Thenϕ∗θ = θ ⇔
ϕ∗ω = ω andϕ(ταx) = τϕ(αx) for all τ > 0, αx ∈ T ∗xM i.e. ϕ∗θ = θ ⇔ ϕ is
symplectic and homogeneous of degree one. Consider

Diffsθ(Ṫ
∗M) = {ϕ ∈ Diffs(Ṫ ∗M) ; f∗θ = θ} (55)

the group ofHs contact transformations onṪ ∗M . Note thatṪ ∗M is not compact,
so we cannot apply our previous constructions to establishDiffsθ(Ṫ

∗M) as an ILH
Lie group. Nevertheless we (Ratiu and Schmid [32]) showed the following

Theorem 14. {Diff∞θ (Ṫ ∗M), Diffsθ(Ṫ
∗M) ; s > dimM + 1} is an ILH Lie

group.

Sketch of proof: The main problem is thaṫT ∗M is not compact, so our previous
methods do not apply to the full diffeomorphism groupDiffs(Ṫ ∗M). Therefore,
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the subgroupDiffsθ(Ṫ
∗M) of Diffs(Ṫ ∗M) cannot inherit a submanifold structure

fromDiffs(Ṫ ∗M) as described in Section 4.1.

The main idea is to “make”̇T ∗M compact, that means to pass to the cosphere
bundle ofM and show thatDiffsθ(Ṫ

∗M) is algebraically isomorphic to the group
of contactHs-transformations (quantomorphisms) on the cosphere bundle.

4.3.1. The Cosphere Bundle S(T ∗M)

The multiplicative groupR+ acts smoothly onṪ ∗M by αx �→ ταx, τ ∈ R+,
αx ∈ Ṫ ∗xM . This action is free and proper, hence the orbit spaceS(T∗M) :=
(Ṫ ∗M)/R+ is a smooth manifold, called thecosphere bundle of M . Note that
S(T ∗M) is compact ifM is compact anddimS(T∗M) = 2n− 1. Moreover, the
canonical projectionπ : Ṫ ∗M → S(T ∗M) defines a smooth principal fiber bun-
dle with structure groupR+. There is no canonical contact structure onS(T∗M),
i.e. no one formθ̃ such thatπ∗θ̃ = θ, but one can construct a whole family of
contact structures by use of global sectionsσ : S(T∗M)→ Ṫ ∗M , π ◦ σ = id .
Given such a global sectionσ, defineθσ := σ∗θ. Thenθσ is an exact contact
1-form onS(T∗M), i.e. θσ ∧ (θσ)n−1 is a volume form onS(T∗M). Note that
π∗θσ �= θ butσ is uniquely determined by a functionfσ : Ṫ ∗M → R defined by
σ(π(αx)) = fσ(αx)αx ; i.e. fσ measures the distance from the sectionσ. Then

π∗θσ = fσ · θ. (56)

4.3.2. Contact Transformations on S(T∗M)

Let η ∈ Diffsθ(Ṫ ∗M) andσ : S(T ∗M)→ Ṫ ∗M is a fixed section. Sinceη∗θ = θ,
η is homogeneous degree +1, there is a unique diffeomorphismϕ : S(T∗M) →
S(T ∗M) defined byϕ ◦ π = π ◦ η. Write ϕ = π ◦ 1

fσ
η ◦ σ, indeed forαx ∈

Ṫ ∗M , ϕ(π(αx)) = π

(
1
fσ

η(σ(π(αx))
)
= π

(
1
fσ

η(fσ(ax) · αx
)
= π(η(αx)).

Computeϕ∗θσ = σ∗
1
fσ

η∗π∗θσ = σ∗
1
fσ

η∗(fσ · θ) = σ∗(fσ ◦ η

fσ
) · η∗θ =

σ∗(fσ ◦ η

fσ
) · σ∗θ = (fσ ◦ η

fσ
◦ σ)θσ = hσ · θσ wherehσ := fσ ◦ η

fσ
◦ σ.

This means that the pair(ϕ, hσ) is a contact transformation for θσ i.e. ϕ∗θσ =
hσθσ, wherehσ : S(T ∗M)→ R+.

So, to eachη with η∗θ = θ, there corresponds a unique contact transformation
(ϕ, h) with ϕ∗θσ = hθσ. Vice versa, for a pair(ϕ, h) with ϕ∗θσ = hθσ we define
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η by η = (σ ◦ ϕ ◦ π)/(h ◦ π)fσ. Thenη∗θ = θ and the mapsη �→ (ϕ, h) and
(ϕ, h) �→ η are inverses of each other.

The composition corresponds to the semidirect product in the following way: let
η1 ↔ (ϕ1, h1) andη2 ↔ (ϕ2, h2), thenη1 ◦ η2 ↔ (ϕ1, h1) · (ϕ2, h2) = (ϕ1 ◦
ϕ2, h2 · (h1 ◦ ϕ2)). The above map is a group isomorphism ofDiffsθ(Ṫ

∗M) with
the semidirect productDiffsS(T ∗M) D< Cs(S(T ∗M), Ṙ), where
Cs(S(T ∗M), Ṙ) is regarded as a multiplicative group.

Theorem 15. (Ratiu–Schmid[32])
1) The group of contact transformations

Consσ(S(T
∗M)) :=

{(ϕ, h) ∈ DiffsS(T ∗M) D< Cs(S(T ∗M), Ṙ) ; ϕ∗θσ = hθσ}

is a closed Hs Lie subgroup of the semidirect product
DiffsS(T ∗M) D< Cs(S(T ∗M), Ṙ).
2)Diffsθ(Ṫ

∗M) is isomorphic (as group) to Consσ(S(T ∗M)).

Remarks: 1) Since the cosphere bundleS(T∗M) is compact, one can apply the
standard methods to show thatCons(S(T ∗M)) is a closed submanifold of
DiffsS(T ∗M)D< Cs(S(T ∗M).
2) For two different sectionsσ andτ we have an isomorphismConsσ(S(T

∗M)) �
Consτ (S(T

∗M)), hence the manifold structure onDiffsθ(Ṫ
∗M) is independent of

the choice of the sectionσ.

4.3.3. The Corresponding Lie Algebras

The Lie algebra ofDiffsS(T ∗M)D< Cs(S(T ∗M), Ṙ) is the semidirect product
Xs(S(T ∗M))D< Cs(S(T ∗M),R) with induced bracket

[(X, f), (Y, g)] = ([X,Y ],X(g) − Y (f)). (57)

The Lie algebra ofConsσ(S(T
∗M)) is

consσ(S(T
∗M))={(Y, g)∈Xs(S(T ∗M)) D< Cs(S(T ∗M),R); LY θσ=gθσ}

(58)
the space of infinitesimal contact transformations.

On the other hand, the Lie algebra ofDiffsθ(Ṫ
∗M) is Xsθ(S(T

∗M)) = {Y ∈
Xs(S(T ∗M)) ; LY θ = 0}. NowLY θ = 0⇔ Y is a globally Hamiltonian vector



84 Rudolf Schmid

field, homogeneous of degree0, i.e.Y = YH andH is homogeneous of degree 1.
H is determined uniquely byH = θ(Y ).
Let Cs

hom(Ṫ
∗M) = {H ∈ Cs(T ∗M,R) ; H homogeneous degree 1}.

Cs
hom(Ṫ

∗M) is a Lie algebra with canonical Poisson bracket

{F,H} =
∑ ∂F

∂qi

∂H

∂pi
− ∂H

∂qi

∂F

∂pi

and is isomorphic to the Lie algebraXsθ(Ṫ
∗M) with the commutator bracket

[X,Y ] = XY − Y X.

Theorem 16. (Ratiu–Schmid [32])The groupsDiffsθ(Ṫ
∗M) and Consσ(S(T ∗M))

are isomorphic as ILH-Lie groups with isomorphic ILH-Lie algebras Xsθ(Ṫ
∗M) ∼=

consσ(S(T ∗M)) ∼= Cs
hom(Ṫ

∗M).

Remarks: 1) We will see in the next section that elements ofDiffsθ(Ṫ
∗M) rep-

resent phase functions of Fourier integral operators and elements ofCshom(Ṫ
∗M)

are interpreted as symbols of pseudodifferential operators.
2) These spaces also play a role in quantization.

4.4. Globally Hamiltonian Vector Fields

There is another interesting subgroup of the diffeomorphism groupDiffsω(M)
whose Lie algebra consists of allglobally Hamiltonian vector fields.

Let (M,ω) be a compact symplectic manifold and denote byH∞(M) the space of
globally Hamitonian vector fields onM , i.e.X ∈ H∞(M) iff X = XH with H :
M → R andω(XH , Y ) = dH · Y or equivalentlyiXH

ω = dH. We have the
relation

X{F,H} = [XH ,XF ] (59)

henceH∞(M) is a Lie subalgebra ofX∞(M). The question is: Is there a corre-
sponding Lie group?

We have seen thatDiffsω(M) is an ILH-Lie subgroup ofDiffs(M) with ILH Lie
algebraX∞ω (M) the locally Hamiltonian vector fields. It was shown by Calabi [9]
and Arnold [4] that the commutator algebra[X∞ω (M),X∞ω (M)] = H∞(M) is the
Lie algebra of globally Hamiltonian vector fields.

Recall: If g,h are Lie algebras, then their commutator algebra[g,h] is generated
by [X,Y ] with X ∈ g, Y ∈ h. If G,H are Lie groups, then their commutator
group[G,H] is generated byghg−1h−1 with g ∈ G,h ∈ H.

LetDiff∞ω (M)0 denote the identity component ofDiff∞ω (M).
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Theorem 17. (Ratiu–Schmid [32])The commutator subgroup [Diff∞ω (M)0,
Diff∞ω (M)0] is a simple, closed ILH-Lie subgroup of Diff∞ω (M)0 with ILH Lie
algebra

H∞(M) = [X∞ω (M),X∞ω (M)].

Proof: (for details see Banyaga [5] and Calabi [9]) Consider the map

S : Diffs+1
ω (M)0 → H1(M,R) , S(h) = [A(ht)]

whereht is a symplectic homotopy fromh to idM with the locally Hamiltonian

vector fieldXt =
dht
dt

◦ h−1
t . DefineA(ht) =

∫ 1
0 i(Xt)ωdt which is a closed

Hs+1-one form defining a cocycle inH1(M,R). One shows the following:

• S is a group homomorphism and KerS is perfect. H1(M,R) is abelian,
therefore KerS = [Diff∞ω (M)0,Diff∞ω (M)0].

• S is aC∞ submersion, therefore KerS is a closedHs+1-Lie subgroup of
Diffs+1

ω (M)0.

4.5. The Group of Quantomorphisms

Let (M,θ) be a compact exact contact manifold, i.e.M is smoothdimM =
(2n+1) andθ is a 1-form such thatθ∧(dθ)n is a volume element onM . Consider

Diffsθ(M) = {η ∈ Diffs(M) ; η∗θ = θ} (60)

called thequantomorphism group of M .

The characteristic bundle ofdθ is given byRdθ = {v ∈ TM ; ivdθ = 0}. It
is integrable and one-dimensional. The Reeb vector fieldE of Rdθ is the unique
section of the line bundleRdθ defined byiEθ = 1 and iEdθ = 0. In local
coordinates(x1, . . . , xn, y1, . . . , yn, t), we haveθ =

∑n
i=1 y

idxi + dt andE =
∂

∂t
. Let Rθ = {v ∈ TM ; θ(v) = 0} be the characteristic bundle ofθ. Then

dimRθ = 2n andTM = Rdθ ⊕Rθ, henceXs(M) = Xs(Rdθ)⊕ Xs(Rθ).
The leaves of the foliationF defined by the line bundleRdθ (circle action) are the
integral curves ofE. Then the quotient manifoldN =M/F is a smooth manifold
which carries a symplectic structureω such that the projectionπ : M → N
satisfiesπ∗ω = dθ. So,θ becomes the connection 1-form on this principal circle
bundle whose horizontal subbundle isRθ andω is its curvature 2-form. ThusM
is thequantizing manifold of N whose automorphism groupDiffsθ(M) = {η ∈
Diffs(M) ; η∗θ = θ} is called thequantomorphism group of (M,θ).
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LetKs(N) = {ϕ ∈ Diffsω(N) ; Hϕ◦γ = Hγ = horizontal transport along γ}.
We have the following reformulation of Kostant’s prequantization theorem

Theorem 18. (Kostant [22]) The following sequence of groups is exact

0 −→ S1 J−→ Diffsθ(M) P−→ Ks(N) −→ 0

and the following sequence of Lie algebras is exact

0 −→ R
j−→ Xsθ(M)

p−→ Hs(N) −→ 0.

We showed that this is an exact sequence of ILH-Lie groups with corresponding
ILH-Lie algebras i.e.

Theorem 19. (Ratiu–Schmid [32])The quantomorphism group Diff∞θ (M) is an
ILH principal circle bundle over the ILH-Lie group K∞(N) with ILH Lie algebra
Xsθ(M) = {X ∈ X∞(M) ; LXθ = 0} of infinitesimal quantomorphisms.

4.6. The Group of Gauge Transformations and Quantum Field Theory

The diffeomorphism subgroups that arise in gauge theories as gauge groups be-
have nicely because they are isomorphic to subgroups of loop groups as discussed
in Section 3.5.

Consider a principalG-bundleπ : P → M and the groupG of gauge transfor-
mations

G = {φ ∈ Diff∞(P ) ; φ(p · g) = φ(p) · g, πφ(p) = π(p)}
∼= {τ ∈ C∞(P,G) ; τ(p · g) = g−1τ(p)g} = Gau(P ) (61)

which is a smooth Hilbert Lie group with smooth group operations (see Section
3.5). We only sketch here what role this infinite dimensional gauge groupG plays
in these quantum field theories. A good reference for this topics is P. Deligne et
al. [12]. LetA denote the space of connection 1-forms onP (vector potentials).
EachA ∈ A defines a covariant differentialDA and a curvature 2-form (field

strength)FA = DAA = dA +
1
2
[A,A]. They are locally given byA = Aµdxµ

andF =
1
2
Fµνdxµ ∧ dxν whereFµν = ∂µAν − ∂νAµ + [Aµ, Aν ].

The gauge groupG acts onA via pull-backφ ∈ G, A ∈ A, φ·A = (φ−1)∗A ∈ A,
or under the isomorphism (see Section 3.5)G ∼= Gau(P ), φ ⇔ τ we have
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Gau(P ) acting onA by τ ·A = τAτ−1+ τdτ−1. Hence the covariant derivative
transforms asDτ ·A = τDAτ

−1 and the action on the field isτ · FA := Fτ ·A =
τFAτ

−1. The action functional (Yang–Mills functional) isS(A) = ‖FA‖2, lo-

cally given by‖FA‖2 =
1
2

∫
M trace (FµνFµν). This action is gauge invariant

S(φ · A) = S(A), φ ∈ G, so the Yang–Mills functional is defined on the orbit
spaceM = A/G. The spaceM is in general not a manifold since the action ofG
onA is not free. If we restrict to irreducible connections thenM is a smooth infi-
nite dimensional manifold andA →M is an infinite dimensional principal fiber
bundle with structure groupG. For self-dual connectionsFA = ∗FA (instantons)
on a compact 4-manifold the moduli space

M = {A ∈ A ; A self-dual}/G

is a smooth finite dimensional manifold.

Self-dual connections absolutely minimize the Yang–Mills action integral

YM(A) =
∫

Ω
‖FA‖2, Ω ⊂ M compact.

The Feynman path integral quantizes the action and we get the probability ampli-
tude

W (f) =
∫
A/G

e−S(A)f(A)D(A)

for any gauge invariant functionalf(A).

5. BRST symmetry

In 1976 C. Bechi, A. Rouet and R. Stora [6] (and independently I. Tyutin in 1975)
discovered that in gauge field theories the effective Lagrangian, which is no longer
gauge invariant, is still invariant under a new class of transformations, now called
BRST transformationss, given by

s A = dη + [A, η] , s η = −1
2
[η, η] (62)

whereA is the potential field (connection one form) andη is the ghost field. An
important property of the BRST charges is its nilpotencys2 = 0. We give an in-
terpretation of these BRST transformation in terms of the Lie algebra cohomology
of the Lie group of gauge transformations.
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5.1. Quantum Chromo Dynamics (QCD) and Quantum Electro Dynamics
(QED)

In classical field theory one considers a LagrangianL(φi, ∂µφi) of the fieldsφi :

R
n → R, i = 1, ...k, ∂µ =

∂

∂xµ
and the corresponding action functionalS =∫L(φi, ∂µφi)dnx. The variational principleδS = 0 then leads to the Euler–

Lagrange equations of motion

∂L
∂φi

− ∂µ
∂L

∂(∂µφi)
= 0. (63)

In QED and QCE the Lagrangian is more complicated, of the form
L(A,ψ,ϕ) =

− 1
4g2

trace FµνF
µν−iψ̄[γµ(∂µ+ieAµ)+m]ψ+(Dµ

Aϕ)
†(Dµ

Aϕ)−m2ϕ†ϕ (64)

whereAµ(x) is a potential 1-form (boson) and the field strengthF is given by
Fµν = ∂µAν−∂νAµ+[Aµ, Aν ]. In QED the gauge group of the principal bundle
is G = U(1), and in QCD we haveG = SU(2). The Diracγ -matrices are

γi =
(
0 −σi
σi 0

)
whereσi are the Pauli matrices (canonical basis ofsu(2))

andψ̄ = ψ†γo is the Pauli adjoint withγo =
(
0 1
1 0

)
, m is the electron mass,

e the electron charge andg a coupling constant.

5.1.1. The Equations of Motion

The variational principle of the Lagrangian (64) with respect to the fieldsA,ψ and
ϕ gives the corresponding Euler Lagrange equations of motion. They describe for
instance the motion of an electronψ(x) (fermion, spinor) in an electromagnetic
field F , interacting with a bosonic fieldϕ. We get from the variational principle
δS

δAµ
= 0⇒ ∂µF

µν = eψ̄γνψ, which are Maxwell’s equations forG = U(1).

In the free case i.e., whenψ = 0 we get∂µFµν = 0, the vacuum Maxwell
equations.

ForG = SU(2) these equations becomeDµFµν = 0, the Yang–Mills equations.
δS

δψ
=0⇒ i(�∂A−m)ψ=0, which are Dirac’s equations, where�∂A = γµ(∂µ+
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ieAµ) = γµDµ
A. In the free case i.e. whenA = 0 we geti(� ∂ −m)ψ = 0, the

classical Dirac equation.

5.1.2. Global Formulation

Consider a principalG-bundleπ : P → M , with M a compact, orientable Rie-
mannian manifold (e.g.M = S4, T 4) andG a compact nonabelian gauge group
with Lie algebrag. Let A be the infinite dimensional affine space of connec-
tion 1-forms onP . So eachA ∈ A is a g-valued, equivariant 1-form onP
(also called vector potential) and defines the covariant derivative of any fieldϕ by

DAϕ = dϕ+
1
2
[A,ϕ]. The curvature 2-formFA (or field strength) is ag valued

2-form and is defined asFA = DAA = dA+
1
2
[A,A].

In pure Yang–Mills theory the action functional is given by

S(A) =
1
2
‖FA‖2 =

1
2

∫
M
trace (FµνFµν) (65)

and the Yang–Mills equations become globally

d ∗ FA = 0. (66)

With added fermionic fieldψ interaction the action becomes

S(A,ψ) =
1
2
‖FA‖2+ < �∂Aψ,ψ > (67)

whereψ is a section of the spin bundleSpin±(M) and �∂A : Spin±(M)→
Spin∓(M) is the induced Dirac operator.

5.2. Symmetries

5.2.1. Gauge Invariance

LetG be the group of gauge transformations as introduced in Sections 3.5 and 4.6.
Soφ ∈ G ⇔ φ : P → P is a diffeomorphism overidM , i.e. φ(p · g) = φ(p) · g,
p ∈ P, g ∈ G. ThenG acts onA andSpin±(M) by φ · A = (φ−1)∗A, and
φ · ψ = (φ−1)∗ψ. The action functionalsS are gauge invariant:

Yang-Mills: S(φ ·A) = S(A), A ∈ A, φ ∈ G. (68)

QED : S(φ ·A,φ · ψ) = S(A,ψ), A ∈ A, ψ ∈ Spin±(M), φ ∈ G (69)
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5.2.2. Chiral Symmetry

The chiral symmetry is the symmetry that leads to anomalies and the BRST in-
variance. In QCD the chiral symmetry of the Fermi fieldψ is given by

ψ �→ eiβγ5ψ (70)

whereβ is a constant andγ5 = iγoγ1γ2γ3. The classical Noether current of this
symmetry is given by

Jµ = ψ̄γµγ5ψ (71)

which is conserved, i.e.∂µJµ = 0.
This conservation law breaks down after quantization and one gets

∂µJµ = 2im ψ̄γ5ψ − g2

8π2
traceFµνFµν ≡ ω �= 0 (72)

This valueω is called thechiral anomaly.

5.3. Quanization

The quantization is given by the Feynman path integral:∫
A/G

∫
×Spin

eiS(A,ψ)F(A,ψ)DADψ = 〈F(A,ψ)〉 (73)

which computes the expectation value〈F(A,ψ)〉 of the functionF(A,ψ). This in
an integral over two infinite dimensional spaces, the gauge orbit spaceA/G and
the fermionic Berezin integral over the spin-spaceSpin±(M). These integrals
are mathematically not defined but physicist compute them by gauge fixing, i.e.
fixing a sectionσ : A/G −→ A, (e.g.σ(A) = ∂µA

µ = 0, the Lorentz gauge) and
then integrate over the sectionσ. Such a section does not exist globally, but only
locally (Gribov ambiguity!). The effect of such a gauge fixing is that one gets extra
terms in the Lagrangian (gauge fixing terms) and one has to introduce new fields,
so called ghost fieldsη via the Faddeev–Popov procedure. The such obtained
effective Lagrangian is no longer gauge invariant. Thiseffective Lagrangian has
the form in QCD:

Leff (A,ψ, η) =
1
2
trace (FµνFµν) kinetic energy

+
1
2α
trace (∂µAµ)2 gauge fixing term

−g∂µη̄D
µ
Aη ghost term

+. . . . . . interaction terms

(74)
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We can write this globally as

Leff =
1
2
‖FA‖2 +

1
2
‖σ(A)‖2 + η̄Mη + ... (75)

whereM =
δ

δφ
(σ(φ ·A)) is the Faddeev–Popov determinant, acting like the

Jacobian of the global gauge variation
δ

δφ
over the sectionσ. Writing this term in

the exponent of the action functional like a “fermionic Gaussian integral” leads to
the Faddeev–Popov ghost fieldsη, η̄ in the formdetM =

∫
e−η̄Mηdη̄dη.

The effective LagrangianLeff is NOT gauge invariant but has a new symmetry,
called BRST symmetry.

5.4. BRST Symmetries

Named after Becchi, Rouet and Stora [6] and Tyutin [41] who discovered this
invariance in 1975 and 1976 the BRST operators is given as follows

sA = dη + [A, η]

sη = − 1
2
[η, η]

}
Leff is BRST invariant. (76)

Note that the BRST operators mixes bosons and fermions and it is nilpotent i.e.
s2 = 0. The question arises whether this operators is the coboundary operator
of some kind of cohomology. The affirmative answer is given by the following
theorem:

Theorem 20. (Schmid [36] and [38])Let Cq,p(lie G,Ωloc ) be the Chevalley–
Eilenberg complex of the Lie algebra lie G of infinitesimal gauge transforma-
tions, with respect to the induced adjoint representation on local forms Ωloc , with
boundary operator

δloc : Cq,p(lie G,Ωloc ) −→ Cq+1,p(lie G,Ωloc ), δ2
loc = 0.

Then with s :=
(−1)p+1

q + 1
δloc we have s2 = 0 and the following:

1) for q = 0, p = 1, A ∈ A ⊂ C0,1, then sA = dη + [A, η]

2) for q = 1, p = 0, η ∈ C1,0, then sη = − 1
2
[η, η] the Maurer Cartan form

3) the chiral anomaly ω (given by equ. (72)) is represented as cohomology class
of this complex [ω] ∈ H1,0

BRST (lie G,Ωloc ).
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5.4.1. The Chevalley–Eilenberg Cohomology

We are now going to explain the previous theorem, in particular the general defini-
tion of the Chevalley–Eilenberg [11] complex and the corresponding cohomology.

Let G be a Lie group with Lie algebrag and letσ be a representation ofg on the
vector spaceW . Denote byCq(g,W) the space ofW -valuedq-cochains ong
and define the coboundary operatorδ : Cq(g,W) −→ Cq+1(g,W) by

δΦ(ξo, · · · , ξq) =
q∑
i=0

(−1)iσ(ξi)Φ(ξo, · · · , ξ̂i, · · · , ξq)

+
∑
i<j

(−1)i+jΦ(σ(ξi)ξj, · · · , ξ̂i, · · · , ξ̂j , · · · , ξq) (77)

We haveδ2 = 0 and define the Lie algebra cohomology ofg with respect to
(σ,W ) asH∗(g,W) = ker(δ)/im(δ). This is called the Chevalley–Eilenberg
cohomology [11] of the Lie algebrag with respect to the representationσ.

5.4.2. Local Differential Forms

Local formsΩloc are defined as follows in terms of the jet bundleJ∞(π) of the
associated vector bundleπ. Consider the space of exterior forms onM × Γ∞,
i.e.Ω(M × Γ∞(π)) = ⊗

p,q Ω
p,q(M × Γ∞(π)) which has a bigradation induced

from the productM × Γ∞(π). A form α ∈ Ωp,q(M × Γ∞(π)) is calledlocal iff
for any sections ∈ Γ∞(π), and vector fieldsX1 · · ·Xq on J∞(π), the induced
p-form α(s,X1 · · ·Xq) onM , defined by

α(s,X1 · · ·Xq)(x) ≡ (iX1(s) · · · iXq(s)α)(x, s) (78)

depends ons,X1(s), · · · ,Xq(s) in a local fashion, i.e.α(s,X1 · · ·Xq)(x) de-
pends only on finite jets (i.e. finite derivatives) ofs,X1(s), · · · ,Xq(s) at x. In
local coordinates a local formα looks like:

α =
∑
i,j

αi1···ipj1···jqdxi1 ∧ · · · ∧ dxip ∧ ∂uj1 ∧ · · · ∧ ∂ujq (79)

where theαi1···ipj1···jq are local(0, 0) forms, thedxi ′s are local(1, 0) forms and
the∂uj ′s are local(0, 1) forms.
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5.4.3. Special Case: The BRST-Cohomology

In our case for the BRST symmetry we have the following special case of the
Chevalley–Eilenberg construction: The Lie group isG = G the infinite dimen-
sional Lie group of gauge transformations and the Lie algebra isg = lie G
the infinite dimensional Lie algebra of infinitesimal gauge transformations and
W =

⊕
pΩ

p
loc (P,g) the space of Lie algebra valued ad-equivariantlocal p-forms

on P with σ the representation ofg on W induced by the adjoint representa-
tion. We have the double complexCq,p ≡ Cq(lie G,Ωploc (P,g)) with cobound-
ary operatorδloc = δ + d. The induced cohomology is theBRST-cohomology
H∗BRST (lie G,Ωloc ).

5.4.4. “Proof” of the Theorem

We sketch the proof of the above theorem:

1) Forq = 0, p = 1 we have the following identifications:

Cq,p = C0(lie G, Ω1(P,g)) ∼= Ω1(P,g) Lie algebra valued 1-forms andA ⊂
Ω1(P,g). Thens = δ and forA ∈ A,X ∈ lie G we get:

s(A)(X) = δA(X) = σ(X) · A = ad (X) ·A = DAX = dX +
1
2
[A,X].

Also dη(X) = d(η(X)) = dX, and [X, η](A) = [A, η(X)] = [A,X] hence

sA(X) = (dη)(X) +
1
2
[A, η](X).

2) Forq = 1, p = 0 we have the following identifications:

Cq,p = C1(lie G,Ω0(P,g)) = Hom (lie G, lie G). For η = id : lie G → lie G ;

η(X) : P → g. Thens = −1
2
δ and forX0,X1 ∈ lie G we get:

sη(X0,X1) =− 1
2
(ad (X0)η(X1)−ad (X1)η(X0))−η[X0,X1]

=− 1
2
(LX0X1 − LX1X0 − [X0,X1])

=− 1
2
[X0,X1] = −1

2
[η(X0), η(X1)] = −1

2
[η, η](X0,X1).
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5.5. Anomalies

The Noether current induced by the chiral symmetry (after quantization) for the
free case (ψ = 0) i.e. for pure Yang–Mills becomes

∂µJµ = − g2

8π2
εµνρτ traceFµνFρτ

= −1
4
π2εµνρτ trace ∂µ(Aν∂ρAτ +

2
3
AµAρAτ )

= ω �= 0 anomaly, see(72).

(80)

Note the similarity with the Chern–Simon Lagrangian

L(A) =
∫
M
trace (AdA+

2
3
A3). (81)

We are going to derive a representation of the chiral anomalyω in the BRST
cohomology, i.e.[ω] ∈ H1,0

BRST (lie G,Ωloc ).
The question is, ifsω = 0, does there exist alocal functionalF (A), such that
ω = s(F (A)) i.e., isω BRST s-exact ? The answer in general is NO, i.e.ω
represents a nontrivial cohomology class. This class is given by the Chern–Weil
homotopy.

5.5.1. The Chern–Weil Homotopy

Let Ã = A + η ∈ C0,1 × C1,0 and F̃ ≡ sÃ + Ã2 = FÃ. For t ∈ [0, 1] let
F̃t = tF̃ + (t2 − t)Ã2 and define the Chern–Simons form

ω2q−1 ≡ q

∫ 1

0
trace (ÃF̃ q−1

t ) dt (82)

we get
sω2q−1 = trace F̃ q. (83)

We write ω2q−1 as sum of homogeneous terms in ghost number (upper index)
and degree (lower index)ω2q−1 = ω0

2q−1 + ω1
2q−2 + ω2

2q−3 + · · · + ω2q−1
0 . Let

ω(X,A) =
∫
M ω1

2q−2(X).

Theorem 21. (Schmid [38])The form ω(X,A) =
∫
M

∫ 1
0 ÃF̃ q−1

t (X)dt satisfies
the Wess–Zumino consistency condition (sω)(X0,X1, A) = 0 and represents the
chiral anomaly [ω] ∈ H1,0

BRST (lie G,Ωloc ).
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We have an explicit form of the anomaly in(2q − 2) dimensions:

ω1
2q−2 = q(q − 1)

∫ 1

0
(1− t)trace (ηδloc (ÃF̃ q−2

t )) dt. (84)

So forq = 2 the non-Abelian anomaly in 2-dim. becomesω1
2 = trace (ηδloc Ã),

and forq = 3 the non-Abelian anomaly in 4-dim. becomes

ω1
4 = trace

(
ηδloc (Ãδloc Ã+

1
2
Ã3)

)
. (85)

5.6. The Wess–Zumino Consistency Condition

This is a problem in local cohomology. We consider the bicomplexC∗loc =
{Cq,p,∆}q,p∈N with total differential∆=δloc+(−1)pdwhereδloc :Cq,p(lieG,Ωloc)
−→ Cq+1,p(lie G,Ωloc ) andd : Cq,p(lie G,Ωloc ) −→ Cq,p+1(lie G,Ωloc ). We
have∆2 = δloc d + dδloc = δ2

loc = d
2 = 0.

The Wess-Zumino consistency condition forω ∈ C∗loc means that there exists an
α ∈ C∗loc such that

δlocω + dα = 0 . (WZ)

Any solution of (WZ) of the formω = δloc β + dγ, β, γ ∈ C∗loc is trivial,
i.e. δlocω = 0. The consistency condition (WZ) produces the so called descent
equations. Ifδloc ω + dα = 0 taking δloc of (WZ) we getδloc

2ω + δloc dα = 0
henceδloc dα = 0. The Poincare lemma implies there exists a local formβ such
that δlocα + dβ = 0. By definition δloc [ω] = [α]. If ω is trivial, i.e. ω =
δloc β + dγ thenδloc dγ = −dα, henceα = δloc γ + dλ, i.e. [α] = 0.
We get the descent equations

δlocω + dω1 = 0
δloc ω1 + dω2 = 0

.

.

.
δlocωk−1 + dωk = 0

(86)

wherek is the smallest integer such that[ω] ∈ Hkloc (lie G) with δlocω = 0.

5.6.1. g-Symplectic Structures

Definition 22. A g-symplectic structure on P is a g-form Ω ∈ Ω2(P,g) which
is closed and nondegenerate, i.e. dΩ = 0 and for each p ∈ P the map Ω(p) :
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TpP × TpP → g is bilinear and nondegenerate. We have the induced linear
injective map Ω(p)# : TpP → L(TpP,g) ; Ω(p)#(v) · w = Ω(p)(v,w).
A vector field X on P is called g-Hamiltonian if there exists a g-function f :
P → g such that df = iXΩ.

A g-vector field X is locally g-Hamiltonian iff its flow ϕt is g-symplectic, i.e.
ϕ∗tΩ = Ω. We have the

Lemma 23. Poincare lemma: For any α ∈ Ωp(Rn,g) with dα = 0 there exists
locally a β ∈ Ωp−1(Rn,g) such that α = dβ and

β(x) =
∫ 1

0
ixα(tx)dt.

Theorem 24. (Schmid [39]) If G is semi simple, then every G-orbit Op of the
right action of G on P is a g-symplectic manifold induced by the Maurer Cartan
form on G.

5.6.2. The Canonical Momentum Map on Op

Proposition 25. (Schmid [39])For every ξ ∈ g the fundamental vector field ξP
on Op defined by

ξP (q) =
d
dt |t=0

Rexp tξ(q)

is locally g-Hamiltonian.

Corollary 26. For every ξ ∈ g there exists a g-function H : Op → g such that
ξP = XH , i.e. dH = iξPΩp. Explicitly

H(x) = −1
2
[x, x · ξ].

Proposition 27. (Schmid[39]) The g-momentum map J : Op → L(g,g) of the
right action of G on Op defined by 〈J(q), ξ〉 = H(q), q ∈ Op, ξ ∈ g is given by

J(q) = ad η ◦ TRq

where η = R∗pXt(g), q = p · g.
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5.6.3. A Solution of Consistency Condition

The infinite dimensional analogue of the previous construction leads to the follow-
ing: Consider a principalG bundle(P, π,M), whereP = Ω∗(P,g) with the ad-
joint G action andM = P/G. ForA ∈ Ω∗(P,g) the canonical 1-formΘA on the
orbitOA induced from the Maurer–Cartan form onG becomes a mapΘA : OA →
Ω1(P,g) � C0,1

loc and the momentum mapJ : OA → L(lie G, lie G) = C1,0
loc .

Theorem 28. (Schmid [39])The momentum map J satisfies the consistency con-
dition for the canonical 1-form (Maurer–Cartan) ΘA of G

δlocΘA + dJ = 0.

6. Lie groups of pseudodifferential and Fourier integral operators

Pseudodifferential operators and Fourier integral operators are used in physics to
construct solutions of partial differential equations, e.g. the fundamental solu-
tion of the heat equation is a pseudodifferential operator. They are also used to
prove local formulas for index theorems. Geometric properties are used to de-
scribe Fourier integral operators as a symmetry group for the KdV equation as
Hamiltonian system. These will be discussed in Section 8. These operators have
very nice geometric properties which we will discuss here.

Fourier integral operators (FIO for short) generalize pseudodifferential opera-
tors (ΨDO for short) which themselves generalize differential operators (DO for
short). So as sets we have the inclusions

FIO ⊃ ΨDO ⊃ DO.

6.1. Pseudodifferential Operators ΨDO

Consider a differential operatorP onΩ ⊂ R
n of orderm with smooth coefficients

aα
Pu(x) =

∑
|α|≤m

aα(x)Dα
xu(x) , u ∈ C∞(Ω). (87)

We associate to the operatorP the polynomial

p(x, ξ)
∑
|α|≤m

aα(x)ξα (88)
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called thesymbol of P . Using the Fourier transform̂u(ξ) of u(x) we have
D̂α
xu(ξ) = ξαû(ξ) andDα

xu(x) = (2π)
−n ∫

eix·ξξαû(ξ) dξ so we can write

Pu(x) = (2π)−n
∫
eix·ξ p(x, ξ)û(ξ) dξ

= (2π)−n
∫∫

ei(x−y)·ξ p(x, ξ)u(y) dydξ. (89)

A pseudodifferential operator P is of the form (89) but with symbolp(x, ξ) of
a more general class then polynomials. A smooth functionp(x, ξ) on Ω × R

n

belongs to the symbol classSmρ,δ(Ω), 0 ≤ δ < ρ < 1 if for any compactK ⊂ Ω,
anyα, β there exists a const.Cαβ(K) > 0 such that for allx ∈ K, ξ ∈ R

n

|Dβ
xD

α
ξ p(x, ξ)| ≤ Cα,β(K)(1 + |ξ|)m−ρ|α|+δ|β|. (90)

We restrict ourselves toclassical symbols, i.e. those who have an asymptotic
expansion of the form

p(x, ξ) ∼
∞∑
j=0

pm−j(x, ξ) , m = order of p (91)

where eachpm−j(x, ξ) ∈ C∞(Ω× Ṙ
n) is homogeneous of degreem− j in ξ, i.e.

pm−j(x, τξ) = τm−jpm−j(x, ξ), τ > 0. ThenP is aclassical pseudodifferential
operator of orderm if P is of the form

Pu(x) = (2π)−n
∫∫

ei(x−y)·ξ p(x, ξ)u(y) dydξ (92)

with p(x, ξ) a classical symbol of the form (91). Theprincipal symbol of P is
the leading termpm(x, ξ).
Denote byΨDOm the space of classical pseudodifferential operators of orderm
and letΨDO =

⋃
mΨDOm be the space of all pseudodifferential operators of

all order. ΨDO is an infinite dimensional graded Lie algebra with commutator
bracket satisfying the following: ifP ∈ ΨDOm andQ ∈ ΨDOn then [P,Q] =
PQ − QP ∈ ΨDOm+n−1. Note thatΨDO1 the space of pseudodifferential
operators of order1 is an infinite dimensional Lie subalgebra ofΨDO.

It is a natural question to ask whether there exist corresponding Lie groups having
ΨDO1 andΨDO as their Lie algebras respectively? The answer isYES! The
Lie group that hasΨDO1 as its Lie algebra is the group of invertible Fourier
integral operators of order zero, denoted by(FIO0)∗ and the group forΨDO is
the group of all invertible Fourier integral operators, denoted byFIO∗. We shall
now discuss these Lie group structures following Adams, Ratiu and Schmid [1–3].
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6.2. Fourier Integral Operators F IO

Fourier integral operators generalize pseudodifferential operators by allowing mo-
re general phase functionsϕ(x, y, ξ) then the one we have for pseudodifferential
operators in (92)ϕ(x, y, ξ) = i(x−y) ·ξ. These are given by generating functions
of canonical transformations.

6.2.1. Generating Functions for Canonical Transformations:

LetS : Ω×R
n → R be a smooth function in a neighborhood of(x0, ξ0) ∈ Ω×R

n

such that
∂2S(x, ξ)
∂x∂ξ

�= 0. ThenΦ(y, ξ) = (x, η) whereη =
∂S(x, ξ)

∂x
, y =

∂S(x, ξ)
∂ξ

defines a local canonical transformation

Φ : (y0, ξ0) ∈ Ṫ ∗Rn → (x0, η0) ∈ Ṫ ∗Ω , Φ∗ω = ω (93)

whereω =
∑n
i=1 dpi ∧ dqi is the canonical symplectic form onT∗Rn. The

functionS is called thegenerating function of Φ. Vice versa, every canonical
transformationΦ has a locally generating functionS. Note thatS is homogeneous
of degree one inξ if and only ifΦ is homogeneous inξ.

Example: Let S(x, ξ) = x · ξ. Thenη =
∂S

∂x
= ξ, y =

∂S

∂ξ
= x henceΦ = id .

6.2.2. Fourier Integral Operators

Let S(x, ξ) be a generating function anda(x, ξ) a classical symbol orderm. De-
fine a classicalFourier integral operator A of orderm by

Au(x) :=
∫
eiS(x,ξ)a(x, ξ)û(ξ) dξ

=(2π)−n
∫∫

ei(S(x,ξ)−y·ξ)a(x, ξ)u(y) dydξ. (94)

More generally, a Fourier integral operatorA of orderm is defined by

Au(x) = (2π)−n
∫∫

eiϕ(x,y,ξ)a(x, ξ)u(y) dydξ (95)

whereϕ(x, y, ξ) is nondegeneratephase function (homogeneous +1) and the sym-
bol a(x, ξ) ∈ Smρ,δ.



100 Rudolf Schmid

Notice if S(x, ξ) = x · ξ or generalϕ(x, y, ξ) = (x− y) · ξ then the operatorA is
a pseudodifferential operator defined by (92) and we haveFIO ⊃ ΨDO ⊃ DO.

These Fourier integral operators are singular operators but make sense as oscilla-
tory integrals and they have nice properties in the following sense:

Property 1) Fourier integral operators are invariant under diffeomorphisms. So
they can be defined on manifoldsM as bounded linear operatorsA : C∞(M)→
C∞(M), (M compact!) such thatA is locally of the form (95); moreover, they
extend continuously to distributionsA : E′(M) → D′(M). Any P ∈ ΨDOm
extends as bounded linear operatorP : Hs

c (M)→ Hs−m
c (M).

Property 2) Pseudodifferential operators have properties which are close to dif-
ferential operators (DO):

P ∈ DO ⇔ P is local, i.e.supp Pu ⊂ supp u.

P ∈ ΨDO ⇒ P is pseudolocal, i.e.sing supp Pu ⊂ sing supp u.

Property 3) Pseudodifferential operators preserves the wave front setsWF i.e.
WF (Pu) ⊂WF (u) whereWF (u) ⊂ Ṫ ∗M, τ∗MWF (u) = sing supp u.

Fourier integral operators generalize pseudodifferential operators in the sense that
they move the wave front setsWF by a canonical relationΛ, i.e. ifA ∈ FIO then
WF (Au) ⊂ Λ ◦WF (u) where the canonical relationΛ ⊂ Ṫ ∗M × Ṫ ∗M is a
conic Lagrangian submanifold, locally generated by the phase functionϕ(x, y, ξ),
i.e.

Λ = {(x, y,d(x,y)ϕ(x, y, ξ)) ; dξϕ = 0}. (96)

Remarks:

a) If Λ = ∆ = ((x, ξ), (x, ξ)) the diagonal thenA ∈ ΨDO.
b) AnyA ∈ FIO is determined by its symbola(x, ξ) and canonical relationΛ.
c) The principal symbol is globally definedam(x, ξ) : Ṫ ∗M → R.

Property 4) Fourier integral operators are closed under multiplication: Assume
Φ : Ṫ ∗M → Ṫ ∗M is a globally defined canonical transformation, i.e.Φ∗ω = ω,
which is locally generated byS(x, ξ). Denote byFIOm(Φ) the space of Fourier
integral operators of orderm associated to the canonical relationΛ = graph(Φ).
If A1 ∈ FIOm1(Φ1) and A2 ∈ FIOm2(Φ2) thenA1 ◦ A2 ∈ FIOm1+m2(Φ1 ◦
Φ2). If A ∈ FIOm(Φ) andA−1 ∈ FIO exists, thenA−1 ∈ FIOm(Φ−1) . Note
that if Φ = id : Ṫ ∗M → Ṫ ∗M thenFIOm(id ) = ΨDOm, i.e. Fourier integral
operators associated with the identity are pseudodifferential operators.

Example: Let f :M → M be a diffeomorphism. Then

f∗u(x) = (2π)−n
∫∫

ei(f(x)−y)·ξu(y)dy dξ
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defines aFIO A = f∗ : C∞(M) → C∞(M) whose phase function generates
the canonical cotangent liftT∗f : Ṫ ∗M → Ṫ ∗M .

Notation: Denote byFIO∗, ΨDO∗, (FIOm)∗, (ΨDOm)∗ the invertible ele-
ments in the corresponding spaces, andDiff∞θ (Ṫ ∗(M) the group ofθ preserving
diffeomorphisms onṪ ∗(M) whereθ =

∑
pidqi is the canonical 1-form. Note

that FIO∗, ΨDO∗, (FIO0)∗, (ΨDO0)∗ are groups under operator multiplica-
tion.

6.2.3. Exact Sequence

Let S(x, ξ) be the generating function ofΦ . SinceS is homogeneous of degree
+1 in ξ , this implies thatΦ homogeneous of degree+1 in ξ. Together with
Φ∗ω = ω we getΦ∗θ = θ henceΦ ∈ Diffsθ(Ṫ ∗M). So we get a surjective map

p : FIO∗ → Diffsθ(Ṫ
∗M) , p(A) = Φ

where graph(Φ) = Λ the canonical relation ofA. The kernel ofp is p−1(e) =
ΨDO∗ , e = id Ṫ ∗M . BothΨDO∗ andFIO∗ are groups under operator multi-
plication, graded by the order (which is additive) andp is a group homomorphism
p(A ◦B) = p(A)◦p(B). So we get an exact sequence of groups (j the inclusion)

I −→ ΨDO∗
j
↪→ FIO∗

p−→ Diffsθ(Ṫ
∗M) −→ e. (97)

We want to make this into an exact sequence ofLIE GROUPS.

Notice that the zero order operators(ΨDO0)∗ and(FIO0)∗ are groups and form
exact sequence

I −→ (ΨDO0)∗
j
↪→ (FIO0)∗

p−→ Diffsθ(Ṫ
∗M) −→ e. (98)

First we are going to give ILH-Lie group structures to this sequence (98) of zero
order operators, then we’ll move these structures by a fixed elliptic operatorT to
any orderm, e.g.T = (1 +∆)m/2 : FIO0 → FIOm.

For the parameter spaces we look at the corresponding Lie algebras of

I −→ (ΨDO0)∗
j
↪→ (FIO0)∗

p−→ Diffsθ(Ṫ
∗M) −→ e. (99)

The Lie algebras are

0 −→ ΨDO0
j
↪→ ΨDO1

π−→ C∞+1(Ṫ
∗M) −→ 0 (100)
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whereπ(P ) is the principal symbol (homog.+1) of P ∈ ΨDO1. The space of
homogeneous functionsC∞+1(Ṫ

∗M) is isomorphic to the space of globally Hamil-
tonian vector fieldsC∞+1(Ṫ

∗M) ∼= X∞θ (Ṫ
∗M) = {X ; LXθ = 0}, as discussed

in Section 4.4.

Remark: ClearlyFIO �= exp(ΨDO) sinceDiffsθ(Ṫ
∗M) �= exp(Xsθ(Ṫ ∗M), i.e.

we cannot obtain a chart at the identity inFIO∗ by exponentiating the Lie algebra
ΨDO.

The idea to construct a manifold and a Lie group structure onFIO∗ is to construct
an infinite dimensional principal fiber bundle with

• base space =Diffsθ(Ṫ
∗M)

• total space =(FIO0)∗
• fiber =p−1(Φ) = (FIO0(Φ))∗ ∼= (ΨDO0)∗
• structure group =(ΨDO0)∗.

We outline this construction in 7 steps (for details see Adams, Ratiu and Schmid
[1–3]:

Step 1: We show thatDiff∞θ = lim← Diffsθ(Ṫ
∗M) is an ILH-Lie group.

Step 2: We show that(ΨDO0)∗ = lim← (ΨDOs
0)∗ is an ILH-Lie group.

Step 3: We piece 1 & 2 together via a local sectionσ : U ⊂ Diffsθ(Ṫ
∗M) →

(FIO0)∗. Then(FIO0)∗ is locally of the formσ(U) � U × (ΨDO0)∗. This
gives a chart at the identityI ∈ (FIO0)∗.
Step 4: We move this chart around by the group the structure ofDiffsθ(Ṫ

∗M)
⇒ (FIO0)∗ is a topological group.
Step 5: We check that the chart transitions are smooth⇒ (FIO0)∗ is a smooth
manifold.
Step 6: We check that multiplication is “smooth”⇒ (FIO0)∗ is an ILH-Lie
group.
Step 7: We identify(1−∆)m/2 : (FIO0)∗

∼→ (FIOm)∗⇒ FIO∗ is an ILH-Lie
group.

Let us go through some more details.

6.2.4. Step 1: Diffs
θ(Ṫ

∗M) as ILH Lie Group

In Section 4.3 we proved the following Theorem 16:

Theorem 29. Diff∞θ = lim∞←sDiff
s
θ(Ṫ
∗M) is an ILH Lie group where

Diffsθ(Ṫ
∗M) is isomorphic to the semidirect product

Diffsθ(ST
∗M) = {(ϕ, h) ∈ Diffs(ST ∗M) D< Cs(ST ∗M) ; ϕ∗θS = hθS}
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with ILH Lie algebra Xsθ(S(T
∗M)) = {Y ∈ Xs(S(T ∗M)) ; LY θ = 0} isomor-

phic to Cs+1(Ṫ
∗M) = {H ∈ Cs(T ∗M,R) ; H homogeneous of degree one}.

6.2.5. Step 2: (ΨDO0)∗ as ILH Lie Group

We define anHs norm onΨDO0 and complete this space toΨDOs0 which is
a Hilbert algebra, hence(ΨDOs0)∗ is a Hilbert Lie group. The topology is de-
termined by the symbols of pseudodifferential operators. If we want to define
seminorms onΨDO0 directly we would end up with a Frechet space because
eachP ∈ ΨDO0 has a symbol of the formp(x, ξ) =

∑−∞
j=0 pj(x, ξ), so we

would have to control an infinite number of functions and their derivatives, and
an infinite product of Hilbert spaces is no longer a Hilbert space. So what we
do is we cut the symbol at the termp−k for some fixedk < ∞. In terms of the
operators, we look at the quotient spacesΨDOm,k := ΨDOm/ΨDO−k−1 and
similarly FIOm,k(Φ) := FIOm(Φ)/FIO−k−1(Φ), FIOm,k = ∪ΦFIOm,k(Φ),
whereFIOm(Φ) = {A ∈ FIOm ; p(A) = Φ}.
Composition is still well defined inΨDO0,k and FIO0,k and we denote by
(ΨDO0,k)∗ and (FIO0,k)∗ the groups of invertible elements inΨDO0,k and
FIO0,k respectively. We still have the exact sequence of groups:

I → (ΨDO0,k)∗
j
↪→ (FIO0,k)∗

p→ Diffsθ(Ṫ
∗M)→ id . (101)

ForP ∈ ΨDOm,k with symbolp(x, ξ) = pm(x, ξ) + · · · + p−k(x, ξ) we define
the norm by

‖P‖2
m+k,s = ‖p̃m‖2

s+k+m + ‖p̃m−1‖2
s+k+m−1 + · · ·+ ‖p̃k‖2

s (102)

where p̃m−j is the restriction ofpm−j to the cosphere bundleS(T∗M) and
‖p̃m−j‖2

s+k+m−j is theHs+k+m−j-Sobolev norm onS(T∗M). LetΨDOs
m,k de-

note the completion ofΨDOm,k with respect to this norm and form = 0 denote
by (ΨDOs

0,k)∗ the group of invertible elements inΨDOs0,k.

Theorem 30. (Adams–Ratiu–Schmid [2])For each s > n the group (ΨDOs0,k)∗
is a Hilbert Lie group with Lie algebra ΨDOs0,k. That means (ΨDOs0,k)∗ is a
smooth (C∞) Hilbert manifold with smooth group operations. Moreover the in-
verse limit (ΨDO0,k)∗ = lim∞←s(ΨDOs

0,k)∗ is an ILH Lie group.

At the end of the day we will take the limitk →∞!
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6.2.6. Step 3: The Local Section:

We piece togetherDiffsθ(Ṫ
∗M) andΨDOs

0 by a local section

σ : U ⊂ Diffsθ(Ṫ ∗M)→ (FIO0)∗ (103)

whereU is a neighborhood ofid ∈ Diffsθ(Ṫ
∗M). This gives(FIO0)∗ a local

product structure
σ(U) ∼= U × (ΨDO0)∗

defined byA �→ (p(A), A ◦ σ(p(A))−1), and inverse(ϕ,P ) �→ P · σ(ϕ). Hence
we get a chart at the identityI ∈ (FIO0)∗.
Problem: Fourier integral operators are only locally defined but we need aglobal
writing of Fourier integral operators, i.e. a global phase function for Fourier inte-
gral operators close toI. This is done by constructing an explicit chart aboutid
of Diffsθ(Ṫ

∗M) in the following manner.

Theorem 31. (Adams–Ratiu–Schmid [2])
A) Let H ∈ Cs+1

+1 (Ṫ
∗M) close to zero and define ϕH : Ṫ ∗M ×M → R

ϕH(αx, y) := αx · (exp−1
x (y)) +H(αx) (104)

where exp is defined by a Riemannian metric on M . Then there exists an Φ ∈
Diffsθ(Ṫ

∗M) close to id such that ϕH is a globalphase function for graph(Φ).
B) The map H ↔ Φ is a bijection from a neighborhood V(0) ⊂ Cs+1

+1 (Ṫ
∗M)

onto a neighborhood U(e) ⊂ Diffsθ(Ṫ ∗M).
For the inverse let Φ ∈ Diffsθ(Ṫ

∗M) be close to e (τ∗ : T ∗M → M is the
projection) and define H : Ṫ ∗M → R by

H(αx) = −αx · exp−1
x (τ∗Φ−1(αx)). (105)

Then ϕH defined by ( 104) is a global phase function for graph(Φ).

Now we define a local sectionσ of the sequence (98)

σ : U ⊂ Diffsθ(Ṫ ∗M)→ (FIO0)∗ (106)

as follows: letΦ ∈ U ⊂ Diffsθ(Ṫ ∗M) (close toid ) and defineσ(Φ) by

σ(Φ)u(x) := (2π)−n
∫

T ∗xM

∫
Bδ(x)

χ(x, y)eiϕH (αx,y)u(y)|det expx |dydξ (107)
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whereBδ(x) is the open neighborhood ofx, whereexpx is a local diffeomor-
phism, andχ(x, y) is a bump function.

Then σ(Φ) is a Fourier integral operator with smooth phase functionϕH , the
global generating function of graph(Φ) and amplitudea = 1. Notice thatH
is smooth ifΦ is smooth, in which caseσ(Φ) is a well defined Fourier integral
operator of order zero. Moreover,σ(Φ) is invertible modulo smoothing operators
sinceΦ is invertible and its principal symbol isa = 1, henceσ(Φ) ∈ (FIO0)∗.
In particularσ(Φ) ∈ (FIO0,k)∗ for anyk. Furthermore,p(σ(Φ)) = Φ for any
Φ ∈ U , henceσ is a local section of the exact sequences (98) and (101). We use
this local sectionσ to give(FIO0)∗ the local product structure

p−1(U) � U × (ΨDO0)∗ (108)

Now we define the topology around the identity in(FIO0,k)∗ by the bijection

β : p−1(U2t) → U2t × (ΨDO
2(t−k)
0,k )∗ : β(A) = (p(A), A ◦ σ(p(A))−1) and

β−1(Φ, P ) = P ◦σ(Φ), whereU2t = U ∩Diff2t
θ . This defines a local chart at the

identity I ∈ (FIO0,k)∗.

6.2.7. Step 4: (F IO0)∗ as Topological Group

We move this chart (constructed in step 3) around by the group structure of
Diffsθ(Ṫ

∗M). Compatibility conditions for the group structure and the topology
give conditions onσ to make(FIO0)∗ a topological group.

To define the topology on(FIO0,k)∗ we move the open setp−1(U2t) by right
translations (smooth!). We complete this topological space in the right-uniform
structure and denote it by(FIOt0,k)∗. For eacht > n/2 we obtain(FIOt0,k)∗ as a
topological group and(FIO0,k)∗ =

⋂
t(FIOt

0,k)∗ with the inverse limit topology
is a topological group as well.

To prove this, we have to show that the map(A,B) �→ AB−1 is continuous for
anyA,B ∈ (FIOt

0,k)∗. This amounts to show that the following map in local
coordinates is continuous:

(U2t ×ΨDO
2(t−k)
0,k )× (U2t ×ΨDO

2(t−k)
0,k )→ (U2t ×ΨDO

2(t−k)
0,k )

((Φ1, P1), (Φ2, P2)) �→ (Φ1◦Φ−1
2 , P1σ(Φ1)σ(Φ2)−1P−1

2 σ(Φ1◦Φ−1
2 )−1) (109)

which involves a very careful study of products of symbols ofFIOs.
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6.2.8. Step 5: (F IO0)∗ as Smooth Manifold

Overlap conditions in local charts give conditions onσ to make(FIO0)∗ into
a smooth manifold. To prove that the transition maps between local charts are
smooth it amounts to show that the following map is differentiable

(U2t · α ∩ U2t · β)× (ΨDO
2(t−k)
0,k )∗ → (ΨDO

2(t−k)
0,k )∗

(Φ, P ) �→ Pσ(Φ ◦ α−1)AB−1σ(Φ ◦ β−1)−1 (110)

for anyA,B ∈ (FIOt0,k)∗, whereα = p(A), β = p(B). The symbol calculus
shows that this map is of classCt, hence(FIOt0,k)∗ is a smooth manifold of
classCt.

6.2.9. Step 6: (F IO0)∗ as ILH Lie Group

We check smoothness of multiplication and inversion

µ : (FIO0)∗ × (FIO0)∗ → (FIO0)∗, µ(A,B) = A ◦B (111)

ν : (FIO0)∗ → (FIO0)∗, ν(A) = A−1. (112)

To show that the group multiplication in(FIOt0,k)∗ is smooth it amounts to show
that the following map is differentiable

(U2(t+s) · α)× (Ψ2(t+s+k)
0,k )∗ × (U2(t+s) · β)× (Ψ2(t+s+k)

0,k )∗

→ (U2(t+s) · (rα · β)× (Ψ2(t+s+k)
0,k )∗

((Φ1, P1), (Φ2, P2)) �→
(Φ1 ◦ Φ2, P1σ(Φ1 ◦ α−1)AP2σ(Φ2β

−1)A−1σ(Φ1Φ2β
−1α−1)−1) (113)

for anyA ∈ (FIOt+s0,k )∗, B ∈ (FIOt
0,k)∗ whereα = p(A), β = p(B).

This makes(FIO0)∗ = lim∞←s(FIOs
0)∗ into an ILH Lie group.

6.2.10. Step 7: F IO∗ as Lie Group

To obtain a Lie group structure onFIO∗ of all invertible Fourier integral operators
we use the Laplace operator to identify(1 − ∆)m/2 : (FIO0)∗

∼→ (FIOm)∗
and induce the corresponding manifold structure onFIO∗. Multiplication has
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the same smoothness properties as before between the appropriate spaces, which
makesFIO∗ into an ILH Lie group.

The final result is the following:

Theorem 32. (Main Theorem) (Adams, Ratiu and Schmid [1–3])The group
FIO∗(M) of invertible Fourier integral operators on a compact manifold M is
a graded infinite dimensional ILH-Lie group with graded infinite dimensional Lie
algebra ΨDO(M) of all pseudodifferential operators on M . FIO∗(M) is and
infinite dimensional principal fiber bundle over the base manifold Diffsθ(Ṫ

∗M)
of contact transformations of Ṫ ∗M with gauge group ΨDO∗(M) of invertible
pseudodifferential operators.

We have the following smoothness properties:

(FIO0,k)∗ = lim∞←t(FIOt
0,k)∗ is an ILH Lie group

the multiplicationµ : (FIOt+p0,k )∗× (FIOt
0,k)∗ → (FIOt

0,k)∗ : µ(A,B) = AB
is Cp differentiable,

the inversion ν : (FIOt+p0,k )∗ → (FIOt
0,k)∗ : ν(A) = A−1 is Cp differentiable,

right multiplicationsRA : (FIOt
0,k)∗ → (FIOt

0,k)∗ : RA(B) = BA are Ct

differentiable, for anyA ∈ FIOt0,k

the left multiplicationsLA : (FIOt
0,k)∗ → (FIOt

0,k)∗ : LA(B) = AB are C0

(continuous), for anyA ∈ FIOt0,k .

7. Diff(M) and FIO for non-compact manifolds. Application to
fluid dynamics and quantization

The “classical” theory of diffeomorphism groups and the groups of Fourier in-
tegral operators was developed in the 1970’s and 1980’s. This was all done for
compact manifolds, mainly for technical reasons. Many attempts to deal with
noncompact manifolds failed, until in the 1990’s after J. Eichhorn published his
papers on the manifold structures of maps between open manifolds [14] and we
joined forces to overcome the technical difficulties one encounters dealing with
noncompact manifolds. Two typical quotations about the non-compact case:

1) “Topology & Analysis: Atiyah–Singer Index Formula & Gauge Theoretic
Physics” (Boos–Bleecker [7], p. 182):
In what follows, the manifolds M is “closed” i.e. compact, without boundary.
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We make this convention in part for convenience (in order to make some proofs
go easier) but also because otherwise some of the following theorems would be
meaningless or false.

2) J. Eichhorn:“There is exactly one thing that work in the non-compact case:
NOTHING”

Example of what’s going wrong: Let M , N be compact manifolds, thenf :
M → N is of Sobolev classHs ⇐⇒ the local representativesfij : Ui ⊂ R

m →
Vj ⊂ R

n are of classHs, whereM =
⋃
(Ui, φi), N =

⋃
(Vj , ψj), f ij :=

ψj ◦ f ◦ φ−1
i . These covers arefinite if M,N are compact. This definition is

invariant⇔ s >
n

2
+ 1. In the compact case we can define the distance by

ds(f, g) := (
∑
i,j

‖f ij − gij‖2
s)

1
2

These definitions are meaningless ifM andN are open!

7.1. Bounded Geometry

The idea of overcoming compactness is to usebounded geometry, which means
that we will have control over the metric and its derivatives and the maps are
adapted to the bounded geometry, i.e. we have control over the mappings and
their derivatives by the metric as well.

Definition 33. A Riemannian manifold (Mn, g) has bounded geometry of order
k, 0 ≤ k ≤ ∞, if it has a positive injectivity radius and the curvature and all is
derivatives up to order k are uniformly bounded; i.e the following two conditions
are satisfied:

I) : rinj(M) = inf
x∈M

rinj(x) > 0 (114)

Bk) : |∇iR| ≤ Ci , 0 ≤ i ≤ k. (115)

These conditions can be expressed as follows:
I) The exponential mapexpx : TxM → M is a diffeomorphism from an open ball
Bx(0, r) ⊂ TxM of radiusr around0 in TxM onto an open neighborhoodUx,r ⊂
M of x in M . Let rx := sup(r) be the biggest radius inTxM such thatexpx is
a diffeomorphism. Then the injectivity radius is defined byrinj := infx∈M rx, i.e
rinj is the smallest distance fromx where geodesics intersect. Hence,

I) ⇔ there exists a ball around0 in R
n which is domain of normal (geodesic)

coordinatesfor all x ∈M .
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Bk)⇔ there exists a constantdk (independent ofx ∈ M ) such that‖gij‖Ck ≤ dk
in any normal coordinate system

⇔ |Dαgij | ≤ cα, |α| ≤ k in any normal coordinate system
⇔ ‖Γmij ‖Ck−1 ≤ d′k in any normal coordinate system.

Examples of manifolds with bounded geometry are compact manifolds, Lie
groups, homogeneous spaces, covering spaces of Riemannian manifolds, leaves
of foliations of compact manifolds.

Fact: There isno topological obstruction for the existence of a complete Rieman-
nian metric with bounded geometry of any order.

7.2. Bounded Maps C∞,r(M, N)

We consider maps which are adapted to the bounded geometry of the manifolds.
Let (M,g) and(N,h) be open, complete Riemannian manifolds satisfying I) and
Bk) and f ∈ C∞(M,N). Then the differentialdf = f∗ = Tf is a section
of T ∗M ⊗ f∗TN . We endowf∗TN with the induced connectionf∗∇h. Then
∇g andf∗∇h induce connections∇ in all tensor bundlesTqs (M) ⊗ f∗T uv (N).
Therefore themth derivative∇mdf is well defined. Assumer ≤ k. We denote
by C∞,r(M,N) the set of allf ∈ C∞(M,N) satisfying

|df |r :=
r−1∑
i=0

sup
x∈M

|∇idf |x < ∞. (116)

Equivalently:f ∈ C∞,r(M,N) ⇔ ∂α

∂xα
f ν is uniformly bounded in any normal

coordinate system for all|α| ≤ r, 1 ≤ r ≤ k.

The topology on C∞,r(M,N):
Let f ∈ C∞,r(M,N) andξ ∈ C∞(f∗TN). Definegξ : M → N by gξ(x) :=
expf(x)(ξ(f(x)), (≡ exp ξ). Assumer ≤ k and define

|ξ|r :=
r∑
i=0

sup
x∈M

|∇iξ|x < δN < rinj(N). (117)

Thengξ = exp ξ ∈ C∞,r(M,N). We definef to be close tog in C∞,r(M,N)

in theLp-category as follows. Let0 < δ <
1
2
rinj(N), 1 < p < ∞.

Vδ := {f, g ∈ C∞,r(M,N) ; ∃ξ ∈ C∞(f∗TN) such thatg = gξ } (118)

and |ξ|p,r := (
∫
M

r∑
i=0

|∇iξ|px d volx(g))1/p < δ}. (119)
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ThenV := {Vδ}0<δ<rinj (M)/2 is a basis for a metrizable uniform structure on
C∞,r(M,N). LetCp,r(M,N) be the completion ofC∞,r(M,N) in this uniform
structure. ThenCp,r(M,N) is aCk+1−r-Banach manifold and forp = 2 a Hilbert
manifold.

Remarks:

1) A neighborhoodUε(f) of f ∈ Cp,r(M,N) is given by:

Uε(f) = {g ∈ Cp,r(M,N) ; g = exp ξ, ξ ∈ C∞(f∗TN), |ξ|p,m < ε} (120)

where0 < ε < rinj(N).

2) The tangent space atf is given byTfCp,r(M,N) = Cp,r(f∗TN).

3) The change of coordinates is given byexpg ◦ exp−1
f , it is Ck−r+1. If M is

compact thenk =∞.

4) If g ∈ comp (f) thenTfCp,r(M,N) � TgC
p,r(M,N), otherwise not.

7.3. The Bounded Diffeomorphism Group Diffp,r(M)

Problem: f bounded�⇒ f−1 bounded, i.e.C∞,m(M)
⋂
Diff(M) is not a group,

hencef ∈ C∞,m(M)
⋂
Diff(M) �⇒ f−1 ∈ C∞,m(M). We need an additional

assumption to obtain a group. Let|λ|min(df) denote the absolute value of the
eigenvalues of the Jacobian off and set

Diffp,r(M) := {f ∈ Cp,r(M,M) ; f bijective and |λ|min(df) > 0} (121)

thenDiffp,r(M) is open inCp,r(M,M), hence aCk+1−r Banach manifold and
we have the following

Theorem 34. (Eichhorn and Schmid [15])Let (Mn, g) be an open, oriented,

complete Riemannian manifold satisfying I), B∞) and let r >
n

p
+ 1. Then

Diffp,∞(M) = lim←Diffp,r(M) is an ILB-Lie group and for p = 2 it is an
ILH-Lie group.

7.3.1. Differentiability of the Group Operations:

The differentiability of the group operations (composition and inversion) follow
from theα- andω- lemma.
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Lemma 35. (α-lemma)Assume r ≤ k, r >
n

p
+ 1, f ∈ Diffp,r(M). Then the

right multiplication αf : Diff
p,r
0 (M) → Diffp,r(M), αf (g) = g ◦ f is of class

Ck+1−r.

Lemma 36. (ω-lemma)Let k+1−(r+s) > s, f ∈ Diffp,r+s0 (M) ⊂ Diffp,r0 (M),
r >

n

p
+1. Then the left multiplication ωf : Diffp,r(M)→ Diffp,r(M), ωf (g) =

f ◦ g is of class Cs.

Theorem 37. (Eichhorn and Schmid [15])Let (Mn, g) be an open, oriented,
complete Riemannian manifold satisfying I), B∞). Let Diffp,∞0 (M) :=
lim←Diff

p,r
0 (M) with the inverse limit topology. Then

{Diffp,∞0 (M),Diffp,r0 (M) ; r >
n

p
+ 1}

is an ILB-Lie group and for p = 2 it is an ILH-Lie group.

7.4. Volume Preserving and Symplectic Diffeomorphisms.

We have analogous results as in the compact case for the subgroups of volume
preserving and symplectic diffeomorphism. The ideas of the proofs are similar
but technically much more complicated, so we just state the results (for proofs
see Eichhorn and Schmid [15]). Letω be aC∞-bounded non-degenerateq-form,
q = n or q = 2, letDiffp,rω = {f ∈ Diffr ; f∗ω = ω}.
Theorem 38. (Eichhorn and Schmid [15])
a)Diffp,∞ω = lim←r Diffp,rω is an ILH-Lie group with Lie algebra consisting of
divergence free ( q = n), or locally Hamiltonian (q = 2) vector fields ξ with finite
Sobolev norm |ξ|p,r for all r.
b)Diffp,rω is an infinite dimensional Riemannian manifold, with (weak) metric

g(X,Y )id =
∫
M

(X,Y )xdvolx(g).

7.5. Contact Transformations on Ṫ ∗M

If (Mn, g) is an open, oriented, complete Riemannian manifold satisfying I) and
Bk) then the Sasaki metric on the co-sphere bundle inṪ ∗M satisfies I) and Bk−1).
Let θ be the canonical 1-form onT∗M and consider

Diffp,rθ (Ṫ
∗M) = {f ∈ Diffp,r(Ṫ ∗M) ; f∗θ = θ }.
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Theorem 39. (Eichhorn and Schmid [15])

Diffp,∞θ (Ṫ ∗M) = lim∞←rDiff
p,r
θ (Ṫ

∗M)

is an ILH-Lie group.

This is the space of phase functions for the Fourier integral operators!

7.6. Pseudodifferential Operators and Fourier Integral Operators on
Open Manifolds

If (Mn, g) is open the previous definitions of pseudodifferential operators and
Fourier integral operators doesnot make sense. We need to adapt the class of
symbols and phase functions to the bounded geometry ofM in order to obtain
globally defined Fourier integral operatorsA : C∞c (M) → D′(M). Then the
corresponding spacesΨDO andFIO have similar properties as in the compact
case and we can use the same ideas as before to construct Lie group structures.
We need the following adaptations for a Fourier integral operator

Au(x) = (2π)−n
∫∫

eiϕ(x,y,ξ)a(x, ξ)u(y)dy dξ. (122)

• Symbols: The family of local symbolsa(x, ξ) together with their derivatives
should be uniformly bounded.

• Phase functions: The phase functionsϕ(x, y, ξ) should locally generate
canonical transformations in the spaceDiffp,rθ (Ṫ

∗M).
These symbols and phase functions define the class of so calleduniform pseudo
differential and Fourier integral operators denoted byUΨDOm andUFIOm re-
spectively. The details are quite technical, so we present here only the basic ideas
and final result and refer to Eichhorn and Schmid [16] for details.

As in the compact case (Section 6) we get an exact sequence of groups

I → (UΨDO0)∗
j
↪→ (UFIO0)∗

p→ Diffp,rθ (Ṫ
∗M)→ id . (123)

Now we follow the same ideas as in the compact case: step 1,2...7 to construct
ILH Lie groups structures on these spaces.

Theorem 40. (Eichhorn and Schmid [16])

UΨDO = lim∞←sUΨDOs is an ILH Lie group

UFIO = lim∞←tUFIOt is an ILH Lie group
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• the multiplication µ : UFIOt+r × UFIOt → UFIOt µ(A,B) = AB is
Ck differentiable, k = min(r, t)

• the inversion ν : UFIOt+r → UFIOt ; ν(A) = A−1 is Ck differentiable,
k = min(r, t)

• the right multiplications RA : UFIOt → UFIOt : RA(B) = BA are Ct

differentiable, for any A ∈ UFIOt

• the left multiplications LA : UFIOt → UFIOt : LA(B) = AB are C0

(continuous), for any A ∈ UFIOt.

8. Applications to Fluid Dynamics and Quantization

We briefly discuss some applications to fluid dynamics, the periodic and non-
periodic KdV equations, the classical, topological and non-homogeneous Euler
equations, as well as quantization. Some of this work is still in progress.

8.1. The KdV Equation and the Group of Fourier Integral Operators

The Korteweg deVries (KdV) equationut = 6uux − uxxx is an infinite dimen-
sional Hamiltonian system with respect to the Poisson bracket

{F,G}(u) =
∫

δF

δu
∂x

δG

δu
dx (124)

and Hamiltonian

H(u) =
∫
(u3 +

1
2
u2
x)dx (125)

which means that a functionu satisfies Hamiltons equationsut = {u,H} if and
only if u is a solution of the KdV equation. This was shown by Gardner and
Kruskal in 1971.

The question we asked is: Where does this Poisson bracket (124) and this Hamil-
tonian (125) come from? Is there a natural space on which this Hamiltonian sys-
tem lives? And the answer is the following:

Theorem 41. (Adams, Ratiu and Schmid [1])
A) The Poisson bracket (124) is the natural Lie-Poisson bracket on the coadjoint
orbit of the Lie group of invertible Fourier integral operators G = FIO∗ through
the Schrödinger operator.
B) The Kostant–Symes theorem applied to a splitting of the Lie algebra of FIO∗,
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the space of pseudodifferential operators g = ΨDO gives the complete integra-
bility of KdV, i.e. the Gelfand–Dikii family of commuting integrals, including the
Hamlitonian (125).

We can only outline the ideas of the proves and refer to [1] for details.

The Kostant–Symes Theorem [23],[40] states the following: Suppose we have
a vector space decomposition of a Lie algebrag into a direct sum of two sub-
algebras,g = h ⊕ k. This gives the corresponding decomposition of the dual
g∗ = k⊥ ⊕ h⊥ which allows us to identify the dualsh∗ ∼= k⊥ andk∗ ∼= h⊥. We
obtain functions in involution as follows: LetF,H : g∗ → R be two functions
that are constant on coadjoint orbits ofG in g∗. Then forA ∈ h∗, {FA,HA} = 0,
whereFA andHA are the restriction ofF andH to the coadjoint orbit ofA in h∗.
For the KdV equation the Lie group isG = FIO∗(S1) with Lie algebrag =
ΨDO(S1), whereM = S1 is the unit circle. Then each pseudodifferential opera-
torP ∈ ΨDOm(S1) has a total symbol of the formp(x, ξ)=

∑
−∞<j≤m pj(x)ξj .

The Lie algebrag = ΨDO decomposes into the two subalgebrash = ΨDO− =
∪m<0ΨDOm andk = ΨDO+ = ∪m≥0ΨDOm, i.e. g = h⊕ k becomesΨDO =
ΨDO− ⊕ΨDO+.

We have an inner product〈P,Q〉 := trace (P · Q) where the trace is defined
by trace (P ) :=

∫
p−1(x)dx. With this we identifiesΨDO∗ � ΨDO and

(ΨDO−)∗ � ΨDO+. So forg = h⊕ k we getg∗ = k⊥ ⊕ h⊥, i.e

g∗ = ΨDO∗ � ΨDO⊥+ ⊕ΨDO⊥− � ΨDO∗− ⊕ΨDO⊥− � ΨDO+ ⊕ΨDO⊥−.

The Lie–Poisson bracket onh∗ = ΨDO∗− � ΨDO+ atA ∈ ΨDO+ becomes

{F,H}(A) = 〈A,

[
δF

δA
,
δH

δA

]
〉 =

∫ (
A ◦

[
δF

δA
,
δH

δA

])
−1

dx (126)

where(...)−1 means taking the order(−1) part of the symbol.

The Lie–Poisson evolution equationsḞ = {F,H} for any functionF onΨDO∗−
are equivalent to

Ȧ = XH(A) = ad ∗δH
δA

(A) =
[
δH

δA
,A

]
+

(127)

onΨDO∗− � ΨDO+, where[...]+ means taking only the part inΨDO+. For the
Schrödinger operatorA ∈ ΨDO+ with total symbol given bya(x, ξ) = a(x)+ξ2

the Lie–Poisson bracket of two functionsF,G : ΨDO∗ → R atA becomes

{F,G} =
∫

δF

δa
∂x

δG

δa
dx , which is the Gardner bracket (124).
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For the functionalsHk(A) = trace (Ak) =
∫
(Ak)−1dx, k ∈ N we have

δHk

δA
= kAk−1, hence

[
A,

δHk

δA

]
= [A, kAk−1] = 0.

ThusHk are constant on coadjoint orbits. By the Kostant–Symes theorem, re-
stricting theHk toΨDO∗− � ΨDO+ gives the Gelfand–Dikii family of commut-
ing integrals for KdV.

We get the following integrals, for example:H0 =
∫
a dx , H1 =

∫ 1
2
a2 dx,

H2 =
∫
(a3 +

1
2
a2
x)dx ≡ H, which is the Gardner Hamiltonian(125)

H3 =
∫ (

5
8
a4 +

5
4
aa2

x +
1
8
a2
xx

)
dx etc.

8.2. The KdV Equation and the Lie Group UF IO∗

We showed above that the periodic KdV equation (which describes shallow water
waves) is a Hamiltonian system on a coadjoint orbit of the Lie group of Fourier
integral operators on the compact manifoldM = S1 the circle. Having done all
the work for open manifolds we proved the similar result for the non periodic KdV
equation on the real lineM = R.

Theorem 42. (Eichhorn and Schmid [17])The non-periodic KdV equation on the
real line is a Hamiltonian system with respect to the Lie–Poisson bracket on the
coadjoint orbit through the Schrödinger operator of the infinite dimensional Lie
group of invertible Fourier integral operators G = UFIO∗(R).

8.3. Hydrodynamics and the Diffeomorphism Group Diff∞,r
µ (M)

1. The Euler Equations and Diff∞,r
µ (M)

The topological Euler equations are given by

Etop

{
∂u

∂t
+∇u(t)u(t) = gradp

divµ u(t) = 0.
(128)

We call these equations thetopological Euler equations becauseµ is a fixed
volume form on(Mn, g), not necessarily the phase space volume given by the
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Riemannian metricg. So we have two different volume forms onM . The covari-
ant derivative∇ = ∇g is taken with respect to the Riemannian metricg, whereas
the divergence div= divµ, defined byLXµ = (divµX)µ, is the divergence with
respect toµ. The vector fieldu = u(x, t) is a time dependentC1 vector field on
(Mn, g). Thenu(t) defines a 1-parameter family of diffeomorphismsft defined
by

dfs
ds

|s=t = u(t) ◦ ft (129)

We have the analogoues result as discussed in Section 4.1, Theorem 11 ( Ebin–
Marsden) for non-compact manifolds.

Theorem 43. (Eichhorn and Schmid [15])Assume (Mn, g) is an open Rieman-
nian manifold satisfying I) and Bk). Then u(t) satisfies the topological Euler
equations Etop iff {ft}t is a geodesic in Diff∞,rµ (M).

Theclassical Euler equations for an incompressible, homogeneous fluid without
viscosity are a special case withµ = dvolx(g) the volume of the Riemannian
metricg and∇ = ∇g, div = divdvolx(g).

2. The Non-Homogeneous Euler Equations

The non-homogeneous Euler equations with a mass densityρ(x, t) > 0 are
given by

ENH


∂u

∂t
+ ∇u(t)u(t) =

1
ρ

gradp

∂ρ

∂t
+ gradρ · u = 0

divµ u(t) = 0.

(130)

If ρ = constant these are the classical homogeneous Euler equations. Forµ =
µ(g) the corresponding equations onDiffsµ(M) arenot right invariant, i.e. they
are not derivable from Arnold’s method as above. But if we takeµ̃ = ρoµ(g) as
volume form, then we have the following

Theorem 44. (Eichhorn and Schmid [17])u(t) is a solution of ENH ⇔ (ft)t
the flow of u(t) is a geodesic on Diffsµ̃(M) and ρ(x, t) = ρo(f−1

t (x)), where the
volume form is µ̃ = ρoµ(g).

Proof: One needs a generalization of the Hodge decomposition theorem with
densities for open manifolds (work in progress).
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8.4. ΨDO and Quantization

Another interpretation of the exact sequences of Lie groups (99) and their Lie
algebras (100) discussed in Section 6 leads to quantization

I −→ (ΨDO0)∗
j
↪→ (FIO0)∗ p−→ Diffsθ(Ṫ

∗M) −→ e (131)

0 −→ ΨDO0
j
↪→ ΨDO1

π−→ C∞+1(Ṫ
∗M) −→ 0. (132)

ForP ∈ ΨDO1 its principal symbolπ(P ) : Ṫ ∗M → R is a smooth function, ho-
mogeneous of degree+1. Henceπ(P ) ∈ C∞+1(Ṫ

∗M). Moreoverπ is a surjective
Lie algebra homomorphism

π([P,Q]) =
1
i
{π(P ), π(Q)}. (133)

That means the commutator bracket of the operators corresponds to the Poisson
brackets of their principal symbols, which meansquantization of C∞+1(Ṫ

∗M) via
ΨDO1!

Consider the Lie subalgebraDO1 ⊂ ΨDO1 of all differential operators of order
1 which is isomorphic to the space of all smooth vector filed onM , i.e. DO1

∼=
X∞(M). We consider a vector fieldX onM as a pseudodifferential operator of

order 1. Locally we haveX =
∑

Xj(x)
∂

∂xj
, hence its principal symbol is given

by π(X) =
∑

Xjξj and we writeX as pseudodifferential operator

Xu(x) = (2π)−n
∫∫

ei(x−y)·ξπ(X)u(y)dydξ. (134)

Consider the Lie subalgebraL(T∗M) ⊂ C∞+1(Ṫ
∗M) of all smooth functions on

T ∗M linear on each fiberT∗xM . Locally f ∈ L(T ∗M) is of the form f(x, ξ) =∑
f j(x)ξj .

Theorem 45. (Schmid [37]) The symbol map π induces a Lie algebra isomor-
phism π : X∞(M)→ L(T ∗M) : π(X) · αx = iαx ·X(x), x ∈ M,αx ∈ T ∗xM

π([X,Y ]) =
1
i
{π(X), π(Y )}.

This meansquantization of L(T∗M) via X∞(M).
In general, by Egorov’s theorem we have the following: For anyf, g ∈ C∞(T ∗M)
defineP,Q ∈ ΨDO such thatP has principal symbolf andQ has principal sym-
bol g. Then the principal symbol of[P,Q] if {f, g}.
References: Because of space limitations we give only a short, incomplete list of
references, but more detailed references can be found in the papers listed below.



118 Rudolf Schmid

References

[1] Adams M., Ratiu T. and Schmid, R.,The Lie Group Structure of Diffeomor-
phism Groups and Invertible Fourier Integral Operators, with Applications,
MSRI Publications, vol. 4, V. Kac (Ed), (1985) pp. 1–69.

[2] Adams M., Ratiu, T. and Schmid R.,A Lie Group Structure for Pseudodif-
ferential Operators, Math. Ann.273 (1986) 529–551.

[3] Adams M., Ratiu T. and Schmid R.,A Lie Group Structure for Fourier Inte-
gral Operators, Math. Ann.276 (1986) 19–41.

[4] Arnold V., One-Dimensional Cohomology of Lie Algebras of Nondivergent
Vector Fields and Rotation Numbers of Dynamical Systems, Funct. Anal.
Appl. 3 (1969) 319–321.

[5] Banyaga A.,The Structure of Classical Diffeomorphism Groups, Kluwer.,
Dortrecht, 1997.

[6] Becci C., Rouet A. and Stora, R.,Renormalization of Gauge Groups, Ann.
Physics98 (1976) 287–321.

[7] Booss B. and Bleecker, D.,Topology and Analysis, Springer, New York,
1985.

[8] Bourbaki N.,Lie Groups and Lie Algebras, Hermann, Paris, 1975.
[9] Calabi E.,On the Group of Automorphisms of a Symplectic Manifold, In:

Problems in Analysis, Symposium ih Honor of S. Bochner, Princeton Univ.
Press, Princeton, 1970, pp.,1–26.

[10] Chevalley C.,Theory of Lie Groups, Princeton Univ. Press, Princeton, 1946.
[11] Chevalley C., Eilenberg S.,Cohomology Theory of Lie Groups and Lie Al-

gebras, Trans. Amer. Math. Soc.63 (1948) 85–124.
[12] Deligne P. et al. (Eds),Quantum Field Theory and Strings: A Course for

Mathematicians, Vols. 1 and 2, Amer. Math. Soc., Providence, 1999.
[13] Ebin D. and Marsden J.,Groups of Diffeomorphisms and the Motion of In-

compressible Fluid, Ann. of Math.92 (1970) 102–163.
[14] Eichhorn J.,The Manifold Structure of Maps between Open Manifolds, Ann.

Global Anal. Geom.11 (1993) 253–300.
[15] Eichhorn J. and Schmid, R.,Form Preserving Diffeomorphism Groups on

Open Manifolds, Ann. Global Anal. Geom.14 (1996) 147–176.
[16] Eichhorn J. and Schmid R.,Lie Groups of Fourier Integral Operators on

Open Manifolds, Comm. Analysis and Geometry9 (2001) 983–1040.
[17] Eichhorn J. and Schmid R.,Applications of the Lie Group of Fourier Integral

Operators to Fluid Dynamics, Preprint, 2003.



Infinite Dimensional Lie Groups with Applications to Mathematical Physics 119

[18] Goldin G., The Diffeomorphism Group Approach to Nonlinear Quantum
Systems. Int. J. Mod. Physics B6 (1992) 1905–1916.

[19] Goldin G., Menikoff R. and Sharp D.,Diffeomorphism Groups, Gauge
Groups, and Quantum Theory. Phys. Rev. Lett.51 (1983) 2246–2249.

[20] Hamilton R.,The Inverse Function Theorem of Nash and Moser, Bull. Amer.
Math. Soc.7 (1982) 65–222.

[21] Keller H.,Differential Calculus in Locally Concex Spaces, Lecture Notes in
Math. Vol. 417, Springer, Berlin, 1974.

[22] Kostant B.,Quantization and Unitary Representations, Lectures in Modern
Analysis and Applications III, Lecture Notes in Math. Vol.170 (1970) 87–
208.

[23] Kostant B.,The Solution to a Generalized Toda Lattice and Representation
Theory, Adv. Math.34 (1979) 195–338.

[24] Lang S.,Introduction to Differentiable Manifolds, John Wiley, New York,
1962.

[25] Marsden J., Ratiu T., Schmid R., Spencer R. and Weinstein A.,Hamiltonian
Systems with Symmetries, Coadjoint Orbits and Plasma Physics, Atti Accad.
Sci. Torino Cl. Sci. Fis. Mat. Natur.117 (1983) 289–340.

[26] Moser J.,A Rapidly Convergent Iteration Method and Non-linear Differen-
tial Equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci.20 (1966) 499–535.

[27] Nash J.,The Embedding Problem for Riemannian Manifolds, Ann. of Math.
63 (1956) 20–63.

[28] Omori H., Infinite Dimensional Lie Transformation Groups, Lecture Notes
in Math. Vol. 427, Berlin, 1974.

[29] Omori H.,Infinite-Dimensional Lie Groups, Transl. Math. Monographs Vol.
158, Amer. Math. Soc., Providence, 1996.

[30] Palais R.,Foundations of Global Nonlinear Analysis, Addison–Wesley,
Reading, 1968.

[31] Pressley A. and Segal G.,Loop Groups, Oxford Univ. Press, Oxford, 1986.
[32] Ratiu T. and Schmid R.,The Differential Structure of Three Remarkable

Diffeomorphism Groups, Math. Z.177 (1981) 81–100.
[33] Schmid R.,Die Symplektomorphismen-Gruppe als Frechet Lie Gruppe, PhD

Thesis, Juris Druck + Verlag, Zuerich, 1978.
[34] Schmid R.,The Inverse Function Theorem of Nash and Moser for the Γ-

Differentiability, Abh. Akad. Wiss. Berlin1984-2N (1984) 201–206.
[35] Schmid R.,Infinite Dimensional Hamiltonian Systems, Monographs and

Textbooks in Physical Sciences, Biblionopolis, Napoli, 1987.



120 Rudolf Schmid

[36] Schmid R.,The Geometry of BRS Transformations, Illinois J. Math., 34
(1990) 87–97.

[37] Schmid R.,Diffeomorphism Groups, Pseudodifferential Operators and r-
Matrices, In: Global Differential Geometry, D. Ferrus et al (Eds), Lecture
Notes in Math. Vol.1481 (1991) 258–263.

[38] Schmid R.,Local Cohomology in Gauge Theories, BRST Transformations
and Anomalies, Differential Geom. Appl.4 (1994) 107–116.

[39] Schmid R.,g-Symplectic Orbits and a Solution of the BRST Consistency
Condition, In: Geometry, Integrability and Quantization IV, I. Mladenov
and G. Naber (Eds), Coral Press, Sofia 2003, 284–295.

[40] Symes W.,Hamiltonian Group Actions and Integrable Systems, Physica D1
(1980) 339–374.

[41] Tyutin I., Gauge Invariance in Field Theory and Statistical Mechanics,
Lebedev Inst. Preprint39 , 1976, unpublished.

[42] Varadarajan V.,Lie Groups, Lie Algebras, and their Representations,
Prentice-Hall, Inc., Englewood Cliffs, 1974.

[43] Weinstein A.,Symplectic Manifolds and their Lagrangian Submanifolds,
Adv. Math.6 (1971) 329–346.

Department of Mathematics
EMORY University
Atlanta, GA 30032
USA
e-mail: rudolf@mathcs.emory.edu
web: www.math.emory.edu/∼rudolf


