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ON EXTENDED EULERIAN NUMBERS

Abdelmejid Bayad, Mohand Ouamar Hernane, Alain Togbé

Abstract: In this paper, we will study some properties of the extended Eulerian numbers
H(n, λ), with a parameter λ. In fact, for any integer n, we investigate the asymptotic behavior,
find lower and upper bounds for H(n, λ). As application, for a champion number N , we obtain
asymptotic formulas, lower and upper bounds of the arithmetic functions ω(N) and Ω(N).

Keywords: Kalmar’s function, extended Eulerian numbers, Champion numbers, asymptotic
formula, Ikehara-Wiener theorem.

1. Introduction and preliminaries

Let λ be a complex number. An extended Eulerian number H(n, λ) is defined by
means of its Dirichlet series

λ− 1

λ− ζ(s)
=
∑
n>1

H(n, λ)

ns
, (1.1)

where ζ(s) =
∑
n>1

1
ns is the Riemann Zeta function defined for <(s) > 1. A

champion number N for the function H is a number that satisfies

n < N =⇒ H(n, λ) < H(N,λ).

In this paper, we will study several properties of extended Eulerian numbers
H(n, λ), with a real parameter λ > 1. We will extend and improve some results
obtained by Kalmár [17], Hille [14], Erdös [8], Evans [9], Klazar and Luca [18],
Deleglise, Hernane, and Nicolas [13], concerning the maximal order of extended
Eulerian numbers. As an application of our results, we investigate theH-champion
numbers.

We are motivated by the following important particular cases:

1) If λ = 0, then H(n, 0) = µ(n) is a Möbius number.
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2) If n = p1p2 · · · pr is square-free, then H(n, λ) = Hr(λ), where Hr(λ) is an
Eulerian number. In addition, if λ = −1, thus

H(n,−1) = Hr(−1) = Er

is the so-called Euler number. One can notice that an Euler number En
corresponds to 2−nCn in [21, p.28]. One can also see [3, p.688] and [1, p.354,
formula (1.1.5)].

3) If λ = 2, then H(n, 2) = K(n), where K is the Kalmár arithmetic function
which counts the number of ordered factorizations of a positive integer n
in factors bigger than 1. Various properties of this function were studied by
many mathematicians. In fact, Kalmár found the average order of K(n), for
x→∞ ∑

n6x

K(n) = − xρ

ρζ ′(ρ)
{1 + o(1)}, (1.2)

where ρ = 1.72864 . . . is the positive real solution to ζ(s) = 2. On the other
hand, this result was improved by Hwang [15]. Moreover, bounds on the
maximal order of K(n) were studied by Erdös [8]), Chor, Lemke and Mador
[5], Coppersmith and Lewenstein [6], and Hille [14]. Recently, Klazar and
Luca [18], Deleglise, Hernane, and Nicolas [13] improved the bounds for the
maximal order of K(n).

It is well-known that the extended Eulerian numbers H(n, λ) satisfy the fol-
lowing properties:
1) The recurrence formulas are given by{

λH(n, λ) =
∑
d|nH(d, λ), n > 2, λ 6= 1,

H(1, λ) = 1.
(1.3)

See formula (1.15) in [3].
2) The expression (λ − 1)Ω(n)H(n, λ) is a polynomial in λ of degree less than

Ω(n), where Ω(n) =
∑r
k=1 ki, if n = pk1

1 p
k2
2 · · · pkrr . In the special case where

n = p1p2 · · · pr, we have

(λ− 1)Ω(n)H(n, λ) = (λ− 1)rHr(λ) =

r∑
t=1

Ar, tλ
t−1, r > 1

with Ar, t =
∑t
j=0(−1)j

(
r+1
j

)
(t− j)r. See formulas (5.12), (5.13) in [3].

Writing
λ− 1

λ− ζ(s)
=
λ− 1

λ

1

1− ζ(s)
λ

(1.4)

and expanding it, we obtain the explicit formula

H(n, λ) =
λ− 1

λ

Ω(n)∑
k=1

dk(n)

λk
, where dk(n) =

∑
n1n2···nk=n
n1, n2, ..., nk>1

1. (1.5)
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If we rewrite λ−1
λ−ζ(s) = 1

1−( ζ(s)−1
λ−1 )

and expand it, we obtain another explicit formula

proved in [10]

H(n, λ) =

Ω(n)∑
k=1

d′k(n)

(λ− 1)k
, where d′k(n) =

∑
n1n2···nk=n
n1, n2, ..., nk>2

1. (1.6)

For λ > 1, we consider the Mellin inverse integral

1

2πi

∫ σ+i∞

σ−i∞

λ− 1

λ− ζ(s)
xs
ds

s
=
∑
n>1

H(n, λ)

∫ σ+i∞

σ−i∞

(x
n

)s ds
s

(1.7)

by Perron’s formula, we get

1

2πi

∫ σ+i∞

σ−i∞

λ− 1

λ− ζ(s)
xs
ds

s
=

?∑
n6x

H(n, λ). (1.8)

Here, the symbol ∗ on the summation indicates that the last term of the sum must
be multiplied by 1/2 when x is an integer. Now, using Ikehara-Wiener theorem,
we obtain the average formula for extended Eulerian numbers

?∑
n6x

H(n, λ) ∼ C(λ)xρ(λ), (1.9)

where ρ(λ) is the positive real number solution to the equation ζ(s)) = λ and

C(λ) =
1− λ

ρ(λ)ζ ′(ρ(λ))
.

Formula (1.5) was proved by Evans [9]. Formulas (1.6), (1.8) and (1.9) were also
obtained by Grosswald [10].

In this paper, we will study the behavior of the functions λ 7→ C(λ) and
λ 7→ ρ(λ). As an application of this study, we will investigate H-champions
numbers, specially their asymptotic, lower, and upper bounds. The size of the
exponents of their prime factors will be estimated.

2. Statement of the main results

Let k be a positive integer, Nk a multiplicative system (including 1) associated to
the set of primes numbers, Pk = {p1, p2, . . . , pk}, with p1 = 2 < p2 = 3 < · · · < pk.
Define

ζk(s) =
∏
p∈Pk

(1− p−s)−1, (2.1)

which is equivalent to

ζk(s) =
∑
n∈Nk

1

ns
. (2.2)
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Let ρk(λ) be the positive real solution to ζk(s) = λ and ak(λ) = − λ
ζ′k(ρk(λ)) . For

k = ∞, we get the Riemann zeta function ζ(s) and ρ(λ) = ρ∞(λ), ζ(ρ(λ)) = λ
and a(λ) = − λ

ζ′(ρ(λ)) . We state our first main result.

Theorem 1. Let λ > 1. Then
1. The function λ 7→ ρ(λ) is strictly increasing and ρ(λ) > 1, for any λ > 1.
2. The sequence (ρk(λ))k>1 is strictly increasing and bounded. Moreover, for
<(s) > σ > 1, the function ζk(s) uniformly converges to ζ(s) as k tends
to ∞.

3. We have

ρ(λ)− ρk(λ) =
λ

(ρ(λ)− 1)|ζ ′(ρ(λ))|kρ(λ)−1(log k)ρ(λ)

{
1 +O

(
log log k

log k

)}
.

(2.3)
4. The sequence (ak(λ)) is decreasing and converges to a(λ), as k tends to ∞.

Moreover, there exists a positive constant γ(λ), depending only on λ, such
that for any prime p, we have the inequality∣∣∣∣ ak(λ)

pρk(λ) − 1
− a(λ)

pρ(λ) − 1

∣∣∣∣ 6 γ(λ)
log p

pρ2(λ)(k log k)ρk(λ)−1
. (2.4)

To state our remaining main results, we need some notations and definitions.
So let x = (xj)16j6ω be a finite or infinite sequence of positive real numbers such
that

0 < Ω(x) =

ω∑
j=1

xj <∞.

There exists a unique C = C(x) > 0 such that
ω∏
j=1

(
1 +

xj
C(x)

)
= λ. (2.5)

Put

T (x) =

ω∑
i=1

xi
xi + C(x)

, (2.6)

A(x) =
λ− 1

λ
√
λ

exp(−Ω(x))

ω∏
i=1

(xi + C(x))xi

Γ(xi + 1)
, (2.7)

and

B(x) =

√
2C(x)

T (x)
. (2.8)

If n = qα1
1 qα2

2 · · · q
αk
k , α = (α1, α2, · · · , αk), αi > 0, Ω = Ω(α), R. Evans [9]

proved the following important result

H(n, λ) =
√
π A(α)B(α)

{
1 +O(Ω−F )

}
, (2.9)

when Ω(α) tends to ∞, for any F such that 0 < F < 1
2 . Next, we state main

important inequalities needed in our study.
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Theorem 2. For λ > 1, we have

Ω(x)

λ− 1
< C(x) 6

Ω(x)

log λ
, (2.10)

λ− 1

λ
6 T (x) 6 λ− 1, (2.11)√

2

λ− 1
C(x) 6 B(x) 6

√
2λ

λ− 1
C(x). (2.12)

If n = 2α13α2 · · · pαkk , α1, α2, . . . , αk > 1, then there exist absolute positive con-
stants C1 and C2 such that we have

C1
exp(−k)

λ
√
λ

exp(F (α))
√
α1α2 · · ·αk

6 H(n, λ) 6 C2
1

λ

√
λ− 1

log λ

nρk(λ)

πk/2
, (2.13)

where

F (x) =

k∑
j=1

xj log

(
1 +

C(x)

xj

)
. (2.14)

Put

f(λ) = C2
1

λ

√
λ− 1

log λ
, C2 > 0 and g(λ) = C1

1

λ
√
λ
.

Theorem 3. Let n be a positive integer and N an H-champion number.
1) For n large, we have

logH(n, λ) 6 U(n, λ), (2.15)

where

U(n, λ) = ρ(λ) log n− γ1(λ)
(log n)1/ρ(λ)

log log n

and
γ1(λ) = min

(
1

2
,

λ

(ρ(λ)− 1)|ζ ′(ρ(λ))|

)
.

2) For a large H-champion number N , there exist a positive constant γ2(λ)
depending only on λ such that

L(N,λ) 6 logH(N, λ) 6 U(N,λ), (2.16)

where

L(N,λ) = ρ(λ) logN − γ2(λ)
(logN)1/ρ(λ)

log logN
+ log g(λ)− ρ(λ) log 2.

3) For a large H-champion number N , there exist γ3(λ), γ4(λ) > 0 such that

γ3(λ)
(logN)1/ρ(λ)

log logN
6 ω(N) 6 γ4(λ)

(logN)1/ρ(λ)

log logN
.
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Here is the statement of our last result.

Theorem 4. Let N be a H-champion number and δ(λ) =
(

1 + 1
ρ(λ)

)
/2. Then,

for
N = 2α13α2 · · · pαkk

such that N tends to ∞, we have

1. Ω(N) =
∑k
i=1 αi = a(λ) logN

∑k
i=1

1

p
ρ(λ)
i −1

+ O
(
(logN)δ(λ)

)
and αi =

a(λ)

p
ρ(λ)
i −1

logN +O
(

(logN)δ(λ)

log pi

)
;

2. C(α) = a(λ) logN +O
(
(logN)δ(λ)

)
;

3. T (α) = ζP(ρ(λ)) +O
(
(logN)δ(λ)−1

)
;

4. B(α) =
√

2a(λ)
ζP(ρ(λ)) logN

{
1 +O

(
(logN)δ(λ)−1

)}
;

5. H(N, λ) =
√

2a(λ)
ζP(ρ(λ))π logN A(α)

{
1 +O

(
(logN)δ(λ)−1

)}
.

The next sections will be devoted to the proofs of the above theorems.

3. Proof of Theorem 1

Let k > 2. There exist unique positive real numbers ρk(λ), ρ(λ) such that ζk(ρk(λ)) =
ζ(ρ(λ)) = λ. Then, we have∏

p∈Pk

(
1− p−ρk(λ)

)−1

=
∏
p∈P

(
1− p−ρ(λ)

)−1

= λ. (3.1)

Thus, we obtain

λ =
∏
p∈Pk

(
1− p−ρk(λ)

)−1

=
∏
p∈Pk

(
1− p−ρk(λ)

)−1 ∏
p>pk

(
1− p−ρ(λ)

)−1

. (3.2)

Taking the logarithm of the above equation, we get

log ζk(ρk(λ))− log ζk(ρ(λ)) = −
∑
p>pk

log
(

1− p−ρ(λ)
)
. (3.3)

For fixed λ > 1, there exists a positive integer m(λ) > 2 such that for all k > m(λ)
we have ρk(λ) > 1. By Lagrange’s mean-value, we obtain

log ζk(ρk(λ))− log ζk(ρ(λ)) = (ρ(λ)− ρk(λ))
∑
p∈Pk

log p

pσp(λ) − 1
, (3.4)

for some σp(λ) ∈ (ρk(λ), ρ(λ)) ⊂ (1, 2). We have

−
∑
p>pk

log
(

1− p−ρ(λ)
)

=
∑
p>pk

1

pρ(λ)
+O

(∑
p>pk

1

p2ρ(λ)

)
, (3.5)
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and by standard estimates we get

∑
p>pk

1

pρ(λ)
=

(ρ(λ)− 1)−1

p
ρ(λ)−1
k log pk

+O

(
1

p
ρ(λ)−1
k (log pk)2

)
, (3.6)

since pk = k log k + k log log k +O(k). Therefore, we obtain

−
∑
p>pk

log
(

1− p−ρ(λ)
)

=
(ρ(λ)− 1)−1

kρ(λ)−1(log k)ρ(λ)

{
1 +O

(
log log k

log k

)}
. (3.7)

On the other hand, we have

log p

pσp(λ) − 1
=

log p

pσp(λ) − 1

{
1 +

pσp(λ)

pσp(λ) − 1

(
pρ(λ)−σp(λ) − 1

)}
. (3.8)

Note that

1 6
pσp(λ)

pσp(λ) − 1
6 2 (3.9)

and for 2 6 p 6 pk, we have

pρ(λ)−σp(λ) − 1 6 pρ(λ)−ρk(λ)
k − 1 = exp ((ρ(λ)− ρk(λ)) log pk)− 1

� (ρ(λ)− ρk(λ)) log pk (3.10)

� 1

kρ(λ)−1(log k)ρ(λ)−1
.

For these inequalities, we used exp(x)� x, when x tends to 0 and

ρ(λ)− ρk(λ)� 1

kρ(λ)−1(log k)ρ(λ)
, (3.11)

since pk = k log k + k log log k +O(k). We remark that

log ζk(ρ(λ))− log ζk(ρk(λ))

= (ρ(λ)− ρk(λ))
∑
p∈Pk

log p

pσp(λ) − 1

= (ρ(λ)− ρk(λ))

(
log 2

2σp(λ) − 1
+

log 3

3σp(λ) − 1
+ · · ·+ log pk

p
σp(λ)
k − 1

)

> (ρ(λ)− ρk(λ))
log 2

2σp(λ) − 1
, withσp(λ) > 1. (3.12)
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From (3.3), (3.8), (3.10), and (3.12), we obtain

(ρ(λ)− ρk(λ))
∑
p∈Pk

log p

pσp(λ) − 1
= (ρ(λ)− ρk(λ))

∑
p∈Pk

log p

pρ(λ) − 1

×
{

1 +O
(
k1−ρ(λ)(log k)1−ρ(λ)

)}
= (ρ(λ)− ρk(λ))

∑
p∈Pk

log p

pρ(λ) − 1

{
1 +O

(
k1−ρ(λ)

)}
.

(3.13)

Therefore, from (3.3) and (3.7), we get

(ρ(λ)− ρk(λ))
∑
p∈Pk

log p

pσp(λ) − 1
=

(ρ(λ)− 1)−1

kρ(λ)−1(log k)ρ(λ)

{
1 +O

(
log log k

log k

)}
. (3.14)

On the other hand, we have

|ζ ′(ρ(λ))|
ζ(ρ(λ))

=
∑
p∈P

log p

pρ(λ) − 1
=
∑
p∈Pk

log p

pρ(λ) − 1
+
∑
p>pk

log p

pρ(λ) − 1
. (3.15)

From (3.6), we deduce

|ζ ′(ρ(λ))|
λ

=
∑
p∈Pk

log p

pρ(λ) − 1
+O

(
k1+ε−ρ(λ)

)
, (3.16)

for any small ε > 0 and for any integer k such that k > m(λ). Thus, we get

(ρ(λ)− ρk(λ))

[
|ζ ′(ρ(λ))|

λ
+O

(
k1+ε−ρ(λ)

)]
=

(ρ(λ)− 1)−1

kρ(λ)−1(log k)ρ(λ)

{
1 +O

(
log log k

log k

)}
, (3.17)

which implies that

ρ(λ)− ρk(λ) =
λ

(ρ(λ)− 1)|ζ ′(ρ(λ))|kρ(λ)−1(log k)ρ(λ)

{
1 +O

(
log log k

log k

)}
,

(3.18)
∀ k > m(λ).
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Now, we will prove relation (2.4). We apply the mean-value theorem to the
function x 7→ 1

px−1 to obtain

ak(λ)

pρk(λ) − 1
− a(λ)

pρ(λ) − 1
=

(
1

pρk(λ) − 1
− 1

pρ(λ) − 1

)
ak(λ) +

ak(λ)− a(λ)

pρ(λ) − 1

= (ρ(λ)− ρk(λ))ak(λ)
px0 log p

(px0 − 1)2
+
ak(λ)− a(λ)

pρ(λ) − 1
, (3.19)

with ρk(λ) 6 x0 6 ρ(λ). Moreover, we get

px0

(px0 − 1)2
6

pρ2(λ)

(pρ2(λ) − 1)2
6
C(λ)2

pρ2(λ)
, (3.20)

1

px0 − 1
6

1

pρ2(λ) − 1
6

1

pρ2(λ)
· C(λ) 6

3ρ3(λ)C(λ) log p

2 log 2
· 1

pρ2(λ)
, (3.21)

where

C(λ) =
2ρ2(λ)

2ρ2(λ) − 1
.

On the other hand, (ak(λ))k is a decreasing sequence such that

2ρ2(λ) − 1

log 3
6 a2(λ) 6

3ρ3(λ)

2 log 2
6

3ρ3(λ)

2
(3.22)

and∣∣∣∣ ak(λ)

pρk(λ) − 1
− a(λ)

pρ(λ) − 1

∣∣∣∣
6

3ρ3(λ) log p

2pρ2(λ)

[
C(λ)2(ρ(λ)− ρk(λ)) + C(λ)(ak(λ)− a(λ))

]
. (3.23)

We have

ak(λ)− a(λ) = a(λ)ak(λ)

[
1

a(λ)
− 1

ak(λ)

]
∼ a(λ)2

(
1

a(λ)
− 1

ak(λ)

)
, (3.24)

and

1

a(λ)
− 1

ak(λ)
= L′(ρ(λ))− L′k(ρ(λ)) + L′k(ρ(λ))− L′k(ρk(λ)), (3.25)

where

L′(ρ(λ))− L′k(ρ(λ)) =

∞∑
i=k+1

log pi

p
ρ(λ)
i − 1

∼
(

1

ρ(λ)− 1

)
1

(k log k)ρ(λ)−1
, (3.26)

L′k(ρ(λ))− L′k(ρk(λ)) = (ρ(λ)− ρk(λ))L′′(ρ(λ)). (3.27)
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Using Theorem 1, 3), we obtain

L′k(ρ(λ))− L′k(ρk(λ)) ∼ λL′′(ρ(λ))

|ζ ′(ρ(λ))|(ρ(λ)− 1)kρ(λ)−1(logk)ρ(λ)
. (3.28)

Therefore, we have

1

a(λ)
− 1

ak(λ)
∼ 1

(ρ(λ)− 1)(k log k)ρ(λ)−1
(3.29)

and

ak(λ)− a(λ) ∼ a2(λ)

ρ(λ)− 1
· 1

(k log k)ρ(λ)−1
. (3.30)

From relations (2.3), (3.23), and (3.30), there exists a constant γ(λ) depending on
λ such that ∣∣∣∣ ak(λ)

pρk(λ) − 1
− a(λ)

pρ(λ) − 1

∣∣∣∣ 6 γ(λ)
log p

(ρ(λ)− 1)(k log k)ρk(λ)−1
. (3.31)

Therefore, the proof of Theorem 1 is completed.

4. Proof of Theorem 2

We consider the function

t 7→ H(x, t) =

ω∑
j=1

log
(

1 +
xj
t

)
. (4.1)

We have

H(x, t) 6
ω∑
j=1

log
xj
t
, for any xj > 0. (4.2)

The function t 7→ H(x, t) is decreasing from ∞ to 0, when t ∈ [0,∞). Thus, there
exists a unique C(x) > 0 such that

H(x,C(x)) = log λ, λ > 1.

Then, for t = Ω(x)
λ−1 , we obtain

H(x, t) = log

 ω∏
j=1

(
1 + (λ− 1)

xj
Ω(x)

) > log

1 + (λ− 1)

ω∑
j=1

xj
Ω(x)

 = log λ.

(4.3)
This implies that

C(x) >
Ω(x)

λ− 1
.
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For the upper bound, we write

log λ =

ω∑
j=1

log

(
1 +

xj
C(x))

)
6

ω∑
j=1

xj
C(x)

=
Ω(x)

C(x)
. (4.4)

Therefore, we get
Ω(x)

λ− 1
6 C(x) 6

Ω(x)

log λ
. (4.5)

Now, we will prove relation (2.11). From equation (2.10), we obtain

T (x) =

ω∑
j=1

xj
xj + C(x)

6
ω∑
j=1

xj
C(x)

=
Ω(x)

C(x)
6 λ− 1. (4.6)

We set γj =
xj

xj+C(x) . One can see that 0 6 γj < 1 and

T (x) =

ω∑
j=1

γj >
ω∏
j=1

(1− γj) = 1−
ω∏
j=1

xj
xj + C(x)

= 1− 1

λ
=
λ− 1

λ
. (4.7)

Hence, we have
λ− 1

λ
6 T (x) 6 λ− 1. (4.8)

Relation (2.12) is immediate from (2.11).
To finish the proof of Theorem 2, first we will use formula (2.9). We take

F = 1
4 . So there exist positive constants C1 and C2 such that

C1

√
πA(α)B(α) 6 H(n, λ) 6 C2

√
πA(α)B(α). (4.9)

Second, from the expression of A(α), we have

C1

√
π

√
2

λ− 1
C(α)

λ− 1

λ
√
λ

exp (F (α)) 6 H(n, λ) (4.10)

and

H(n, λ) 6 C2

√
π

√
2λ

λ− 1
C(α)

λ− 1

λ
√
λ

exp (F (α))
1

(2π)k/2
√
α1α̇2 · · ·αk

. (4.11)

By the Stirling’s formula Γ(x + 1) = xxe−xs(x), where
√

2πx 6 s(x) 6 e
√
x,

x > 1, the relation F (α) 6 ρk(λ) log n and equations (2.10), (2.11) imply equation
(2.13). Notice that the inequality F (α) 6 ρk(λ) log n can be obtained by the use
of the result given in [13, Lemma 3.5], with A = log n, ρk = ρk(λ), ak = ak(λ).
This completes the proof of Theorem 2.
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5. Proof of Theorem 3

We start by proving inequality (2.15). Put

θ1(λ) =
λ

(ρ(λ)− 1)|ζ ′(ρ(λ))|
. (5.1)

From Theorem 2 and inequality (2.13), we have

logH(n, λ) 6 log

(
C2

λ

√
λ− 1

log λ

)
− k

2
log π + ρk(λ) log n. (5.2)

Write
ρk(λ) log n = ρ(λ) log n− (ρ(λ)− ρk(λ)) log n.

By Theorem 1, there exists a positive constant θ1(λ) such that

ρ(λ)− ρk(λ) >
θ1(λ)

kρ(λ)−1(log k)ρ(λ)
. (5.3)

For n > 16, we have log log n > 1. Thus, for 2 6 k 6 (logn)1/ρ(λ)

log logn < log n, we
obtain

ρ(λ)− ρk(λ) >
θ1(λ)

kρ(λ)−1(log k)ρ(λ)
> θ1(λ)

(log n)
1

ρ(λ)
−1

log log n
(5.4)

and for k > (logn)1/ρ(λ)

log logn , we get

k

2
log π >

1

2

(log n)1/ρ(λ)

log log n
. (5.5)

Therefore, we deduce that

(ρ(λ)− ρk(λ)) log n+
k

2
log π > min

(
1

2
, θ1(λ)

)
(log n)1/ρ(λ)

log log n

= γ1(λ)
(log n)1/ρ(λ)

log log n
.

(5.6)

For a large positive integer n, we deduce inequality (2.15).
Now, we will prove inequalities (2.16). For this, we take a large H-champion

number N . We apply [13, Lemme 3.5], with A = log n, k =
[
α (logn)1/ρ(λ)

log logn

]
, and

0 < α < ρ(λ)a(λ)1/ρ(λ). So, for a large H-champion number n = 2α1 · 3α2 · · · pαkk ,
we follow the procedure used in [13] (see pages 1694-1697) to obtain formula (2.16).

By Theorem 2 and inequality (2.13), we have

logH(n, λ) > F (α)− k − 1

2

k∑
i=1

logαi + log g(λ).



On extended Eulerian numbers 125

On the other hand, we know that

F (α) > F (x?)− ρ(λ) log 2− k,

where x? satisfies
F (x?) = ρ(λ) log n,

see [13, Lemme 3.5]. Therefore, we get

logH(n, λ) > ρ(λ) log n−(ρ(λ)−ρk(λ)) log n−2k−1

2

k∑
i=1

logαi+log g(λ)−ρ(λ) log 2.

Using equation (2.3) of Theorem 1, we obtain

(ρ(λ)− ρk(λ)) log n = O
(

(log n)
1

ρ(λ) / log log n
)

= O(k)

and
1

2

k∑
i=1

logαi = O(k).

See [13, Lemme 4.2]. Hence, we deduce that

logH(n, λ) > ρ(λ) log n− γ2(λ)
(log n)

1
ρ(λ)

log log n
+ log g(λ)− ρ(λ) log 2,

for some positive constant γ2. Therefore, we complete the proof of the second part
of Theorem 3.

It remains to prove the third part of Theorem 3. So let k = ω(N). From
equation (2.13), we have

logH(N,λ) 6 ρk(λ) logN − k

2
log π + log f(λ) (5.7)

and

logH(N,λ) 6 ρ(λ) logN − (ρ(λ− ρk(λ)) logN − k log π

2
+ log f(λ). (5.8)

Thus, we get

(ρ(λ− ρk(λ)) logN 6 ρ(λ) logN − logH(N,λ)− k log π

2
+ log f(λ). (5.9)

From Theorem 3, 1), we obtain

(ρ(λ)− ρk(λ)) logN 6 γ1(λ)
(logN)1/ρλ

log logN
+ log

(
f(λ)

g(λ)

)
. (5.10)

One can see that there exists C > 0 such that

kρ(λ)−1(log k)ρ(λ) > C(logN)1−1/ρ(λ) log logN. (5.11)
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Note that the function g : t 7→ tρ(λ)−1(log t)ρ(λ) tends to infinity when t → ∞

and is increasing, for t > 1. Its inverse function satisfies g−1(y) ∼
(

y
log(y)ρ

) 1
ρ−1

as
y →∞. Then, we get

k > g−1

(
C(λ)

(logN)1−1/ρ(λ)

log logN

)
∼ C ′(λ)

(logN)1/ρ(λ)

log logN
, C ′(λ) > 0. (5.12)

Therefore, we obtain the lower bound for k = ω(N)

ω(N) = k > γ3(λ)
(logN)1/ρλ

log logN
. (5.13)

Similarly, we obtain the second inequality. This completes the proof of Theorem 3.

6. Proof of Theorem 4

Let N = 2α1 · 3α2 · · · pαkk , α1, α2, . . . αk > 1, where pk is the kth prime number.
We have logN =

∑k
i=1 αi log pi. We consider the maximization problem for the

function

F (x) =

k∑
j=1

xj log

(
1 +

C(x)

xj

)
, x = (x1, x2, . . . , xk) (6.1)

on the set

DN = {x ∈ R∗ k+ :

k∑
j=1

xj log pj 6 logN}. (6.2)

This problem is equivalent to the following one{∑k
j=1 xj log pj = logN

maxF (x).
(6.3)

Referring to [9, Lemma 6] and [13], there exists a unique x∗ = (x∗1, x
∗
2, . . . , x

∗
k) ∈

DN such that

logN =

k∑
i=1

xi log pi), C(x∗) = ak(λ) logN, (6.4)

and

x∗i =
ak(λ) logN

p
ρk(λ)
i − 1

, F (x∗) = ρk(λ) logN. (6.5)

Moreover, for β = (β1, β2, . . . , βk) ∈ DN , we have

F (x∗) > F (β) +
1

4 logN log pk

k∑
i=1

(βi − x∗i )2(log pi)
2, ∀ k > 2. (6.6)
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If N is a H-champion number, then we have

log pk ∼
1

ρ(λ)
logN logN, and

k∑
i=1

(βi−x∗i )(log pi) = O(logN)δ(λ). (6.7)

Now, we can start the proof of Theorem 4. We set

βi =
a(λ)

p
ρ(λ)
i − 1

and k = ω(N). (6.8)

Then, we have∣∣∣∣∣
k∑
i=1

(αi − βi logN)

∣∣∣∣∣ 6
k∑
i=1

|αi−βi logN | 6
k∑
i=1

|αi−x∗i |+
k∑
i=1

|x∗i −βi logN |, (6.9)

where
k∑
i=1

|αi − x∗i | 6 O(logN)δ(λ) (6.10)

and

k∑
i=1

|x∗i − βi logN | = (logN)

k∑
i=1

∣∣∣∣∣ ak(λ)

p
ρk(λ)
i − 1

− a(λ)

p
ρ(λ)
i − 1

∣∣∣∣∣
6

γ(λ)(logN)

(k log k)ρ(λ)−1

k∑
i=1

log pi

p
ρ(λ)
i

= O

(
logN

kρ(λ)−1

)
. (6.11)

By Theorem 3. 2), we have

k > γ3(λ)
(logN)1/ρ(λ)

logN logN
. (6.12)

Thus, we get

logN

kρ(λ)−1
= O

(
(logN)1/ρ(λ)(log logN)ρ(λ)−1

)
= O

(
(logN)δ(λ)

)
, (6.13)

where ρ(λ) > 1. One can see that

∞∑
i=k+1

βi =

∞∑
i=k+1

a(λ)

p
ρ(λ)
i − 1

6 2a(λ)

∞∑
i=k+1

1

p
ρ(λ)
i

6
2a(λ)

(ρ(λ)− 1)kρ(λ)−1
. (6.14)

Hence, we have ∣∣∣∣∣Ω(N)−
∞∑
i=1

βi logN

∣∣∣∣∣ 6 O(logN)δ(λ). (6.15)
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For 1 6 i 6 k, we obtain

|αi − x∗i | �
(logN)δ(λ)

pi
(6.16)

and

|x∗i−βi logN | 6 γ(N)
log pi

p
ρ(λ)
i

logN

(k log k)ρ(λ)−1
=

1

log pi
O

(
logN

kρ(λ)−1

)
, ∀ i. (6.17)

We deduce that

|x∗i − βi logN | � (logN)1/δ(λ)

log pi
(6.18)

and

|x∗i − βi logN | 6 O
(

(logN)δ(λ)

log pi

)
, ∀ 1 6 i 6 k. (6.19)

This shows the first part of Theorem 4.
One can see that

|C(α)− C(β) logN | 6
k∑
i=1

|αi − βi logN |+
∞∑
i=1

βi logN = O(logN)δ(λ), (6.20)

λ = ζ(ρ(λ)) =

∞∏
i=1

(
1− p−ρ(λ)

i

)−1

=

∞∏
i=1

p
ρ(λ)
i

p
ρ(λ)
i − 1

=

∞∏
i=1

(
1 +

1

p
ρ(λ)
i − 1

)
. (6.21)

Therefore, equations

C

(
1

2ρ(λ) − 1
, . . .

)
= 1 and C

(
a(λ)

2ρ(λ) − 1
,

a(λ)

3ρ(λ) − 1
. . .

)
= a(λ) (6.22)

imply that
C(β) = a(λ). (6.23)

Thus, the second part of Theorem 4 is proved.

From Theorem 4 1) and relation (2.6), we obtain

T (α) = ζP(ρ(λ)) +O((logN)δ(λ)−1). (6.24)

Using Theorem 4. 2), 3) and equation (2.8), we complete the proof of Theorem 4.

7. Comments on numerical computations

In this section, we do some numerical computations to study the behavior of some
constants. Let λ be a complex number, k a positive integer, and Pk the set of
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primes numbers defined by Pk = {p1, p2, . . . , pk}, with p1 = 2 < p2 = 3 < · · · < pk.
We know that

ζk(s) =
∏
p∈Pk

(1− p−s)−1,

(see (2.1)), ρk(λ) is a positive real solution to ζk(s) = λ and

ak(λ) = − λ

ζ ′k(ρk(λ))
.

Moreover, we consider

pk(λ) =
λ

(ρk(λ)− 1)ζ ′k(ρk(λ))

the truncated part of the coefficient in equation (2.3) and

δ(λ) =
1

2

(
1 +

1

ρ(λ)

)
,

(see Theorem 4). We wrote a program in Maple that we run under a MacBook
Air. We restricted the computations to 3 6 λ 6 7 and 3 6 k 6 20, because the
result is known for λ = 2 and the computations become extremely slow for higher
values of λ and k. Here are some comments on these computations, which confirm
the properties that we proved:

1. As we consider ρk(λ) > 1, we notice that the first value of ρk(λ) is obtained
for higher values of k when λ is higher.

2. The values of ρk(λ) increase when k increases. They are smaller when λ
increases. But in all cases, we have ρk(λ) < 2.

3. When k increases, the values of ak(λ), pk(λ), pk(λ), δk(ρk) decrease. We no-
tice that as λ increases, the behavior is different. In all cases, we see that

ak(λ) < 0.772, pk(λ) < 125.406, δk(ρk) < 1.
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