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VALUES OF DEDEKIND SUMS FOR FUNCTION FIELDS
Y OSHINORI HAMAHATA

Abstract: H. Rademacher and E. Grosswald raised the following questions:
1. Is {(a/c,d(a,c)) | a/c € Q*} dense in R??
2. Is {d(a,c) | a/c € Q*} dense in R?

D. Hickerson answered them affirmatively, and H. Ito obtained a result similar to Hickerson’s
for the elliptic Dedekind sums defined by R. Sczech. We consider the values of the Dedekind
sum attached to a given A-lattice in rational function fields. The objective of this paper is to
establish a result similar to those of Hickerson and Ito.
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1. Introduction

The classical Dedekind sum is defined by

c—1
1 k k
d(a,c) = o E cot (mcl> cot <7rc)
k=1

for coprime integers ¢ > 0 and a. For coprime positive integers a, c, we have the
reciprocity law
1 fa c 1
d(a,c)+d(c,a) = —|—-—4+—-—+——-3].
(@.0) +dte.a) = 35 (2+ 4+ -3)

ac

Rademacher and Grosswald [7] raised the following questions:

1. Is {(a/e,d(a,c)) | a/c € Q*} dense in R??
2. Is {d(a,¢) | a/c € Q*} dense in R?

D. Hickerson [5] answered them affirmatively, and H. Ito [6] obtained a result
similar to Hickerson’s for the elliptic Dedekind sums defined by R. Sczech [8]. It is
well-known that there is an analogy between a number field and a function field.
In [1], we introduced the Dedekind sum attached to a given Drinfeld module.
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A rank 7 Drinfeld module is similar to the multiplicative group G,, (resp. an
elliptic curve) when r = 1 (resp. r > 2). The Dedekind sum attached to the Carlitz
module is an analog of d(a,c¢) defined above, and the Dedekind sum attached to
a Drinfeld module with rank r > 2 is an analog of an elliptic Dedekind sum [8].
In [4], we proved a result similar to Hickerson’s for the Dedekind sum attached
to the Carlitz module. The objective of the present paper is to extend our result
to the Dedekind sum attached to an arbitrary Drinfeld module. We state our
main results in Section 2. In Section 3, we recall some previous results from [1].
In Section 4, we prove our main results, and make some concluding remarks in
Section 5.

2. Main results

Before stating our result, we outline our notation and give some definitions.

Let F, be the finite field with ¢ elements, and set A := F,[T], K := F,(T),
and Ko = F,((1/T)). We denote by Co the completion of an algebraic closure
of Koo. A rank r A-lattice A in C is a finitely generated A-submodule of rank
r in C, that is discrete in the topology of C. For such an A-lattice A, we define
the product ea(2) = z[[pzrea(l —2/A). The product converges uniformly on
bounded sets in C,,, and defines a map ep : Coo — Cs. The map ep has the
following properties:

(E1) ey is entire in the rigid analytic sense, and surjective;

(E2) ey is Fy-linear and A-periodic;

(E3) ep has simple zeros at the points of A, and no other zeros;

(E4) dep(z)/dz =€)\ (z) = 1.

For every a € A, there exists a unique polynomial ¢, = ¢2 of the form

S 1i(¢a)2z? such that ¢g(ea(z)) = ea(az). Let 7 = X7 and let Coo{7} be the
non-commutative ring in 7 with the commutation rule ¢?7 = 7¢ (¢ € C). There
exists a unique positive integer r such that for for any a € A\ {0},

rdega

$a = Z li(¢a)7—i (l0(¢a) = CL).
1=0

Then, the map ¢ : A = Co {7}, a — ¢, is called a Drinfeld module of rank r
over Cw. Because ¢ is an F,-linear ring homomorphism, the values ¢,(a € A)
are determined by ¢7. The rank one Drinfeld module p : A — Coo{7} defined by
pr(z) = Tz+2%1is called the Carlitz module. There is a one-to-one correspondence
between the set of rank r A-lattices and the set of rank r Drinfeld modules given
by

¢alea(z)) =ealaz)  (a€A).

Let A be a rank r A-lattice. Using (E4), ex(2)~! is expressed by
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which is similar to

1 «— 1 1
tz = -
orE Z+Z<z+7m+z—7m>

n=1

and
E1<Z):E1(Z,ZW+Z): Z <Z+l)_1|2+l|_
l€Zw~Z,l+27#0

|
s=0

for a lattice Zw + Z in C. This observation leads us to the definition of Dedekind
sums in function fields. For coprime a,c € A\ {0}, we define the Dedekind sum by

1 ad\"' A\
sa(a,c) = 0079;/ AeA (c) e <c> .

When A/cA = {0}, sa(a, ¢) is defined as zero. Using (E2), we find that sp(a,c) =0
for ¢ > 3. Hence we assume that ¢ = 3 or 2. Let ¢ be the Drinfeld module
corresponding to A, and let ¢ =T + 11 (Ppa)7+ -+ -+ dega(qﬁa)TT'deg“. Our
first result is as follows:

Theorem 1. Assume that g =3 or 2. Let L be the A-lattice corresponding to the
Carlitz module p. Then

SA<G C) _ ll(¢T)sL(a’ C) (q = 3)7
’ Li(or)*se(a,c)  (q=2)

for coprime a,c € A\ {0}.
As corollaries, we have the following results:

Theorem 2.

(i) If ¢ = 3, then sp([ao, - .., ar]) is written as
aen) ([0, ax,. .., a]
+(=1)"*0,ar, ... a1 +ay —ag + -+ (=) a,)  (r=1),
0 (r=0).
(ii) If ¢ = 2, then sp(lag, - .., ar]) is written as
2
g{iﬁTgQ ([0,a1, ... a.] + (=1)"* 0, ap, ..., a1]
+11-,[0,a;,...,ar] +a1 —az+ -+ (=) la, +r—1) (r>=1),
0 (r=0).

Here [ag,a1,...,ay] is a continued fraction defined by (4.2) in Section 4.



32 Yoshinori Hamahata

Let us define the modified Dedekind sum tp(a,c) by

ta(a,c) = sa(a, ¢)/h(or) (g =3),
’ sala, ) /l(ér)®  (a=2).

We now present a density result for ¢4 (a,c).

Theorem 3. Assume that ¢ =3 or 2. If l1(¢1) =0, then sp(a,c) = 0.
If Li(ér) #0, then
(i) {(a/c,ta(a,c)) | a/c € K*} is dense in K2, .
(ii) {ta(a,c) | a/c € K*} is dense in K.

Remark 4. Theorem 3 for r > 2 is an analog of Ito’s result (Theorem 2 in [6])
for the elliptic Dedekind sum D(h, k) defined by

1 hu %
D(h, k) = Z Z Es (k) Ey (E)
HE(Zw+T) [ k(Zw+1T)
for h,k€e O ={m e C | m(Zw+7Z) C Zw + Z} with k # 0.

3. Review of some previous results

Let us review the previous results obtained in [1]. Let A be the A-lattice that
corresponds to a Drinfeld module ¢. For a € A\ {0}, let ¢la] be the set of
a-division points defined by ¢la] = {x € C | ¢u(z) = 0}. Put

1

Ex(¢[a]) = Z oy

X
0#£zEdlal
Then the reciprocity law for our Dedekind sums is as follows:
Theorem 5 ([1]). Ifa,c € A\ {0}, then

(E2(¢la]) + E2(dlc]) — Er(dla]) Er(o[d])) . (3.1)

1
SA(aa C) + SA(cv a) - &
We recall that

Ey(¢la]) = {

Rewriting (3.1) with the aid of (3.2), we get the following:

Theorem 6 ([1]). Let a,c € A\ {0} be coprime.
(i) If g = 3, then

h(¢a)/a (k=q—1),

3.2
0 (k=1,...,q—2if ¢ > 2). (32)

SA(a> C) + SA(Ca a) -

1 (11(%) ll((i)c)) .

—_— =7
ac a C

(ii) If g =2, then

5a(a,¢) + 55 (c, a) = i (ll(f;) n ll(:;c) n ll(%ﬁ)f;(%)) .
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4. Proof of Theorems 1, 2, and 3

It is easy to see that Theorem 2 follows from Theorem 8 below, and that Theorem
3 follows from Theorem 9 below. Hence it suffices to prove Theorem 1.

4.1. The case l1(¢17) =0

Let a/c = [ag,a1,...,a,]. By Theorem 6, sp(a/c) = —sa(c/a). Hence

sala/e) = sa([0,aq,...,a,]) = —sa([a1, a2, ...,a,]) = -~
= (—=1)"sa(an) =0.

4.2. The case l1(¢T) # 0

First, we recall the results of the Dedekind sum attached to the Carlitz module p
defined by pr =T + 7. If L is the A-lattice corresponding to p, then according to
Goss 3], we have

al —a

ll(pa) - Ta _T (4'1)

for a € A\ {0}. Using this, we have

Proposition 7 ([4]). Let a,c € A\ {0} be coprime.
(i) If g =3, then

1 a c 1
s tsled) =m—r oot a)
(i) If ¢ =2, then
1 a ¢ 1 1 1
se@dtsuea)=mom oot te e ™)

For z € K, we define a sequence (x,,),>0 by

1
To = T, LTn+1 = >
nr n — Qp
where a,, is the polynomial part of the Laurent expansion x, = Zfzfoo AT
This sequence yields the unique continued fraction development of = given by
1
x = lag,a1,...,a,) :=ap+ i . (4.2)
a1 + i
ap—1+ —
429

We write sp(a/c) = sa(a,c) because the value sj(a,c) depends on a/c. Then
sa(a/c) is A-periodic, i.e., sp(a/c+b) = sa(a/c) for b € A. For A = L, the value
sr(a/c) is described by the continued fraction development of a/c.
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Theorem 8 ([4]).

(i) If ¢ = 3, then sp([ao, ..., ar]) is written as
ﬁ([o,al, cona] + (=)0, a,, . .. aq]
+a; —az + -+ (—1)"a,) (r=1),
0 (r=0).
(ii) If ¢ = 2, then sp([ag, ..., ar]) is written as
ﬁ([o, ai,...,a;]+ (=)0, a,,...,a1]
+1T-,00,a,...,ar] +a1 —az + -+ (=1)"a, +r—1) (r>1),
0 (r=0).

It should be noted that the value sp(a/c) is uniquely determined from the
reciprocity law in Proposition 7. From this theorem, we have

Theorem 9 ([4]). Assume that ¢ =3 or 2.

(1) {(a/c,sp(a,c)) | a/c E'K*} is dense in K2
(ii) {sr(a,c) | a/c € K*} is dense in Koo.

We next extend Theorem 9 to the case l1(¢7) = 1. Let ¢y = a + l1(pa)7 +
o+ lrdega(Pa)T" dega for g € A. Because ¢ is expressed as

o1 = pr + ()T + -+ L ()77,

the coefficient of 7 in ¢, coincides with that of 7 in p,. Hence l;(¢,) =
(a? — a)/(T? — T). Using Theorem 6, s (a,c) has the same reciprocity law as
that for sy (a,c). As mentioned in 4.2.1, the value sy, (a,c¢) is uniquely determined
by the reciprocity law. Therefore it follows that sa(a,c) = sy (a,c).

Finally, we consider the general case l1(¢r) # 0. Let ¢o = a + l1(¢a)T +
e lrdega(q’)a)rrdeg“ for a € A. We take v € C such that [;(¢7r) = 9L
Define a Drinfeld module ¢ by 17 = vypry~!, and writing 1, = a + l1(Yg)T +
oo+ lrdega(a)7T7 989 for a € A, we see that I;(pr) = 1. Hence l3(1,) =
(a? —a)/(T?—T). We have

h(6a) = 7" () = h(01) .
Let
_Jsala,0)/li(er)  (a=3),
(0= {SA<a,c>/zl<<z>T>2 (4=2).
Then by Theorem 6, it holds that

moor (844 + ac) (a=3).

tala,c) +ta(c,a) =
4(6,€) +éate, o) {T¢T2<i+z+;+i+;c+1> (41=2)

This is just the reciprocity law for sy (a,c) in Proposition 7. Thus we conclude
that ¢4 (a,c) = si(a,c), which completes the proof of Theorem 1.
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5. Concluding remarks

As an application of Theorem 1, we make some remarks on modular forms for
GL(r, A). Suppose r > 2. Set

Q" =P 1(C.) \ {K-rational hyperplanes}.

For w= (w1 : - :wy) € Q, put 2, = wj/w, (¢ =1,...,r) and A, = Az +
-+ Az.. We write ¢# for the Drinfeld module corresponding to A, and let
¢7 =T+ (w)T+ - +1-(w)7". The coefficient /;(w) is a modular form of weight
q' — 1 for GL(r, A) in the sense of Gekeler [2]. Theorem 1 yields the following
result:

Theorem 10. Assume that ¢ =3 or 2. Let L be the A-lattice correspnding to the
Carlitz module p. Then for coprime a,c € A\ {0}, sa (a,c) is a modular form of
weight ¢ — 1 for GL(r, A), and is written as

or (@) = {( Ohlw)  (4=3).

sp(a,0)lh(w)®  (¢=2).
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