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ON INTEGRALS AND DIRICHLET SERIES OBTAINED FROM
THE ERROR TERM IN THE CIRCLE PROBLEM

Jun Furuya, Yoshio Tanigawa

Abstract: In this paper, we shall investigate several properties of integrals defined by∫∞
1 t−θP (t) logj tdt with a complex variable θ and a non-negative integer j, where P (x) is the
error term in the circle problem of Gauss. We shall also study the analytic continuation of several
types of the Dirichlet series related with the circle problem, and study a proof of the functional
equation of the Dedekind zeta-function associated with the Gaussian number field Q(

√
−1).

Keywords: analytic continuation, the circle problem, the Dedekind zeta-function, periodic
Bernoulli functions.

1. Introduction and Statement of Results

For a natural number n, let r(n) be the number of ways to write n as the sum of
two squares:

r(n) = ]{(ξ, η) ∈ Z2 | ξ2 + η2 = n}

and P (x) be the error term in the circle problem defined by

P (x) =
∑

16n6x

r(n)− πx. (1.1)

The important problem is to determine the best-possible estimate of P (x) as
x → ∞. As far this problem, Gauss proved that P (x) = O(x1/2) and after
him it has been improved by many researchers. The best estimate to date is

P (x) = O(x131/416(log x)18627/8320)

due to Huxley [10]. See [8], [11] and [15] for the topics of the circle problem and
the several related results.
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The mean value of P (x) is also of great interest. For example it is well-known
that ∫ x

1

P (t)dt = −x+O(x3/4) (1.2)

and ∫ x

1

P (t)2dt =

(
1

3π2

∞∑
n=1

r(n)2n−3/2

)
x3/2 +O(x log2 x). (1.3)

The latter was proved by Kátai [14] and Preissmann [20] independently. The more
precise form of (1.2) by means of the expansion of the Bessel function of the first
kind (cf. e.g. [15, Theorem 3.11]) and the sharper estimate of the error term in
(1.3) are known [19].

The purpose of this paper is to study several properties of the functions related
to P (x). Especially in the former half of this paper, we treat the integral defined
by ∫ x

1

t−θP (t) logj tdt, (1.4)

where θ is a complex variable and j is a fixed non-negative integer. We are inter-
ested in its convergence properties as x → ∞ and the explicit representations of
(1.4) in the range 0 < <θ 6 1.

For preliminaries, we shall derive the growth of orders of the integral (1.4) with
respect to x from (1.2). By integration by parts we find easily that∫ x

1

t−θP (t)dt

=



C1 +O(x1−<θ) if <θ > 1,

− log x+ C2 +O(x−1/4) if θ = 1,

−(1− θ)−1x1−θ + C1 +O(x3/4−<θ) if 3/4 < <θ 6 1 and θ 6= 1,

−(1− θ)−1x1−θ +O(log x) if <θ = 3/4,

−(1− θ)−1x1−θ +O(x3/4−<θ) if <θ < 3/4

(1.5)

and

∫ x

1

t−θP (t) logj tdt =


C3 +O(x1−<θ logj x) if <θ > 1,

−(j + 1)−1 logj+1 x+O(1) if θ = 1,

−(1− θ)−1x1−θ logj x+O(x1−<θ logj−1 x) otherwise
(1.6)

for j > 1, where C1, C2 and C3 are suitable constants depending at most on θ
and j. To get a certain integral representation of C1, it is convenient to define
P (x) = −πx for 0 6 x < 1, i.e. the empty sum in (1.1) is zero. Let

Q(x) =

∫ x

0

P (t)dt+ x = x− π

2
+

∫ x

1

P (t)dt.
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Then the constant C1 is expressed as

C1 =
θ

1− θ
+
π

2
+ θ

∫ ∞
1

t−θ−1Q(t)dt, (1.7)

From (1.5) and (1.6) it follows easily that the function defined by

Ij(θ) =

∫ ∞
1

t−θP (t) logj tdt (1.8)

converges for <θ > 1 and diverges for <θ 6 1. Moreover by (1.3) it is convergent
absolutely and uniformly on every compact subset in the region <θ > 5/4, For
j = 0 it is known that

I0(θ) =− π

θ − 2
+

4

θ − 1
ζK(θ − 1), (1.9)

where K = Q(
√
−1) is the Gaussian number field and ζK(s) = ζ(s)L(s, χ) is

the Dedekind zeta-function associated with K. Here ζ(s) denotes the Riemann
zeta-function and L(s, χ) the Dirichlet L-function associated with the primitive
Dirichlet character χ mod 4 ([7, Section 6]). The expression on the right hand side
gives the analytic continuation of I0(θ) to the whole θ-plane as a meromorphic
function with a simple pole at θ = 1. (We should note that the point θ = 2 is not
a pole of I0(θ).) Since the integral I0(θ) is absolutely convergent for <θ > 5/4, we
can differentiate I0(θ) under the integral sign (see e.g. [17, Theorem 3.4 in p.340]
and the “added in proof” in [5] for the possibility of the termwise differentiation
of the integral), and get

Ij(θ) = (−1)j
dj

dθj

∫ ∞
1

t−θP (t)dt

= − πj!

(θ − 2)j+1
+ 4

j∑
m=0

(
j

m

)
(−1)j+mm!

(θ − 1)m+1
(ζK(θ − 1))

(j−m)
. (1.10)

Here
(
j
m

)
denotes the binomial coefficient with j > m, and we define

(
j
0

)
= 1 for

every j > 0. Here and in the further part, we make use of the notation

(f(a))(ν) =
dν

dsν
f(s)

∣∣
s=a

for short, where ν is a non-negative integer and f(s) is a (at least) ν times contin-
uously differentiable function.

On the special value of Ij(θ) at θ = 2, by (1.10) we have:

Proposition 1. The special value of (1.8) at θ = 2 is given by

Ij(2) = 4j!

j∑
m=0

(−1)j−m

{
(L(1, χ))(j−m+1)

(j −m+ 1)!
+

j−m∑
ν=0

γj−m−ν(L(1, χ))(ν)

ν!

}
− πj!.
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Here γn are the coefficients of the Laurent expansion of ζ(s) at s = 1 defined by

ζ(s) =
1

s− 1
+

∞∑
n=0

γn(s− 1)n,

especially γ0 is the Euler constant.

We give one remark on the absolute convergence of Ij(θ). Let A be the constant
defined by

A = inf{α | P (x) = O(xα)}.
By the trivial estimation, the range on the absolute convergence of I0(θ) is <θ >
A+ 1. By (1.3) A > 1/4, hence, this range “<(θ) > 5/4” is best-possible.

Our first theorem concerns convergence property of the integral (1.8) in 1 <
<θ 6 5/4.

Theorem 1. The integral (1.8) is convergent uniformly on every compact subset
in 1 < <θ 6 5/4, and it can be expressed by the right-hand side in (1.10) in this
region.

The proof is carried out by the way similar to that in [5]. However it turns out
that the case of the circle problem is more difficult and complicated than that of
the divisor problem. For instance, in the case of the divisor problem we repeatedly
apply an identity for the sum

∑
n6x n

1−θ, while in the case of the circle problem
we have to treat the sum of the form

∑
n6x χ(n)n1−θ. Since the Euler-Maclaurin

summation formula is not so effective for this kind of sum, we divide it into two
parts according to the residues mod 4.

Our next interest is to study the magnitude of the integral
∫ x

1
t−θP (t) logj tdt

with respect to x in the range 0 < <θ 6 1. We obtain the following theorem.

Theorem 2. For 0 < <θ 6 1 with θ 6= 1, we have∫ x

1

t−θP (t)dt =− 1

1− θ
x1−θ +

4ζK(θ − 1)

θ − 1
+

π

2− θ
+O(x3/4−<θ) (1.11)

and ∫ x

1

t−θP (t) logj tdt = x1−θ
j∑

m=0

(
j

m

)
m!

(θ − 1)m+1
logj−m x+O(1)

+O(x3/4−<θ logj x) (1.12)

for j > 1. Besides this, for θ = 1 we have∫ x

1

t−1P (t)dt = − log x+
{
π − log 2π − 2L′(0, χ)

}
+O(x−1/4) (1.13)

and ∫ x

1

t−1P (t) logj tdt = − 1

j + 1
logj+1 x+O(1) (1.14)

for j > 1.
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We remark that (1.14) is equivalent to (1.6) for the case θ = 1.
Recall the constant C1 appearing in (1.5) and (1.7). If we substitute the well-

known Hardy identity to the integral on the right hand side of (1.7), C1 may be
expressed as an infinite series involving J-Bessel functions. Comparing (1.5) and
Theorem 2, we get alternative representations of C1 as well as C2 and C3 in terms
of elementary functions and the values of ζK(s) or its derivatives. This remark
gives two applications. One is the new proof of the functional equation of ζK(s),
which is derived by combining (1.11) and the mean of the Hardy identity. The
other is the asymptotic representation of the log-Riesz mean of r(n) first obtained
by Müller [18]. We shall discuss these topics in Sections 5 and 6, respectively.

In [5] we discussed the possibility of analytic continuation of the double series
defined by

D(s1, s2) =
∑

16m<n

d(m)d(n)

ms1ns2
,

where s1 and s2 are complex variables and d(n) is the divisor function. In fact
we showed that it can be continued analytically as a meromorphic function to the
region

<s1 + <s2 > 1/2 (1.15)

in C2-space [5, Theorem 4]. In the last section, we shall study analogous properties
of the double series M(s1, s2) defined by

M(s1, s2) =
∑

16m<n

r(m)r(n)

ms1ns2
.

The series on the right hand side is absolutely convergent for <s2 > 1 and <s1 +
<s2 > 2, hence M(s1, s2) is holomorphic with respect to s1 and s2 there. As in
the divisor function case, we can show that the double series M(s1, s2) can be
continued analytically as a meromorphic function to the region (1.15) in C2-space.
Moreover, by applying the first formula in (1.5), we can improve the above range.

Theorem 3. The multiple series M(s1, s2) can be continued analytically as the
meromorphic function to the region

<s1 + <s2 > 1/4 (1.16)

in C2-space.

It seems difficult to improve the range (1.16). See the remark in Section 8.
Finally if we use the argument similar to that of Theorem 3 we can improve

the range (1.15) to (1.16) for analytic continuation of D(s1, s2), namely we have

Proposition 2. The multiple series D(s1, s2) can be continued analytically as the
meromorphic function to the region (1.16) in C2-space.
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Throughout this paper, the summation
∑
n6x means that

∑
16n6x. The im-

plied constant in the symbols O( ) and � will depend at most on j and θ.
For a real number x, let ψ(x) be the first periodic Bernoulli function defined
by ψ(x) = x− [x]− 1/2, where [x] is the greatest integer not exceeding x. Besides
this, let ψ1(x) =

∫ x
1
ψ(t)dt for x > 1. In the latter discussions, we usually use the

estimate ψ1(x) = O(1) uniformly in x without any remarks.

2. The integral Ij(θ) for <θ > 1

As a preparation for the proofs of Theorems 1 and 2, we shall derive some identity
for the integral of P (t) over the finite interval. Though the integral exists for any
θ we will consider it only for 0 < <θ 6 5/4 with θ 6= 1 here.

Lemma 1. Suppose that 0 < <θ 6 5/4 and θ 6= 1. Then we have∫ x

1

t−θP (t)dt =
4

2− θ
x2−θ

∑
n6x

χ(n)n−1 +
2θ

(1− θ)(2− θ)
∑
n6x

χ(n)n1−θ

− 2

1− θ
x1−θ

∑
n6x

χ(n)− π

2− θ
x2−θ +

π

2− θ

− 4
∑
n6x

χ(n)n1−θ
∫ x/n

1

t−θψ(t)dt. (2.1)

Proof. By the definition of P (x), we have∫ x

1

t−θP (t)dt =
1

θ − 1

∑
n6x

r(n)n1−θ +
x1−θ

1− θ
P (x) +

π

(1− θ)(2− θ)
x2−θ +

π

2− θ
.

(2.2)

We consider the sum on the right hand side of (2.2). By r(n) = 4
∑
d|n χ(d) and

the well-known identity∑
n6y

n1−θ =
1

2− θ
y2−θ − ψ(y)y1−θ +

1

θ − 2
+

1

2
+ (1− θ)

∫ y

1

t−θψ(t)dt

for θ 6= 2 (see e.g. [5, Lemma 1]), we have
1

4

∑
n6x

r(n)n1−θ =
∑
n6x

χ(n)n1−θ
∑

m6x/n

m1−θ

=
1

2− θ
x2−θ

∑
n6x

χ(n)n−1 − x1−θ
∑
n6x

χ(n)ψ
(x
n

)
− θ

2(2− θ)
∑
n6x

χ(n)n1−θ

+ (1− θ)
∑
n6x

χ(n)n1−θ
∫ x/n

1

t−θψ(t)dt. (2.3)
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Note that (2.3) is also valid for θ = 1, hence

1

4
(πx+ P (x)) = x

∑
n6x

χ(n)n−1 − 1

2

∑
n6x

χ(n)−
∑
n6x

χ(n)ψ
(x
n

)
. (2.4)

Combing (2.2), (2.3) and (2.4) we get (2.1). �

Proof of Theorem 1. Suppose that 1 < <θ 6 5/4. Noting that∑
n6x

χ(n)n−s = L(s, χ) +O(x−<s), (<s > 0) (2.5)

L(1, χ) = π/4 and
∑
n6x χ(n) = O(1), we obtain from (2.1) that∫ x

1

t−θP (t)dt =
π

2− θ
+

2θ

(1− θ)(2− θ)
L(θ − 1, χ)

− 4
∑
n6x

χ(n)n1−θ
∫ x/n

1

t−θψ(t)dt+O(x1−<θ).

By the interchange of integration and summation, the third term on the right-hand
side is transformed as∑

n6x

χ(n)n1−θ
∫ x/n

1

t−θψ(t)dt =
L(θ − 1, χ)

θ − 1

{
θ

2(θ − 2)
− ζ(θ − 1)

}
+O(x1−<θ log x).

by using the well-known formula

ζ(s) =
1

2
+

1

s− 1
− s

∫ ∞
1

t−s−1ψ(t)dt, (<s > −1).

Hence we obtain∫ x

1

t−θP (t)dt = − π

θ − 2
+

4ζK(θ − 1)

θ − 1
+O(x1−<θ log x). (2.6)

Letting x→∞ in (2.6), we obtain the assertion of Theorem 1 for j = 0.
Let us treat the case j > 1. By integration by parts and (2.6), we can show that

for any positive ε, there exists a sufficiently largeM0 such that for all L > M > M0,∣∣∣∣∣
∫ L

M

t−θP (t) logj tdt

∣∣∣∣∣ < ε.

Hence the integral (1.8) converges uniformly in the wider sense in the region 1 <
<θ 6 5/4, thus we can differentiate (1.8) with respect to θ under the integral sign
and get (1.10). This completes the proof of Theorem 1. �
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Proof of Proposition 1. By the Leibniz rule, the Laurent expansion of ζK(s)
at s = 1 in terms of the zeta- and the L-functions is given by

(ζK(s))(ν) =

∞∑
n=ν

{
(L(1, χ))(n+1)

(n+ 1)!
+

n∑
m=0

(L(1, χ))(m)γn−m
m!

}(
n

ν

)
ν!(s− 1)n−ν

+
(−1)νν!π

4(s− 1)ν+1
.

Hence, we have

Ij(θ) = 4j!

j∑
m=0

(−1)j−m

{
(L(1, χ))(j−m+1)

(j −m+ 1)!
+

j−m∑
n=0

γj−m−n(L(1, χ))(n)

n!

}

− j!π

(θ − 2)j+1
+ j!π

j∑
m=0

(
1

θ − 1

)m+1(
1

θ − 2

)j−m+1

+O(|θ − 2|)

near θ = 2. Since (1.8) is absolutely convergent for <θ > 5/4, we obtain the
assertion of the proposition immediately by applying the following relation

a∑
m=0

(
1

θ − 1

)m+1(
1

θ − 2

)a−m+1

=

(
1

θ − 2

)a+1

−
(

1

θ − 1

)a+1

for any non-negative integer a to the above formula for Ij(θ) and by taking
θ → 2. �

3. Integral formulas involving the ψ-function

For a = 1 and 3, let

I(a) =

∫ x/(4−a)

1

t−1ψ(t)ψ
( x

4t
+
a

4

)
dt (3.1)

and

Z(a) =

∫ x/(4−a)

1

t−θψ(t)

∫ (x/t+a)/4

1

(
u− a

4

)−θ
ψ(u)dudt. (3.2)

In this section, we derive certain estimates of these integrals, which will be used
to prove Theorem 2 in Section 4.

Let x > 9. First we consider I(a). Dividing the range of this integral we have

I(a) =

{∫ √x
1

+

∫ x/(4−a)

√
x

}
t−1ψ(t)ψ

( x
4t

+
a

4

)
dt

=

∫ √x
1

t−1ψ(t)ψ
( x

4t
+
a

4

)
dt+

∫ √x
4−a

t−1ψ
(x
t

)
ψ

(
t

4
+
a

4

)
dt

= I1(a) + I2(a),

say. Here, for I2(a), we have changed the variable x/t to t. We shall show the
asymptotic formulas for these two functions.
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Lemma 2. For a = 1 and 3, we have

I1(a) = − 2

x

∑
k6
√
x

kB̄2

( x
4k

+
a

4

)
+O(x−1/2), (3.3)

where B̄2(x) is the second periodic Bernoulli function.

Proof. By the definition of the ψ-function, we have

I1(a) =

∫ √x
1

t−1

(
t− [t]− 1

2

)
ψ
( x

4t
+
a

4

)
dt

=

∫ √x
1

t−1

(
t− 1

2

)
ψ
( x

4t
+
a

4

)
dt−

∫ √x
1

t−1[t]ψ
( x

4t
+
a

4

)
dt

= I11 − I12, (3.4)

say. In I11, changing the variables as x/t = u and applying integration by parts,
we have

I11 = x

∫ x

√
x

(
u−2 − 1

2x
u−1

)
ψ
(u

4
+
a

4

)
du

= −4ψ1

(√
x

4
+
a

4

)
+ 4x

∫ x

√
x

(
2u−3 − 1

2x
u−2

)
ψ1

(u
4

+
a

4

)
du+O(x−1/2).

Let ψ2(x) =
∫ x

1
ψ1(t)dt. We can see easily that

ψ2(x) = − 1

12
x+O(1). (3.5)

Hence,∫ x

√
x

(
2u−3 − 1

2x
u−2

)
ψ1

(u
4

+
a

4

)
du

= − 1

12

[
u

(
2u−3 − 1

2x
u−2

)]x
√
x

− 1

12

∫ x

√
x

u

(
6u−4 − 1

x
u−3

)
du+O(x−3/2)

= − 1

12x
+O(x−3/2),

and therefore we obtain

I11 =− 4

{
1

12
+ ψ1

(√
x

4
+
a

4

)}
+O(x−1/2). (3.6)

Next we consider I12. We easily see that

I12 =

[
√
x]−1∑
k=1

k

∫ k+1

k

t−1ψ
( x

4t
+
a

4

)
dt+ [

√
x]

∫ √x
[
√
x]

t−1ψ
( x

4t
+
a

4

)
dt

= I
(1)
12 + I

(2)
12 ,
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say. The integral in I(1)
12 can be transformed as∫ k+1

k

t−1ψ
( x

4t
+
a

4

)
dt =

∫ x/k

x/(k+1)

u−1ψ
(u

4
+
a

4

)
du

=
4

x

{
kψ1

( x
4k

+
a

4

)
− (k + 1)ψ1

(
x

4(k + 1)
+
a

4

)}
+ 4

∫ x/k

x/(k+1)

u−2ψ1

(u
4

+
a

4

)
du

by applying the change of variables and integration by parts. Hence by using this
formula and the relation

N−1∑
n=1

n(an − an+1) =

N∑
n=1

an −NaN (3.7)

with any sequence {an}n∈N and N > 2, we have

I
(1)
12 =

4

x


[
√
x]∑

k=1

kψ1

( x
4k

+
a

4

)
− [
√
x]2ψ1

(
x

4[
√
x]

+
a

4

)
+ 4

[
√
x]−1∑
k=1

k

∫ x/k

x/(k+1)

u−2ψ1

(u
4

+
a

4

)
du. (3.8)

We further transform the sum of the last part on the right-hand side in (3.8).
Let us define

F (k) =

∫ x/k

1

u−2ψ1

(u
4

+
a

4

)
du

briefly. Then by (3.7) we have

[
√
x]−1∑
k=1

k

∫ x/k

x/(k+1)

u−2ψ1

(u
4

+
a

4

)
du =

[
√
x]∑

k=1

F (k)− [
√
x]F ([

√
x]).

Since F (k) = O(1) uniformly in k and x, we have, by integration by parts and
(3.5),

F (k) =

∫ ∞
1

u−2ψ1

(u
4

+
a

4

)
du

− 4

{[
u−2ψ2

(u
4

+
a

4

)]∞
x/k

+ 2

∫ ∞
x/k

u−3ψ2

(u
4

+
a

4

)
du

}

=

∫ ∞
1

u−2ψ1

(u
4

+
a

4

)
du+

k

12x
+O

(
k2

x2

)
,
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and hence

[
√
x]−1∑
k=1

k

∫ x/k

x/(k+1)

u−2ψ1

(u
4

+
a

4

)
du = − 1

24
+O

(
x−1/2

)
.

Therefore we obtain

I
(1)
12 =

4

x


[
√
x]∑

k=1

kψ1

( x
4k

+
a

4

)
− [
√
x]2ψ1

(
x

4[
√
x]

+
a

4

)− 1

6
+O(x−1/2).

Similarly we have

I
(2)
12 = −[

√
x]

∫ √x
x/[
√
x]

u−1ψ
(u

4
+
a

4

)
du

= −4[
√
x]

{
1√
x
ψ1

(√
x

4
+
a

4

)
−
√
x

x
ψ1

(
x

4[
√
x]

+
a

4

)}
+O(x−1/2).

Adding I(1)
12 and I(2)

12 we have

I12 =
4

x

[
√
x]∑

k=1

kψ1

( x
4k

+
a

4

)
− 1

6
− 4ψ1

(√
x

4
+
a

4

)
+O(x−1/2). (3.9)

Combining (3.4), (3.6) and (3.9), we obtain

I1(a) = − 4

x

[
√
x]∑

k=1

kψ1

( x
4k

+
a

4

)
− 1

6
+O(x−1/2).

If we recall the relation B̄2(x) = 2ψ1(x) + 1/6, we obtain (3.3). �

Lemma 3. For a = 1 and 3, we have

I2(a) = − 1

2x

∑
k6(
√
x+a)/4

(4k − a)B̄2

(
x

4k − a

)
+O(x−1/2). (3.10)

Proof. We begin our proof with the transformation

I2(a) =

∫ √x
4−a

t−1

(
t

4
+
a

4
−
[
t

4
+
a

4

]
− 1

2

)
ψ
(x
t

)
dt

=
1

4

∫ √x
4−a

(
1 +

a− 2

t

)
ψ
(x
t

)
dt−

∫ √x
4−a

t−1

[
t

4
+
a

4

]
ψ
(x
t

)
dt

= I21 − I22,
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say. Similarly to I11 in Lemma 2, we find that

I21 = −1

4
ψ1(
√
x)− 1

48
+O(x−1/2). (3.11)

For I22, we note that

I22 = 4

∫ (
√
x+a)/4

1

(4u− a)−1[u]ψ

(
x

4u− a

)
du.

Then we easily see with an abbreviation Na = (
√
x+ a)/4 that

I22 = 4

[Na]−1∑
k=1

k

∫ k+1

k

(4u− a)−1ψ

(
x

4u− a

)
du

+ 4[Na]

∫ Na

[Na]

(4u− a)−1ψ

(
x

4u− a

)
du

= I
(1)
22 + I

(2)
22 ,

say. The function I(1)
22 can be rewritten as

I
(1)
22 =

1

x


[Na]∑
k=1

(4k − a)ψ1

(
x

4k − a

)
− [Na](4[Na]− a)ψ1

(
x

4[Na]− a

)
+

[Na]−1∑
k=1

k

∫ x/(4k−a)

x/(4(k+1)−a)

t−2ψ1(t)dt

by integration by parts and (3.7). We put

F̃ (k) =

∫ x/(4k−a)

1

t−2ψ1(t)dt.

for simplicity. Since

F̃ (k) =

∫ ∞
1

t−2ψ1(t)dt+
4k − a

12x
+O

(
k2

x2

)
,

we have (by (3.7) again)

[Na]−1∑
k=1

k

∫ x/(4k−a)

x/(4(k+1)−a)

t−2ψ1(t)dt = − 1

96
+O(x−1/2).

Therefore we have

I
(1)
22 =

1

x


[Na]∑
k=1

(4k − a)ψ1

(
x

4k − a

)
− [Na](4[Na]− a)ψ1

(
x

4[Na]− a

)
− 1

96
+O(x−1/2).
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It is easy to see that the function I(2)
22 is transformed as

I
(2)
22 = [Na]

∫ x/(4[Na]−a)

x/(4Na−a)

t−1ψ (t) du

= [Na]

{
4[Na]− a

x
ψ1

(
x

4[Na]− a

)
− 4Na − a

x
ψ1

(
x

4Na − a

)}
+O(x−1/2).

Therefore we get the asymptotic formula

I22 =
1

x

[Na]∑
k=1

(4k − a)ψ1

(
x

4k − a

)
− 1

96
− 1

4
ψ1

(√
x
)

+O(x−1/2). (3.12)

By combining (3.11) and (3.12) and using the relation B̄2(x) = 2ψ1(x)+1/6 again,
we complete the proof of Lemma 3. �

The estimate of I(a) is given in the following lemma.

Lemma 4. For a = 1 and 3, we have

I(a)� x−1/4.

Proof. Substituting the well-known Fourier expansion

B̄2(x) =
1

2π2

∑
m 6=0

e(mx)

m2

to the right-hand sides of (3.3) and (3.10), and interchanging summations, we have

I(a) =− 1

π2x

∑
m 6=0

e(ma/4)

m2

∑
k6
√
x

ke
(mx

4k

)
− 1

π2x

∑
m 6=0

1

m2

∑
k6(
√
x+a)/4

ke

(
mx

4k − a

)
+O(x−1/2).

To treat the innermost sum, we use the estimate of the exponential sum as [13]
(in fact, our case is easier than theirs). Let M > 0 and M < M ′ 6 2M . Then we
have ∑

M<k6M ′

e
( z
k

)
�M−1/2z1/2 +M3/2z−1/2 (3.13)

and ∑
M<k6M ′

e

(
z

4k − a

)
�M−1/2z1/2 +M3/2z−1/2, (3.14)

where (3.13) is given in [13, (7)] and (3.14) is derived easily by [24, Theorem 5.9].
Note that these exponential sums have the same upper bounds.
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By partial summation, (3.13) and (3.14), we see that the exponential sums

M−1
∑

M<k6M ′

ke
( z
k

)
and M−1

∑
M<k6M ′

ke

(
z

4k − a

)

can be also estimated by the right-hand side in (3.13) and (3.14). Hence, by the
splitting argument on the range of k, we obtain

∑
k6
√
x

ke
(mx
k

)
and

∑
k6(
√
x+a)/4

ke

(
mx

4k − a

)
�
√
x
(
x−1/4(mx)1/2 + x3/4(mx)−1/2

)
� x3/4m1/2.

Since the sum with respect to m is absolutely convergent, we have the assertion
of the lemma. �

To derive the asymptotic formula for Z(a) with an error of negative powers,
we shall make use of the integral version of the Dirichlet hyperbola method, which
we recall now. Let f(t) and g(t) denote integrable functions in [1, x] and y denote
a parameter with 1 6 y 6 x. Then we have, for a positive number c with c > 1,∫ x/c

1

f(t)

∫ x/t

c

g(u)dudt =

∫ y

1

f(t)

∫ x/t

c

g(u)dudt+

∫ x/c

y

f(t)

∫ x/t

c

g(u)dudt

=

∫ y

1

f(t)

∫ x/t

c

g(u)dudt+

∫ x/y

c

g(u)

∫ x/u

y

f(t)dtdu

=

∫ y

1

f(t)

∫ x/t

c

g(u)dudt+

∫ x/y

c

g(u)

∫ x/u

1

f(t)dtdu

−
(∫ y

1

f(t)dt

)(∫ x/y

c

g(u)du

)
. (3.15)

Lemma 5. For a = 1 and 3, let Z(a) be the integral defined by (3.2). For <θ > 0,
we have

Z(a) = ca(θ)c(θ) +O(x−<θ/2) +O(x1/2−<θ),

where we put

c(θ) =

∫ ∞
1

t−θψ(t)dt (3.16)

and

ca(θ) =

∫ ∞
1

(
t− a

4

)−θ
ψ(t)dt. (3.17)
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Proof. Changing the variable as v = 4u− a in the innermost integral in Z(a), we
find that

Z(a) =4θ−1

∫ x/(4−a)

1

t−θψ(t)

∫ x/t

4−a
v−θψ

(
v + a

4

)
dvdt.

We apply the Dirichlet hyperbola method to the integral on the right-hand side
above by putting f(t) = t−θψ(t), g(u) = u−θψ((u+ a)/4), y =

√
x and c = 4− a

in (3.15). Furthermore if note that∫ x

1

t−θψ(t)dt = c(θ) +O(x−<θ)

and ∫ x

1

(
t− a

4

)−θ
ψ(t)dt = ca(θ) +O(x−<θ)

for <θ > 0, we get the assertion of this lemma immediately. �

The function c(θ) can be written as

c(θ) =
1

θ − 2
− 1

2(θ − 1)
− ζ(θ − 1)

θ − 1
, (3.18)

particularly, c(θ) is regular at θ = 2 (see e.g. [5]).
For later use, we derive an explicit evaluation of c1(θ)− c3(θ) by means of the

Dirichlet L-function.

Lemma 6. For <θ > 0, we have

41−θ(c1(θ)− c3(θ)) =
L(θ − 1, χ)

θ − 1
+

3− 2θ − 31−θ(1− 2θ)

4(1− θ)(2− θ)
.

Remark that the function on the right-hand side is holomorphic at θ = 1 and 2.

Proof. From the definition of χ(n) we have

∑
n6x

χ(n) =
1

2
− ψ

(
x+ 3

4

)
+ ψ

(
x+ 1

4

)
. (3.19)

Then, by partial summation and (3.19), we have

∑
n6x

χ(n)n−s = x−s
∑
n6x

χ(n) + s

∫ x

1

t−s−1

{
1

2
− ψ

(
t+ 3

4

)
+ ψ

(
t+ 1

4

)}
dt.

Hence, by noting

ca(θ) = 4θ−1

∫ ∞
4−a

t−θψ

(
t+ a

4

)
dt,



318 Jun Furuya, Yoshio Tanigawa

and taking x→∞ with s = θ − 1, we have

L(θ − 1, χ) =
1

2
+ (θ − 1)

{
41−θ(c1(θ)− c3(θ)) +

∫ 3

1

t−θψ

(
t+ 1

4

)
dt

}
(3.20)

for <θ > 1, and for <θ > 0 by analytic continuation of ca(θ).
On the other hand, because of ψ ((t+ 1)/4) = (t− 1)/4 for 1 6 t < 3, we have∫ 3

1

t−θψ

(
t+ 1

4

)
dt =

1

4

∫ 3

1

t−θ(t− 1)dt =
1

4

{
32−θ − 1

2− θ
− 31−θ − 1

1− θ

}
.

Substituting the above into (3.20) we obtain the assertion of this lemma. �

4. Proof of Theorem 2

We used the inequality (2.5) in the proof of Theorem 1, but this is not enough for
the proof of Theorem 2. To get more precise estimate, we return to (2.1).

Let 0 < <θ 6 1 and θ 6= 1. On the right hand side of (2.1), the sum
∑
n6x χ(n)

was already treated in (3.19). As for the sum
∑
n6x χ(n)n−1, we have∑

n6x

χ(n)n−1 =
π

4
− 1

x

{
ψ

(
x+ 3

4

)
− ψ

(
x+ 1

4

)}
+O(x−2) (4.1)

by partial summation and (3.19). Note that (4.1) is a refinement of the formula
(2.5) for s = 1.

As for the sum
∑
n6y χ(n)n1−θ, by the definition of χ(n), we divide it as

∑
n6y

χ(n)n1−θ = 41−θ

 ∑
16m6(y+3)/4

(
m− 3

4

)1−θ

−
∑

16m6(y+1)/4

(
m− 1

4

)1−θ
 .

Applying the Euler-Maclaurin summation formula to each sum above, we get

∑
16m6(y+a)/4

(
m− a

4

)1−θ
=

1

2− θ

{(y
4

)2−θ
−
(

4− a
4

)2−θ
}

− ψ
(
y + a

4

)(y
4

)1−θ
+

1

2

(
4− a

4

)1−θ

+ (1− θ)
∫ (y+a)/4

1

(
t− a

4

)−θ
ψ(t)dt (4.2)

for a = 1 and 3, hence∑
n6y

χ(n)n1−θ =
3− 2θ − (1− 2θ)31−θ

4(2− θ)
−
{
ψ

(
y + 3

4

)
− ψ

(
y + 1

4

)}
y1−θ

+ 41−θ(1− θ)
{
c3(θ)− c1(θ) +O(y−<θ)

}
. (4.3)
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The implied constant in the O-symbol in (4.3) is bounded uniformly in θ for
0 6 <θ 6 5/4.

It remains to evaluate the last sum on the right-hand side of (2.1). We have
similarly that∑
n6x

χ(n)n1−θ
∫ x/n

1

t−θψ(t)dt

=

∫ x

1

t−θψ(t)

 ∑
16m6(x/t+3)/4

(4m− 3)
1−θ −

∑
16m6(x/t+1)/4

(4m− 1)
1−θ

 dt.

If we note that the second sum in the integrand on the right-hand side above is
empty for x/3 < t 6 x, we find that∑

n6x

χ(n)n1−θ
∫ x/n

1

t−θψ(t)dt = R3(x)−R1(x), (4.4)

where

Ra(x) =

∫ x/(4−a)

1

t−θψ(t)
∑

16m6(x/t+a)/4

(4m− a)
1−θ

dt.

Substituting (4.2) with Ra(x) and applying Lemmas 4 and 6, we obtain

Ra(x) =
x2−θ

4(2− θ)

∫ x/(4−a)

1

t−2ψ(t)dt+
(4− a)1−θ(a− 2θ)

4(2− θ)

∫ x/(4−a)

1

t−θψ(t)dt

− x1−θ
∫ x/(4−a)

1

t−1ψ(t)ψ
( x

4t
+
a

4

)
dt

+ 41−θ(1− θ)
∫ x/(4−a)

1

t−θψ(t)

∫ (x/t+a)/4

1

(
u− a

4

)−θ
ψ(u)dudt

=
x2−θ

4(2− θ)
(
c(2) +O(x−2)

)
+

(4− a)1−θ(a− 2θ)

4(2− θ)
(
c(θ) +O(x−<θ)

)
− x1−θI(a) + 41−θ(1− θ)Z(a)

=
x2−θ

4(2− θ)
c(2) +

(4− a)1−θ(a− 2θ)

4(2− θ)
c(θ)

+ 41−θ(1− θ)ca(θ)c(θ) +O(x3/4−<θ),

where the implied constant is bounded uniformly in θ for 0 6 <θ 6 5/4. Subtract-
ing R1(x) from R3(x) we get∑

n6x

χ(n)n1−θ
∫ x/n

1

t−θψ(t)dt =
(3− 2θ)− (1− 2θ)31−θ

4(2− θ)
c(θ)

+ 41−θ(1− θ) {c3(θ)− c1(θ)} c(θ) +O(x3/4−<θ). (4.5)
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Now substitute (3.19), (4.1), (4.3) and (4.5) with (2.1). Thus we get∫ x

1

t−θP (t)dt =
4

2− θ
x2−θ

{
π

4
− 1

x

(
ψ

(
x+ 3

4

)
− ψ

(
x+ 1

4

))}
+

2θ

(1− θ)(2− θ)
· (3− 2θ)− (1− 2θ)31−θ

4(2− θ)

− 2θ

2− θ
41−θ(c1(θ)− c3(θ))

− 2θ

(1− θ)(2− θ)
x1−θ

{
ψ

(
x+ 3

4

)
− ψ

(
x+ 1

4

)}
− 2

1− θ
x1−θ

{
1

2
− ψ

(
x+ 3

4

)
+ ψ

(
x+ 1

4

)}
− π

2− θ
x2−θ

+
π

2− θ
− (3− 2θ)− (1− 2θ)31−θ

2− θ
c(θ)

− 42−θ(1− θ) {c3(θ)− c1(θ)} c(θ) +O(x3/4−<θ).

But the sum of the coefficients of ψ((x+3)/4)−ψ((x+1)/4) in the above formula
vanishes, hence we have∫ x

1

t−θP (t)dt = − x
1−θ

1− θ
+

π

2− θ
+

(
2θ

(1− θ)(2− θ)
− 4c(θ)

)

×
{

(3− 2θ)− (1− 2θ)31−θ

4(2− θ)
− 41−θ(1− θ)(c1(θ)− c3(θ))

}
+O(x3/4−<θ).

Using (3.18) and Lemma 6, we finally obtain∫ x

1

t−θP (t)dt = − x
1−θ

1− θ
+

π

2− θ
+

4ζ(θ − 1)L(θ − 1, χ)

θ − 1
+O(x3/4−<θ). (4.6)

This proves Theorem 2 for the case θ 6= 1 and j = 0.
The formula (1.12) is obtained by partial summation, (1.11) and∫ x

1

t−θ logj tdt =
j!

(θ − 1)j+1
− x1−θ

j∑
m=0

(
j

m

)
m!

(θ − 1)m+1
logj−m x,

which is valid for a fixed non-negative integer j and a complex number θ with
θ 6= 1 [5, the formula (5.10)]. This completes the proof of Theorem 2 in the case
0 < <θ 6 1 and θ 6= 1.

For the proof of (1.13), we let θ → 1 in (4.6) and get∫ x

1

t−1P (t)dt =− log x+ π + 4 {ζ ′(0)L(0, χ) + ζ(0)L′(0, χ)}+O(x−1/4)

=− log x+ {π − log 2π − 2L′(0, χ)}+O(x−1/4).



On integrals and Dirichlet series obtained from the error term in the circle problem 321

The formula (1.14) can be derived by using integration by parts and (1.13).
This completes the proof of Theorem 2.

5. On the constant C1

As we saw in Section 1, we have two kinds of representation of the constant C1;
one is (1.7) and the other is (1.11). Using these representations we shall give a
new proof of the functional equation of ζK(s) for K = Q(

√
−1).

In order to get the explicit form of
∫ x

0
P (t)dt we need the following lemma.

Lemma 7. For x > 0, let R(x) denote the number of lattice points which lie on
or inside the circle ξ2 + η2 = x in (ξ, η)-plane. Then we have∫ x

0

R(t)dt =
π

2
x2 +

x

π

∞∑
n=1

r(n)

n
J2(2π

√
nx), (5.1)

where Jν(x) is the Bessel function of the first kind of order ν. The infinite series
on the right hand side of (5.1) is absolutely convergent.

The proof of this formula can be found in, e.g., [9] and [15, Theorem 3.11].
In particular, in [15, Theorem 3.11], (5.1) is proved as follows: first represent∫ x

0
R(t)dt by the integral of Bernoulli functions, called the “convolution” of the

Bernoulli functions. And then substitute the Fourier expansion of ψ(x) into that
integral and apply the integral formula of Jν(x). We should stress that the proof
given there is independent of the Dedekind zeta function ζK(s).

Now we consider the error function P (x) defined by (1.1) for x < 1. In order
to relate it to the function R(x), we define P (x) = −πx for 0 6 x < 1. Then

R(x) = 1 + πx+ P (x)

holds true for x > 0. Under this interpretation, the above lemma leads∫ x

0

P (t)dt = −x+
x

π

∞∑
n=1

r(n)

n
J2(2π

√
nx). (5.2)

Suppose that 3/4 < <θ < 1, and let

f(x) =

∫ x

0

t−θP (t)dt, (5.3)

which we shall calculate in two ways.
Firstly, by (1.11) and the above definition of P (x), we have

f(x) = − 1

1− θ
x1−θ +

4ζK(θ − 1)

θ − 1
+O(x3/4−<θ).
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Secondly, by applying integration by parts and substituting (5.2) into (5.3), we
have

f(x) = −x1−θ +
x1−θ

π

∞∑
n=1

r(n)

n
J2(2π

√
nx)

+ θ

∫ x

0

t−θ−1

{
−t+

t

π

∞∑
n=1

r(n)

n
J2(2π

√
nt)

}
dt

= − x
1−θ

1− θ
+
θ

π

∞∑
n=1

r(n)

n

∫ x

0

t−θJ2(2π
√
nt)dt+O(x3/4−<θ),

where the interchange of summation and integration can be justified by Jν(x) =
O(1/

√
x) as x → ∞ and the formula (5.5) below. Recall the well-known integral

formula ∫ ∞
0

tρ−1Jν(at)dt = 2ρ−1a−ρΓ

(
ν + ρ

2

)/
Γ

(
1 +

ν − ρ
2

)
(5.4)

for −<ν < <ρ < 3/2 and a > 0 (cf. e.g. [3, eq. (19) in p.49]). Then by changing
the variable of integration as

√
t = u and applying (5.4) with a = 2π

√
n, ν = 2

and ρ = 2− 2θ, we get∫ ∞
0

t−θJ2(2π
√
nt)dt =

π2θ−2

n1−θ
Γ(2− θ)
Γ(1 + θ)

, (5.5)

and therefore

f(x) = − x
1−θ

1− θ
+
θ

π
π2θ−2 Γ(2− θ)

Γ(1 + θ)

∞∑
n=1

r(n)

n2−θ +O(x3/4−<θ)

= − x
1−θ

1− θ
+ 4π2θ−3 Γ(2− θ)

Γ(θ)
ζK(2− θ) +O(x3/4−<θ).

Comparing these representations of f(x) and letting x→∞, we have

ζK(θ − 1)

θ − 1
= π2θ−3 Γ(2− θ)

Γ(θ)
ζK(2− θ).

The change of the variable θ = s+ 1 derives that

π−sΓ(s)ζK(s) = πs−1Γ(1− s)ζK(1− s),

firstly for −1/4 < <s < 0, and for all s by analytic continuation. This gives

Corollary 1. The formula (1.11) in Theorem 2 and (5.1) in Lemma 7 give the
proof of the functional equation of the Dedekind zeta-function ζK(s) associated
with K = Q(

√
−1).
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Remark 1. It is appropriate to give some remarks on the relation between the
analytic continuation and the functional equation of ζK(s). In the standard text-
book such as [16, §3 in Chapter XIII], they are proved simultaneously by using the
theta transformation formula. But in the case that we are concerned with, ζK(s)
is represented as the product of ζ(s) and L(s, χ), whose analytic continuations can
be proved independently from their functional equations. In this sense, we can say
that if we assume the analytic continuation of ζK(s), the functional equation is
proved by (1.11) via the Hardy identity.

6. On the log-Riesz mean of r(n)

Using the theory of elliptic and theta functions, Müller [18] proved that

∑
n6x

r(n) log
x

n
= πx− log x− log

Γ4(1/4)

4π
+O(x−1/4) (6.1)

and a little later Carlitz [2] gave a simpler proof of (6.1) by using the Abel trans-
formation formula. (But Carlitz did not give the explicit form of the constant
term.)

We shall give an alternative proof of (6.1) as an application of (1.13). In fact,
by partial summation, we have

∑
n6x

r(n) log
x

n
=

∫ x

1

t−1
∑
n6t

r(n)dt = π(x− 1) +

∫ x

1

t−1P (t)dt. (6.2)

Hence the formula (1.13) implies that

∑
n6x

r(n) log
x

n
= πx− log x− log 2π − 2L′(0, χ) +O(x−1/4). (6.3)

However, it is well-known that

L′(0, χ) = log Γ2(1/4)− log π − 3

2
log 2 (6.4)

(see e.g. [1, p.344]). Therefore the substitution of (6.4) into (6.3) reproduces
Müller’s result (6.1).

We remark that Ayoub and Chowla [1, eqs.(3) and (4)] also derived the same
formula as (6.3), in fact they considered the general imaginary quadratic field cases
by the use of (the logarithmic version of) Perron’s formula [1, eq.(2)]. Redmond
[22] and [23] considered the generalization of the results of Ayoub and Chowla [1].
Our proof for (6.2) is different from theirs.
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7. Dirichlet series related with P (x)

In this section we study some properties of Dirichlet series and integrals related
to P (x). First define Dj(s) and Ij(s) by

Dj(s) =

∞∑
n=1

P (n)jn−s (7.1)

and

Ij(s) =

∫ ∞
1

t−sP (t)jdt (7.2)

for j = 1 and 2. It is easy to see that the right hand sides of (7.1) and (7.2)
converge absolutely for <s > 1 + j/4. Further, we note that I1(s) = I0(s). In our
previous paper [7] we studied the possibility of analytic continuation of Dj(s) and
Ij(s), which we recall by adding the exact evaluation of the residues.

Lemma 8 ([7, Theorem 3]). We have

(1) The Dirichlet series D1(s) can be continued analytically to the whole complex
plane. It has a simple pole at s = 1 with the residue

Res
s=1
D1(s) =

π

2
− 1.

(2) The Dirichlet series D2(s) can be continued analytically to the right-half
plane <s > 2/3. It has simple poles at s = 1 and 3/2 with the residues

Res
s=1
D2(s) =

π(π − 6)

6
and Res

s=3/2
D2(s) =

1

2π2

∞∑
n=1

r(n)2

n3/2
,

respectively.

Lemma 9 ([7, Section 6]). The function I2(s) can be continued analytically to
the right-half plane <s > 2/3. It has a simple pole at s = 3/2 with the residue

Res
s=3/2

I2(s) =
1

2π2

∞∑
n=1

r(n)2

n3/2
.

In particular, the function I2(s) is regular at s = 1.

In [7], we did not give the exact evaluation of residue at each pole, and further-
more, the assertion of the location of the pole of I2(s) at s = 1 is misprinted. So
we would like to give a sketch of the proofs of Lemmas 8 and 9 with the corrections
on the poles of I2(s).
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For that purpose, it is convenient to use the definition of the error term different
from (1.1), namely, let P̃ (x) denote the function defined by

P̃ (x) =
∑
n6x

′
r(n)− πx+ 1 (7.3)

for x > 1, where the symbol
∑′
n6x means that the last term is to be halved if x

is an integer. This definition is also used frequently.
Put

L(p) =

∫ ∞
1

P̃ (t)2e−ptdt (p > 0)

and
Ĩ2(s) =

∫ ∞
1

t−sP̃ (t)2dt.

In the region <s > 3/2, the defining integral for Ĩ2(s) is absolutely convergent,
and in this region we have∫ ∞

0

LF (p)ps−1dp = Γ(s)Ĩ2(s). (7.4)

Ivić [12] showed that

L(p) =

(
1

4π3/2

∞∑
n=1

r(n)2

n3/2

)
p−3/2 − p−1 +O(p−2/3−ε) (7.5)

as p→ +0. So substituting (7.5) with the left hand side of (7.4), we have

Γ(s)Ĩ2(s) =

(
1

4π3/2

∞∑
n=1

r(n)2

n3/2

)
1

s− 3/2
− 1

s− 1
+H(s)

for <s > 3/2. Here H(s) represents a holomorphic function in the region <s >
2/3. Hence, this expression gives an analytic continuation of Ĩ2(s) to the region
<s > 2/3. Now it is easy to see that Ĩ2(s) has poles at s = 3/2 and s = 1 with
the residues

Res
s=3/2

Ĩ2(s) =
1

2π2

∞∑
n=1

r(n)2

n3/2
and Res

s=1
Ĩ2(s) = −1,

respectively.
For the proof of Lemma 9, we first note that∫ ∞

1

t−sP̃ (t)2dt =

∫ ∞
1

t−s(P (t) + 1)2dt

for <s > 3/2, and from which we deduce that

I2(s) = Ĩ2(s)− 2I1(s)− 1

s− 1
. (7.6)

This gives the analytic continuation of I2(s) to <s > 2/3.
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The possible poles of I2(s) are s = 3/2 and s = 1, whose orders are at most
one. The point s = 3/2 is in fact a pole and the residue at s = 3/2 is given
immediately from the formula (7.6). But s = 1 is not a pole of I2(s). To see this,
note that Ress=1 I1(s) = −1 by (1.9) and the result ζK(0) = −1/4, therefore we
have

Res
s=1
I2(s) = Res

s=1
Ĩ2(s) + 1 = 0.

Hence the function I2(s) is regular at s = 1. This completes the proof of Lemma 9.
Next we consider the residues of D2(s). By [7, Lemma 7], we have

D1(s) = I1(s) + s

∫ ∞
1

(
1

2
− ψ(t)

)
P (t)t−s−1dt+ π

∫ ∞
1

(
1

2
− ψ(t)

)
t−sdt

and thus∫ ∞
1

(
1

2
− ψ(t)

)
P (t)t−sdt

=
1

s− 1

{
D1(s− 1)− I1(s− 1)− π

(
1

s− 2
− 1

s− 3
+
ζ(s− 2)

s− 2

)}
(7.7)

for <s > 5/4. Furthermore, we again apply [7, Lemma 7] and use (7.7) to obtain

D2(s) = I2(s) + s

∫ ∞
1

(
1

2
− ψ(t)

)
P (t)2t−s−1dt

+
2π

s− 1

{
D1(s− 1)− I1(s− 1)− π

(
1

s− 2
− 1

s− 3
+
ζ(s− 2)

s− 2

)}
for <s > 5/4, and thus for <s > 2/3 by analytic continuation. From this relation,
we trivially obtain Ress=3/2D2(s) = Ress=3/2 I2(s), since all terms except for
I2(s) are regular at s = 3/2. The residue of D2(s) at s = 1 can also be derived
easily from this formula and the properties I1(0) = π/2, ζ(−1) = −1/12 and
L(−1, χ) = 0. This completes the proof of Lemma 8.

Under these preparations, we shall introduce another type of Dirichlet series
related to P (x). Let

Y(s) =

∞∑
n=1

r(n)P (n)

ns
.

This series is convergent absolutely for <s > 5/4 by the mean square formula for
P (x). The analytic continuation of Y(s) is given by the following theorem.

Theorem 4. The Dirichlet series Y(s) can be continued analytically to the right-
half plane <s > −1/3, whose explicit form is given by

Y(s) =
8ζK(s)2

(1 + 2−s)ζ(2s)
− 1

2
π2 + πI1(s) +

1

2
sI2(s+ 1). (7.8)
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In the region <s > 1/2, it has a simple pole at s = 1/2 with the residue

Res
s=1/2

Y(s) =
1

8π2

∞∑
n=1

r(n)2

n3/2
,

and it also has a double pole at s = 1, whose Laurent expansion is of the form

Y(s) =
2

(s− 1)2
+

1

s− 1

{
4γ +

16

π
L′(1, χ)− 24

π2
ζ ′(2) +

2

3
log 2− π

}
+O(1).

Proof. Let
YN (s) =

∑
n6N

r(n)P (n)n−s,

where N is a sufficiently large integer. By using (1.1) and partial summation, we
have

2YN (s)−
∑
n6N

r(n)2n−s =

∑
n6N

r(n)n−s

∑
m6N

r(m)

− π 2− s
1− s

∑
n6N

r(n)n−s+1

+
πs

1− s
∑
n6N

r(n)− s
∑
n6N

r(n)

∫ n

1

t−s−1P (t)dt.

Furthermore, by noting

∑
n6N

r(n)

∫ n

1

t−sP (t)dt =

∑
n6N

r(n)

∫ N

1

t−sP (t)dt− π
∫ N

1

t−s+1P (t)dt

−
∫ N

1

t−sP (t)2dt,

and by partial summation again, we have

2YN (s)−
∑
n6N

r(n)2n−s

=

∑
n6N

r(n)

ns
− s

∫ N

1

t−s−1P (t)dt− π 2− s
1− s

N1−s +
πs

1− s


∑
n6N

r(n)


+ π(2− s)

∫ N

1

t−s
∑
n6t

r(n)dt+ πs

∫ N

1

t−sP (t)dt+ s

∫ N

1

t−s−1P (t)2dt

= −π2 + 2π

∫ N

1

t−sP (t)dt+ s

∫ N

1

t−s−1P (t)2dt+ P (N)2N−s.

Assuming that <s > 5/4, we let N →∞, then we get (7.8), since∑
n6x

r(n)2n−s =
16ζK(s)2

(1 + 2−s)ζ(2s)
+O(x1−<s log x)



328 Jun Furuya, Yoshio Tanigawa

(for <s > 1 ) (cf. e.g. [21, p.187]) and P (x) = O(x1/3). The right hand side of
(7.8) gives the analytic continuation of Y(s) to <s > −1/3. The other assertions
of this lemma also follow easily from this formula and the known results of Ij(s)
and ζ(s). This completes the proof of the theorem. �

Theorem 4 can be applied to the study of the Dirichlet series D̃j(s) defined by

D̃j(s) =

∞∑
n=1

P̃ (n)jn−s. (7.9)

Since P̃ (n) = P (n)− 1
2r(n) + 1 for a positive integer n, we find that

D̃1(s) = D1(s)− 2ζK(s) + ζ(s)

and

D̃2(s) = D2(s) + 2D1(s)− 4ζK(s) + ζ(s) +
4ζK(s)2

(1 + 2−s)ζ(2s)
− Y(s)

for <s > 1 + j/4. Hence from Lemma 8 and Theorem 4, we obtain the following
corollary.

Corollary 2. Let D̃j(s) be the Dirichlet series defined by (7.9) for j = 1 and 2.
Then we have

(1) The Dirichlet series D̃1(s) can be continued analytically as an entire function
in whole complex plane, especially the point s = 1 is not a pole of D̃1(s).

(2) The Dirichlet series D̃2(s) can be continued analytically as a meromorphic
function to the right-half plane <s > 2/3. In the region <s > 2/3, it has
a simple pole at s = 3/2, whose residue is the same as that of D2(s), and it
also has a double pole at s = 1.

Other properties of D̃j(s), for instance, the Laurent expansion at the poles and
the special values at negative integers, can be obtained similarly, but we omit the
details for these topics here.

Remark 2. The order of growth of D2(s) and Y(s) can be derived by the same
way as in [4, Theorems 2 and 3]. We only state the results here.

Proposition 3. For t = =s, we have

D2(s)�


1 for <s > 3/2,

log |t| for <s = 3/2,

|t|3−2<s log2 |t| for 1 < <s < 3/2

and

Y(s)�

{
1 for <s > 5/4,

|t|(5−4<s)/3 log3/2 |t| for 1/2 6 <s 6 5/4.
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8. Proof of Theorem 3

In this section we shall prove Theorem 3. For this purpose, we first consider the
partial sum ∑

m6n6N

r(m)r(n)

ms1ns2
.

It suffices to consider the behavior of this sum as N →∞, since

∑
m<n6N

r(m)r(n)

ms1ns2
=

∑
m6n6N

r(m)r(n)

ms1ns2
−
∑
n6N

r(n)2

ns1+s2
.

Firstly, we suppose that <s1 > 1 and <s2 > 1. We can easily see that

∑
m6n6N

r(m)r(n)

ms1ns2
=
∑
n6N

r(n)

ns2

∑
m6n

r(m)

ms1

= π
∑
n6N

r(n)

ns1+s2−1
+
∑
n6N

r(n)P (n)

ns1+s2
+

πs1

1− s1

∑
n6N

r(n)

ns2
(n1−s1 − 1)

+ s1

∑
n6N

r(n)

ns2

∫ N

1

t−s1−1P (t)dt− s1

∑
n6N

r(n)

ns2

∫ N

n

t−s1−1P (t)dt. (8.1)

The first four terms on the right-hand side of (8.1) can be reduced to

lim
N→∞

π
∑
n6N

r(n)

ns1+s2−1
= 4πζK(s1 + s2 − 1),

lim
N→∞

∑
n6N

r(n)P (n)

ns1+s2
= Y(s1 + s2),

lim
N→∞

πs1

1− s1

∑
n6N

r(n)

ns2
(n1−s1 − 1) =

4πs1

1− s1
{ζK(s1 + s2 − 1)− ζK(s2)}

and

lim
N→∞

s1

∑
n6N

r(n)

ns2

∫ N

1

t−s1−1P (t)dt = 4s1ζK(s2)I0(s1 + 1),

which are convergent absolutely for <s1+<s2 > 2, <s1+<s2 > 5/4, <s1+<s2 > 2
and <s2 > 1, and <s1 > 1/4 and <s2 > 1, respectively. However the right hand
sides of the above formulas are known to be continued analytically to the right-half
plane <s1 + <s2 > −1/3.
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Consider the last term of (8.1). By partial summation, we have

∑
n6N

r(n)

ns2

∫ N

n

t−s1−1P (t)dt

=

∫ N

1

t−s2 ∑
n6t

r(n) + s2

∫ t

1

u−s2−1
∑
n6u

r(n)du

 t−s1−1P (t)dt

= π

∫ N

1

t−s1−s2P (t)dt+

∫ N

1

t−s1−s2−1P (t)2dt

+
πs2

1− s2

∫ N

1

t−s1−1P (t)(t1−s2 − 1)dt+ s2

∫ N

1

t−s1−1P (t)

∫ t

1

u−s2−1P (u)dudt

=: H1,N +H2,N +H3,N +H4,N ,

say. We find that

lim
N→∞

H1,N = πI1(s1 + s2) (<s1 + <s2 > 5/4),

lim
N→∞

H2,N = I2(s1 + s2 + 1) (<s1 + <s2 > 1/2)

and

lim
N→∞

H3,N =
πs2

1− s2
(I1(s1 + s2)− I1(s1 + 1)) (<s1 + <s2 > 5/4,<s1 > 1/4),

where the functions on the right-hand sides are convergent absolutely in the given
regions. But by Lemma 9 and Theorem 4, we can see that the they can be
continued analytically to the region <s1 + <s2 > −1/3.

It remains to treat H4,N . Let

JN (s1, s2) =

∫ N

1

t−s1−1P (t)

∫ t

1

u−s2−1P (u)dudt

and J(s1, s2) = limN→∞ JN (s1, s2) briefly. It is easy to see that

JN (s1, s2) =

(∫ N

1

t−s1−1P (t)dt

)(∫ N

1

u−s2−1P (u)du

)
−KN (s1, s2),

where

KN (s1, s2) =

∫ N

1

t−s1−1P (t)

∫ N

t

u−s2−1P (u)dudt.

Suppose that <s2 > 0 and <s1 + <s2 > 1/4. Then from the first formula of
(1.5) with θ = s2 + 1, we see that

K(s1, s2) := lim
N→∞

KN (s1, s2),
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exists and defines a holomorphic function there. Since

J(s1, s2) = I1(s1 + 1)I1(s2 + 1)−K(s1, s2),

J(s1, s2) has a meromorphic continuation to <s2 > 0 and <s1 + <s2 > 1/4. We
should note here that JN (s1, s2) has the symmetric property

JN (s1, s2) + JN (s2, s1) =

∫ N

1

t−s1−1P (t)dt

∫ N

1

t−s2−1P (t)dt,

which is similar to the case of the divisor problem. By the same argument above,
we have

J(s2, s1) = I1(s1 + 1)I1(s2 + 1)−K(s2, s1).

for <s1 > 0 and <s1 + <s2 > 1/4 and K(s2, s1) is holomorphic in this region.
It shows that the function J(s1, s2) has a meromorphic continuation, and so does
limN→∞H4,N to the region <s1 +<s2 > 1/4. The proof of Theorem 3 is complete.

To sum up, the analytic continuation of M(s1, s2) is explicitly given by

M(s1, s2) = 4πζK(s1 + s2 − 1)− 16ζK(s1 + s2)2

(1 + 2−s1−s2)ζ(2(s1 + s2))
+ Y(s1 + s2)

+
4πs1

1− s1
{ζK(s1 + s2 − 1)− ζK(s2)}+ 4s1ζK(s2)I0(s1 + 1)

+ πI1(s1 + s2) + I2(s1 + s2 + 1) + s2I1(s1 + 1)I1(s2 + 1)

+
πs2

1− s2
{I1(s1 + s2)− I1(s1 + 1)} − s2K(s1, s2)

for <s1 + <s2 > 1/4. We note that we can determine the possible singularities of
M(s1, s2) in the domain <s1 + <s2 > 1/4 by using this representation. But we
omit the details for this topic here.

Remark 3. As we have seen above, all terms except K(s1, s2) can be continued
into the wider range <s1 +<s2 > −1/3. However it seems to be difficult to extend
the region of convergence of K(s1, s2) into this region by our present method. For
instance, if we substitute the second estimate of (1.5), we see that

KN (s1, s2) = −C1 logN +O(1), (8.2)

provided that s2 = 0 and <s1 > 0. (Note that C1 in (8.2) is a function of s1

and is not identically zero.) Similarly KN (s1, s2) diverges when N →∞ if we use
the third estimate of (1.5) for −1/4 < <s2 6 0 with s2 6= 0 and <s1 + <s2 > 0.
Hence we cannot obtain the estimate KN (s1, s2) = O(1) as N → ∞ under these
conditions.

The authors believe that M(s1, s2) can be continued analytically beyond the
line <s1 +<s2 = 1/4. But in order to get such an analytic continuation, it should
be necessary to develop a theory different from that used in this paper. In view
of the formula (8.2), we may be able to make the following conjecture on the
behaviour of M(s1, s2) for <s1 + <s2 6 1/4:



332 Jun Furuya, Yoshio Tanigawa

Conjecture 1. The analytic continuation of M(s1, s2) has singularities on the
hyper-plane <s1 +<s2 = 1/4, especially these singularities come from the function
K(s1, s2).
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