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EXPANDING THE APPLICABILITY OF A TWO STEP
NEWTON-TYPE PROJECTION METHOD FOR ILL-POSED
PROBLEMS

Ioannis K. Argyros, Monnanda E. Shobha, Santhosh George

Abstract: There are many classes of ill-posed problems that cannot be solved with existing
iterative methods, since the usual Lipschitz-type assumptions are not satisfied. In this study,
we expand the applicability of a two step Newton-type projection method considered in [10],
[11], using weaker assumptions. Numerical examples for the method and examples where the old
assumptions are not satisfied but the new assumptions are satisfied are provided at the end of
this study.
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1. Introduction

This paper deals with the finite dimensional realization of a method considered in
[10] for (nonlinear) Hammerstein-type equation

KF (x) = f. (1.1)

Here F : D(F ) ⊆ X → Z is nonlinear, K : Z → Y is a bounded linear operator
([7],[8]) and X,Z, Y are Hilbert spaces with inner product 〈., .〉 and norm ‖.‖
respectively.

We will assume that the problem (1.1) is ill-posed due to the non-closedness of
the linear operator K (see [9]). It is assumed that fδ ∈ Y are the available noisy
data with ‖f − fδ‖ 6 δ and F possesses a uniformly bounded Fréchet derivative
for each x ∈ D(F ), i.e.,

‖F ′(x)‖ 6M, x ∈ D(F )
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for some M(Here and below F ′(.) denotes the Fréchet derivative of F ). Observe
that the solution x of (1.1) with fδ in place of f can be obtained by first solving

Kz = fδ (1.2)

for z and then solving the non-linear problem

F (x) = z. (1.3)

In fact, in [10] we consider two cases of F, in the first case we assume that F ′(x)−1

exist and in the second case we assume F is monotone but F ′(x)−1 does not exist.
The method in [10] was a combination of Tikhonov regularization and Two Step
Newton Method.

Regularization methods for ill-posed operator equation are usually defined in
an infinite dimensional setting and have to be discretized for calculating a numer-
ical solution [12]. Since finite dimensional problem are always well-posed in the
sense of stable data dependence one could think of stabilizing an ill-posed prob-
lem by discretization. Regularization of ill-posed problems by projection methods
can be found in literature for eg. in [17, 18, 19]. In this paper we consider the
problem of approximately solving (1.1) in the finite dimensional setting of Hilbert
spaces. Our goal is to expand the applicability of this method by weakening the
usual assumptions for the convergence of these methods (see Assumption 3.1 and
Assumption 3.2).

Recall [20], [21], that an operator F is said to be monontone operator if
〈F (x)− F (y), x− y〉 > 0 for all x, y ∈ D(F ).

The organization of this paper is as follows. Section 2 deals with Discretized
Tikhonov regularization (detailed proof can be found in [11]) and Section 3 in-
vestigates the convergence of the Two Step Newton Tikhonov Projection Method
(TSNTPM). Section 4 discusses the algorithm and finally the paper ends with
a Numerical examples in Section 5.

2. Discretized Tikhonov regularization

This section deals with discretized Tikhonov regularized solution zh,δα of (1.2) and
(an a priori and an a posteriori) error estimate for ‖F (x̂)− zh,δα ‖.

The following assumption is used as in [8] to obtain the error estimate .

Assumption 2.1. There exists a continuous, strictly monotonically increasing
function ϕ : (0, a]→ (0,∞) with a > ‖K‖2 satisfying;
• limλ→0ϕ(λ) = 0,
•

sup
λ>0

αϕ(λ)

λ+ α
6 ϕ(α) ∀λ ∈ (0, a]

and
•

F (x̂)− F (x0) = ϕ(K∗K)w

for some w ∈ X such that ‖w‖ 6 1.
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Let {Ph}h>0 be a family of orthogonal projections on X. Let

εh : = ‖K(I − Ph)‖,
τh : = ‖F ′(x)(I − Ph)‖, ∀x ∈ D(F )

and {bh : h > 0} is such that limh→0
‖(I−Ph)x0‖

bh
= 0, limh→0

‖(I−Ph)F (x0)‖
bh

= 0
and limh→0bh = 0. We assume that εh → 0 and τh → 0 as h → 0. The above
assumption is satisfied if, Ph → I pointwise and if K and F ′(x) are compact
operators. Further we assume that εh < ε0, τh 6 τ0, bh 6 b0 and δ ∈ (0, δ0].

The discretized Tikhonov regularization method for the regularized equation
(1.2) consists of solving the equation

(PhK
∗KPh + αPh)(zh,δαk − PhF (x0)) = PhK

∗[fδ −KF (x0)]. (2.1)

Theorem 2.2 (see [11], Theorem 2.4). Suppose Assumption 2.1 holds. Let
zh,δαk be as in (2.1) and bh 6 δ+εh√

α
. Then

‖F (x̂)− zh,δαk ‖ 6 C
(
ϕ(α) +

(
δ + εh√

α

))
(2.2)

where C = 1
2 max{Mρ, 1}+ 1.

2.1. A priori choice of the parameter

Note that the estimate ϕ(α) + δ+εh√
α in (2.2) is of optimal order for the choice α :=

α(δ, h) which satisfies ϕ(α(δ, h)) = δ+εh√
α(δ,h)

. Let ψ(λ) := λ
√
ϕ−1(λ), 0 < λ 6 a.

Then we have δ + εh =
√
α(δ, h)ϕ(α(δ, h)) = ψ(ϕ(α(δ, h))) and

α(δ, h) = ϕ−1(ψ−1(δ + εh)).

So the relation (2.2) leads to ‖F (x̂)− zh,δα ‖ 6 2Cψ−1(δ + εh).

2.2. An adaptive choice of the parameter

In this subsection, we consider the balancing principle established by Pereverzev
and Shock [14] for choosing the parameter α. Let

DN = {αi : 0 < α0 < α1 < α2 < · · · < αN}

be the set of possible values of the parameter α.
Let

l := max
{
i : ϕ(αi) 6

δ + εh√
αi

}
< N, (2.3)

k = max{i : αi ∈ D+
N} (2.4)

where D+
N = {αi ∈ DN : ‖zδαi − z

δ
αj‖ 6

4C(δ+εh)√
αj

, j = 0, 1, 2, ...., i− 1}.
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We use the following theorem, the proof of which is analogous to the proof of
Theorem 4.3 in [8], for our error analysis.

Theorem 2.3 (cf. [8, Theorem 4.3]). Let l be as in (2.3), k be as in (2.4) and
zh,δαk be as in (2.1) with α = αk. Then l 6 k and

‖F (x̂)− zh,δαk ‖ 6 C
(

2 +
4µ

µ− 1

)
µψ−1(δ + εh).

3. Convergence analysis of the projection method

In [11], [10], [8] the following Assumption was used, which is very difficult to verify
(or does not hold) in general (see numerical examples at the last section of the
paper)

Assumption 3.1 (cf.[16, Assumption 3 (A3)]). There exist a constant k0 > 0
such that for every x, u ∈ D(F ) and v ∈ X there exists an element Φ(x, u, v) ∈ X
such that [F ′(x)− F ′(u)]v = F ′(u)Φ(x, u, v), ‖Φ(x, u, v)‖ 6 k0‖v‖‖x− u‖.

In the present paper we analyze the method by using a weaker Assumption
than Assumption 3.1 and which is easier to verify:

Assumption 3.2. Let x0 ∈ X be fixed. There exists a constant K0 > 0 such that
for each x, u ∈ D(F ) and v ∈ X there exists an element Φ(x, u, v) ∈ X depending
on x0 such that [F ′(x) − F ′(u)]v = F ′(u)Φ(x, u, v), ‖Φ(x, u, v)‖ 6 K0‖v‖(‖x −
Phx0‖+ ‖u− Phx0‖).

Note that Assumption 3.1⇒ Assumption 3.2 but not necessarily vice versa.

3.1. Case 1: TSNTPM when F ′(.) is invertible

In this section we assume that F ′(x) is boundedly invertible for all x ∈ D(F ) i.e.,

‖F ′(x)−1‖ 6 β1 (3.1)

for some β1 > 0.
For an initial guess x0 ∈ X, the TSNTPM is defined iteratively as;

yh,δn,αk = xh,δn,αk − PhF
′(xh,δn,αk)−1Ph(F (xh,δn,αk)− zh,δαk ), (3.2)

xh,δn+1,αk
= yh,δn,αk − PhF

′(yh,δn,αk)−1Ph(F (yh,δn,αk)− zh,δαk ), (3.3)

where xh,δ0,αk
:= Phx0 and zh,δαk is defined by (2.1) with α = αk.

Note. Observe that if b0 < 1
K0

and if x ∈ Br(Phx0) where r < 1
K0
− b0, then

F ′(x)−1 exists and is bounded. This can be seen as follows:

‖F ′(x)−1‖ = sup
‖v‖61

‖[I + F ′(x0)−1(F ′(x)− F ′(x0))]−1F ′(x0)−1v‖

6 sup
‖v‖61

‖F ′(x0)−1‖
1− ‖F ′(x0)−1(F ′(x)− F ′(x0))v‖

. (3.4)
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Now by Assumption 3.2 and the triangle inequality;

‖x− x0‖ 6 ‖x− Phx0‖+ ‖Phx0 − x0‖,

we have
‖F ′(x0)−1(F ′(x)− F ′(x0))v‖ 6 K0(r + b0).

Hence by (3.1) and (3.4) we have

‖F ′(x)−1‖ 6 β1

1−K0(r + b0)
.

Thus without loss of generality we assume that

‖F ′(x)−1‖ 6 β, ∀x ∈ Br(Phx0) (3.5)

and for some β > 0.

Lemma 3.3. Let x ∈ Br(Phx0), b0 < 1
K0

and r < 1
K0
− b0. Then we have

‖PhF ′(x)−1PhF
′(x)‖ 6 1 + βτ0.

Proof.

‖PhF ′(x)−1PhF
′(x)‖ = sup

‖v‖61

‖[PhF ′(x)−1PhF
′(x)]v‖

6 sup
‖v‖61

‖PhF ′(x)−1PhF
′(x)(Ph + I − Ph)v‖

6 sup
‖v‖61

‖[PhF ′(x)−1PhF
′(x)Ph]v‖

+ sup
‖v‖61

‖PhF ′(x)−1PhF
′(x)× (I − Ph)v‖

6 1 + βτh 6 1 + βτ0. �

Let
eh,δn,αk := ‖yh,δn,αk − x

h,δ
n,αk
‖, ∀n > 0. (3.6)

Suppose that

0 < K0 <
1

4(1 + βτ0)
(3.7)

and
δ0 + ε0√

α0
<

2

β(2M + 3)
. (3.8)

Let ‖x̂− x0‖ 6 ρ, with

ρ <
1

M

(
1

β
−
(

3

2
+M

)
δ0 + ε0√

α0

)
and

γρ := β

[
Mρ+

(
3

2
+M

)(
ε0 + δ0√

α0

)]
, (3.9)
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and let r be such that

r ∈ (r1, r2), (3.10)

where

r1 =
1 +

√
1− 16(1 + βτ0)K0γρ

8(1 + βτ0)

and

r2 =
1−

√
1− 16(1 + βτ0)K0γρ

8(1 + βτ0)

b := 4(1 + βτ0)K0r. (3.11)

Then, we have by (3.7)-(3.11) that

0 < γρ <
1

16(1 + βτ0)K0
. (3.12)

Theorem 3.4. Let eh,δn,αk be as in equation (3.6) with δ ∈ (0, δ0], α = αk and
εh ∈ (0, ε0]. Suppose the assumptions of Lemma 3.3 and Theorem 2.3 hold. Then,
by Assumption 3.2, we have the following:

(a)
‖xh,δn,αk − y

h,δ
n−1,αk

‖ 6 K0

2
(1 + βτ0)

[
3‖xh,δn−1,αk

− xh,δ0,αk
‖ (3.13)

+ 5‖yh,δn−1,αk
− xh,δ0,αk

‖
]
eh,δn−1,αk

,

(b)
‖xh,δn,αk − x

h,δ
n−1,αk

‖ 6
{

1 +
K0

2
(1 + βτ0)

[
3‖xh,δn−1,αk

− xh,δ0,αk
‖ (3.14)

+ 5‖yh,δn−1,αk
− xh,δ0,αk

‖
]}
eh,δn−1,αk

,

and

(c)
eh,δn,αk 6

K0

2
(1 + βτ0)[5‖xh,δn,αk − x

h,δ
0,αk
‖

+ 3‖yh,δn−1,αk
− xh,δ0,αk

‖]‖yh,δn−1,αk
− xh,δn,αk‖

6 b2eh,δn−1,αk
6 b2neh,δ0,αk

6 b2nγρ.



Expanding the applicability of a Two Step Newton-type projection method 147

Proof. Observe that

xh,δn,αk − y
h,δ
n−1,αk

= yh,δn−1,αk
− xh,δn−1,αk

− PhF ′(yh,δn−1,αk
)−1Ph(F (yh,δn−1,αk

)

− zh,δαk ) + PhF
′(xh,δn−1,αk

)−1Ph(F (xh,δn−1,αk
)− zh,δαk )

= yh,δn−1,αk
− xh,δn−1,αk

− PhF ′(yh,δn−1,αk
)−1Ph(F (yh,δn−1,αk

)

− F (xh,δn−1,αk
))− Ph[F ′(yh,δn−1,αk

)−1 − F ′(xh,δn−1,αk
)−1]

× Ph(F (xh,δn−1,αk
)− zh,δαk )

= PhF
′(yh,δn−1,αk

)−1Ph

×
∫ 1

0

[
F ′(yh,δn−1,αk

)− F ′(xh,δn−1,αk
+ t(yh,δn−1,αk

− xh,δn−1,αk
))
]

× (yh,δn−1,αk
− xh,δn−1,αk

)dt+ PhF
′(yh,δn−1,αk

)−1

× Ph[F ′(xh,δn−1,αk
)− F ′(yh,δn−1,αk

)](yh,δn−1,αk
− xh,δn−1,αk

)

:= Γ1 + Γ2, (3.15)
where

Γ1 = PhF
′(yh,δn−1,αk

)−1Ph

∫ 1

0

[F ′(yh,δn−1,αk
)− F ′(xh,δn−1,αk

+ t(yh,δn−1,αk
− xh,δn−1,αk

))](yh,δn−1,αk
− xh,δn−1,αk

)dt

and Γ2 := PhF
′(yh,δn−1,αk

)−1Ph[F ′(xh,δn−1,αk
)−F ′(yh,δn−1,αk

)](yh,δn−1,αk
−xh,δn−1,αk

). Note
that by Assumption 3.2 and Lemma 3.3 we have

‖Γ1‖ = ‖PhF ′(yh,δn−1,αk
)−1Ph

∫ 1

0

[
F ′(yh,δn−1,αk

)− F ′(xh,δn−1,αk

+ t(yh,δn−1,αk
− xh,δn−1,αk

))
]
(yh,δn−1,αk

− xh,δn−1,αk
)dt‖

6 (1 + βτ0)‖
∫ 1

0

Φ(yh,δn−1,αk
, xh,δn−1,αk

+ t(yh,δn−1,αk
− xh,δn−1,αk

),

× yh,δn−1,αk
− xh,δn−1,αk

)dt‖

6 K0(1 + βτ0)

[∫ 1

0

‖xh,δn−1,αk
− xh,δ0,αk

− t(yh,δn−1,αk
− xh,δn−1,αk

)‖dt

+ ‖yh,δn−1,αk
− xh,δ0,αk

‖

]
‖yh,δn−1,αk

− xh,δn−1,αk
‖

6 K0(1 + βτ0)

[∫ 1

0

(1− t)‖xh,δn−1,α − x
h,δ
0,αk
‖+ t‖yh,δn−1,αk

− xh,δ0,αk
‖

+ ‖yh,δn−1,αk
− xh,δ0,αk

‖

]
dt‖yh,δn−1,αk

− xh,δn−1,αk
‖

6
K0

2
(1 + βτ0)

[
‖xh,δn−1,αk

− xh,δ0,αk
‖+ 3‖yh,δn−1,αk

− xh,δ0,αk
‖
]
eh,δn−1,αk

. (3.16)
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Similarly, we obtain

‖Γ2‖ 6 K0(1 + βτ0)[‖yh,δn−1,αk
− xh,δ0,αk

‖+ ‖xh,δ0,αk
− xh,δn−1,αk

‖]eh,δn−1,αk
. (3.17)

Hence from (3.15), (3.16) and (3.17), we get (a). Now (b) follows from (a) and the
triangle inequality;

‖xh,δn,αk − x
h,δ
n−1,αk

‖ 6 ‖xh,δn,αk − y
h,δ
n−1,αk

‖+ ‖yh,δn−1,αk
− xh,δn−1,αk

‖.

To prove (c) we observe that

eh,δn,αk = ‖xh,δn,αk − y
h,δ
n−1,αk

− (PhF
′(xh,δn,αk))−1Ph(F (xh,δn,αk)

− zh,δαk ) + PhF
′(yh,δn−1,αk

)−1Ph(F (yh,δn−1,αk
)− zh,δαk )‖

= ‖xh,δn,αk − y
h,δ
n−1,αk

− PhF ′(xh,δn,αk)−1Ph(F (xh,δn,αk)

− F (yh,δn−1,αk
)) + Ph[F ′(yh,δn−1,αk

)−1 − F ′(xh,δn,αk)−1]

× Ph(F (yh,δn−1,αk
)− zh,δαk )‖

6 Λ1 + Λ2, (3.18)

where

Λ1 := ‖xh,δn,αk − y
h,δ
n−1,αk

− PhF ′(xh,δn,αk)−1Ph(F (xh,δn,αk)− F (yh,δn−1,αk
))‖

and
Λ2 := ‖Ph[F ′(yh,δn−1,αk

)−1 − F ′(xh,δn,αk)−1]Ph(F (yh,δn−1,αk
)− zh,δαk )‖.

Analogous to the proof of (3.16) and (3.17), one can see that

Λ1 6
K0

2
(1 + βτ0)[3‖xh,δn,αk − x

h,δ
0,αk
‖+ ‖yh,δn−1,αk

− xh,δ0,αk
‖]‖xh,δn,αk − y

h,δ
n−1,αk

‖

and

Λ2 6 K0(1 + βτ0)[‖xh,δn,αk − x
h,δ
0,αk
‖+ ‖yh,δn−1,αk

− xh,δ0,αk
‖]‖xh,δn,αk − y

h,δ
n−1,αk

‖.

Hence from (3.18) we obtain that

eh,δn,αk 6
K0

2
(1 + βτ0)[5‖xh,δn,αk − x

h,δ
0,αk
‖

+ 3‖yh,δn−1,αk
− xh,δ0,αk

‖]‖xh,δn,αk − y
h,δ
n−1,αk

‖ (3.19)

6
K0

2
(1 + βτ0)(8r)

K0

2
(1 + βτ0)(8r)‖xh,δn−1,αk

− yh,δn−1,αk
‖

6 b2‖xh,δn−1,αk
− yh,δn−1,αk

‖

6 b2neh,δ0,αk
6 b2nγρ.

This completes the proof of the Theorem. �
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Theorem 3.5. Let r be as defined in (3.10) and the assumptions of Theorem 3.4
hold. Then xh,δn,αk , y

h,δ
n,αk

∈ Br(Phx0), for all n > 0.

Proof. Note that by (b) of Theorem 3.4 we have,

‖xh,δ1,αk
− Phx0‖ = ‖xh,δ1,αk

− xh,δ0,αk
‖

6
[
1 + (1 + βτ0)

K0

2
(8r)

]
γρ (3.20)

6 (1 + b)γρ

6
γρ

1− b
< r,

i.e., xh,δ1,αk
∈ Br(Phx0). Again note that from (3.20) and Theorem 3.4 we get,

‖yh,δ1,αk
− Phx0‖ 6 ‖yh,δ1,αk

− xh,δ1,αk
‖+ ‖xh,δ1,αk

− Phx0‖
6 [1 + (1 + βτ0)4K0r + ((1 + βτ0)4K0r)

2]γρ

6 (1 + b+ b2)γρ

6
γρ

1− b
< r,

i.e., yh,δ1,αk
∈ Br(Phx0). Further by (3.20) and (b) of Theorem 3.4 we have,

‖xh,δ2,αk
− Phx0‖ 6 ‖xh,δ2,αk

− xh,δ1,αk
‖+ ‖xh,δ1,αk

− Phx0‖

6 (1 + b)eh,δ1,αk
+ (1 + b)γρ

6 (1 + b+ b2 + b3)γρ

6
1

1− b
γρ < r

and

‖yh,δ2,αk
− Phx0‖ 6 ‖yh,δ2,αk

− xh,δ2,αk
‖+ ‖xh,δ2,αk

− Phx0‖
6 b4γρ + (1 + b+ b2 + b3)γρ

6 (1 + b+ b2 + b3 + b4)γρ

6
1

1− b
γρ < r

by the choice of r, i.e., xh,δ2,αk
, yh,δ2,αk

∈ Br(Phx0). Continuing this way one can prove
that xh,δn,αk , y

h,δ
n,αk

∈ Br(Phx0),∀n > 0. This completes the proof. �

Theorem 3.6. Let yh,δn,αk and xh,δn,αk be as in (3.2) and (3.3) respectively and
hypotheses of Theorem 3.5 hold. Then (xh,δn,αk) is a Cauchy sequence in Br(Phx0)

and converges to xh,δαk ∈ Br(Phx0). Further PhF (xh,δαk ) = zh,δαk and

‖xh,δn,αk − x
h,δ
αk
‖ 6 (1 + b)b2nγρ

1− b2

where γρ and b are defined by (3.9) and (3.11), respectively.
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Proof. Using the relation (b) and (c) of Theorem 3.4, we obtain

‖xh,δn+i+1,αk
− xh,δn+i,αk

‖ 6 (1 + b)b0‖xh,δn+i,αk
− yh,δn+i,αk

‖

6 (1 + b)b‖xh,δn+i,αk
− yh,δn+i−1,αk

‖

6 (1 + b)b2‖xh,δn+i−1,αk
− yh,δn+i−1,αk

‖

6 (1 + b)b2(n+i)eh,δ0,αk

6 (1 + b)b2(n+i)γρ.

So,

‖xh,δn+m,αk
− xh,δn,αk‖ 6

m−1∑
i=0

‖xh,δn+i+1,αk
− xh,δn+i,αk

‖

6 (1 + b)b2n
m−1∑
i=0

b2i

= (1 + b)b2n
1− b2m

1− b2
γρ →

(1 + b)b2n

1− b2
γρ,

as m→∞. Observe that from (3.2)

‖Ph(F (xh,δn,αk)− zh,δαk )‖ = ‖PhF ′(xh,δn,αk)(xh,δn,αk − y
h,δ
n,αk

)‖
6 ‖F ′(xh,δn,αk)‖‖yh,δn,αk − x

h,δ
n,αk
‖

6Meh,δn,αk . (3.21)

Now by letting n → ∞ in (3.21) we obtain PhF (xh,δαk ) = zh,δαk . This completes the
proof.

Hereafter we assume that

ρ 6 r <
1

(1 + βτ0)K0
.

Theorem 3.7. Suppose (1+βτ0)K0r < 1 and Assumption 2.1 and 3.2 hold. Then

‖x̂− xh,δαk ‖ 6
β

(1− (1 + βτ0)K0r)
‖F (x̂)− zh,δαk ‖.
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Proof. Observe that

‖x̂− xh,δαk ‖ = ‖x̂− xh,δαk + PhF
′(Phx0)−1Ph[F (xh,δαk )− F (x̂) + F (x̂)− zh,δαk ]‖

6 ‖PhF ′(Phx0)−1[PhF
′(Phx0)(x̂− xh,δαk )− Ph(F (x̂)

− F (xh,δαk ))]‖+ ‖PhF ′(Phx0)−1Ph(F (x̂)− zh,δαk )‖

6 ‖PhF ′(Phx0)−1Ph

∫ 1

0

[F ′(Phx0)− F ′(x̂+ t(xh,δαk − x̂))]

× (x̂− xh,δαk )dt‖+ ‖PhF ′(Phx0)−1Ph(F (x̂)− zh,δαk )‖

6 ‖PhF ′(Phx0)−1PhF
′(Phx0)‖

∫ 1

0

Φ(Phx0, x̂+ t(xh,δαk − x̂),

x̂− xh,δαk )dt‖+ ‖PhF ′(Phx0)−1Ph(F (x̂)− zh,δαk )‖
6 (1 + βτ0)K0r‖x̂− xh,δαk ‖+ β‖F (x̂)− zh,δαk ‖.

The last step follows from Assumption 3.2, Lemma 3.3, (3.5) and the relation
‖Phx0 − x̂− t(xh,δαk − x̂)‖ 6 r. This completes the proof. �

The following Theorem is a consequence of Theorem 3.6 and Theorem 3.7.

Theorem 3.8. Let xh,δn,αk be as in (3.3), assumptions in Theorem 3.6 and Theorem
3.7 hold. Then

‖x̂− xh,δn,αk‖ 6
(1 + b)b2nγρ

1− b2
+

β

(1− (1 + βτ0)K0r)
‖F (x̂)− zh,δαk ‖

where γρ is as in Theorem 3.6.

Now since l 6 k and αδ 6 αl+1 6 µαl we have

δ + εh√
αk
6
δ + εh√
αl
6 µ

δ + εh√
αδ

= µϕ(α(δ, h)) = µψ−1(δ + εh).

This leads to the following theorem,

Theorem 3.9. Let xh,δn,αk be as in (3.3), assumptions in Theorem 3.8 hold. Let

nk := min
{
n : b2n 6

δ + εh√
αk

}
.

Then
‖x̂− xh,δnk,αk‖ = O(ψ−1(δ + εh)).

3.2. Case 2: TSNTPM when F is monotone and F ′(.) is non-invertible

Assumption 3.10. There exists a continuous, strictly monotonically increasing
function ϕ1 : (0, b]→ (0,∞) with b > ‖F ′(x0)‖ satisfying;
• limλ→0ϕ1(λ) = 0,
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•
sup
λ>0

αϕ1(λ)

λ+ α
6 ϕ1(α) ∀λ ∈ (0, b]

and
• there exists v ∈ X with ‖v‖ 6 1 (cf.[13]) such that

x0 − x̂ = ϕ1(F ′(x0))v.

• for each x ∈ Br(x0) := {x : ‖x − x0‖ < r} there exists a bounded linear
operator G(x, x0) (cf.[15]) such that

F ′(x) = F ′(x0)G(x, x0)

with ‖G(x, x0)‖ 6 K1.

First we consider an iterative method to approximate the zero xh,δc,αk of

Ph

(
F (x) +

αk
c

(x− x0)
)

= Phz
h,δ
αk
. (3.22)

and then we show that xh,δc,αk is an approximation to the solution x̂ of (1.1) where
c 6 αk. For an initial guess x0 ∈ X and for R(x) := PhF

′(x)Ph + αk
c Ph, the

iterative method is defined as:

ỹh,δn,αk = x̃h,δn,αk −R(x̃h,δn,αk)−1Ph

[
F (x̃h,δn,αk)− zh,δαk +

αk
c

(x̃h,δn,αk − x̃
h,δ
0,αk

)
]

(3.23)

and

x̃h,δn+1,αk
= ỹh,δn,αk −R(ỹh,δn,αk)−1Ph

[
F (ỹh,δn,αk)− zh,δαk +

αk
c

(ỹh,δn,αk − x̃
h,δ
0,αk

)
]

(3.24)

where x̃h,δ0,αk
:= Phx0. Note that with the above notation

(3.25)
‖R(x̃h,δn,αk)−1PhF

′(x̃h,δn,αk)‖ 6 1 + τ0. (3.26)

Let
ẽh,δn,αk := ‖ỹh,δn,αk − x̃

h,δ
n,αk
‖, ∀n > 0 (3.27)

and suppose that

0 < K0 <
1

4(1 + τ0)
(3.28)

and
δ0 + ε0√

α0
<

2

2M + 3
. (3.29)

Let ‖x̂− x0‖ 6 ρ, with

ρ <
1

M

(
1−

(
3

2
+M

)
δ0 + ε0√

α0

)
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and

γ̃ρ := Mρ+

(
3

2
+M

)(
ε0 + δ0√

α0

)
, (3.30)

and let r be such that

r̃ ∈ (r̃1, r̃2) (3.31)

where

r̃1 =
1 +

√
1− 16(1 + τ0)K0γ̃ρ

8(1 + τ0)

and

r̃2 =
1−

√
1− 16(1 + τ0)K0γ̃ρ

8(1 + τ0)

b̃ := 4(1 + τ0)K0r̃. (3.32)

Then we have by (3.28)-(3.32) that

0 < γ̃ρ <
1

16(1 + τ0)K0
. (3.33)

Theorem 3.11. Let ẽh,δn,αk be as in equation (3.27) with δ ∈ (0, δ0], α = αk and
εh ∈ (0, ε0]. Then by Assumption 3.2 the following hold:

(a)
‖x̃h,δn,αk − ỹ

h,δ
n−1,αk

‖ 6 K0

2
(1 + τ0)

[
3‖x̃h,δn−1,αk

− x̃h,δ0,αk
‖ (3.34)

+ 5‖ỹh,δn−1,αk
− x̃h,δ0,αk

‖
]
eh,δn−1,αk

(b)
‖x̃h,δn,αk − x̃

h,δ
n−1,αk

‖ 6

{
1 +

K0

2
(1 + τ0)

[
3‖x̃h,δn−1,αk

− x̃h,δ0,αk
‖ (3.35)

+ 5‖ỹh,δn−1,αk
− x̃h,δ0,αk

‖
]}
eh,δn−1,αk

.

(c)
ẽh,δn,αk 6

K0

2
(1 + τ0)[5‖x̃h,δn,αk − x̃

h,δ
0,αk
‖

+ 3‖ỹh,δn−1,αk
− x̃h,δ0,αk

‖]‖ỹh,δn−1,αk
− x̃h,δn,αk‖

6 b̃2ẽh,δn−1,αk
6 b̃2nẽh,δ0,αk

6 b̃2nγρ.
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Proof. Observe that

x̃h,δn,αk − ỹ
h,δ
n−1,αk

= ỹh,δn−1,αk
− x̃h,δn−1,αk

−R(ỹh,δn−1,αk
)−1Ph(F (ỹh,δn−1,αk

)− zh,δαk
+
αk
c

(ỹh,δn−1,αk
− x0)) +R(x̃h,δn−1,αk

)−1Ph(F (x̃h,δn−1,αk
)

− zh,δαk +
αk
c

(x̃h,δn−1,αk
− x0))

= ỹh,δn−1,αk
− x̃h,δn−1,αk

−R(ỹh,δn−1,αk
)−1Ph[F (ỹh,δn−1,αk

)

− F (x̃h,δn−1,αk
) +

αk
c

(ỹh,δn−1,αk
− x̃h,δn−1,αk

)] + [R(x̃h,δn−1,αk
)−1

−R(ỹh,δn−1,αk
)−1](F (x̃h,δn−1,αk

)− zh,δαk +
αk
c

(x̃h,δn−1,αk
− x0))

= R(ỹh,δn−1,αk
)−1Ph[F ′(ỹh,δn−1,αk

)(ỹh,δn−1,αk
− x̃h,δn−1,αk

)

− (F (ỹh,δn−1,αk
)− F (x̃h,δn−1,αk

)]−R(ỹh,δn−1,αk
)−1

× [F ′(ỹh,δn−1,αk
)− F ′(x̃h,δn−1,αk

)](ỹh,δn−1,αk
− x̃h,δn−1,αk

)

= R(ỹh,δn−1,αk
)−1Ph

∫ 1

0

[F ′(ỹh,δn−1,αk
)− F ′(x̃h,δn−1,αk

+ t(ỹh,δn−1,αk

− x̃h,δn−1,αk
))]Ph(ỹh,δn−1,αk

− x̃h,δn−1,αk
)dt−R(ỹh,δn−1,αk

)−1

× [F ′(ỹh,δn−1,αk
)− F ′(x̃h,δn−1,αk

)](ỹh,δn−1,αk
− x̃h,δn−1,αk

).

Now by Assumption 3.2 and (3.26) we have

‖x̃h,δn,αk − ỹ
h,δ
n−1,αk

‖ 6 (1 + τ0)[‖
∫ 1

0

Φ(ỹh,δn−1,αk
, x̃h,δn−1,αk

+ t(ỹh,δn−1,αk

− x̃h,δn−1,αk
), ỹh,δn−1,αk

− x̃h,δn−1,αk
)dt‖

+ ‖Φ(ỹh,δn−1,αk
, x̃h,δn−1,αk

, ỹh,δn−1,αk
− x̃h,δn−1,αk

)‖].

The remaining part of the proof is analogous to the proof of Theorem 3.4. �

Theorem 3.12. Let r̃ be as defined in (3.31) and the assumptions of Theorem 3.11
hold. Then x̃h,δn,αk , ỹ

h,δ
n,αk

∈ Br̃(Phx0), for all n > 0.

Proof. The proof is analogous to the proof of Theorem 3.5. �

Theorem 3.13. Let ỹh,δn,αk and x̃h,δn,αk be as in (3.23) and (3.24) respectively and
hypotheses of Theorem 3.12 hold. Then (x̃h,δn,αk) is a Cauchy sequence in Br̃(Phx0)

and converges to xh,δc,αk ∈ Br̃(Phx0). Further Ph[F (xh,δc,αk)+ αk
c (xh,δc,αk−x0)] = Phz

h,δ
αk

and

‖x̃h,δn,αk − x
h,δ
c,αk
‖ 6 (1 + b̃)b̃2nγ̃ρ

1− b̃2

where γ̃ρ and b̃ are defined by (3.30) and (3.32), respectively.
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Proof. Using the relation (b) and (c) of Theorem 3.11, one can show that (x̃h,δn,αk)
is a Cauchy sequence in Br̃(Phx0). Observe that from (3.23)

‖Ph(F (x̃h,δn,αk)− zh,δαk ) +
αk
c

(x̃h,δn,αk − Phx0)‖ = ‖R(x̃h,δn,αk)(x̃h,δn,αk − ỹ
h,δ
n,αk

)‖

6 ‖R(x̃h,δn,αk)‖‖ỹh,δn,αk − x̃
h,δ
n,αk
‖

6 (‖PhF ′(x̃h,δn,αk)Ph‖+
αk
c

)ẽh,δn,αk

6 (M +
αk
c

)ẽh,δn,αk . (3.36)

Now by letting n→∞ in (3.36) we obtain PhF (xh,δc,αk)+ αk
c (xh,δc,αk−Phx0) = Phz

h,δ
αk
.

This completes the proof. �

Remark 3.14.
(a) The convergence order of (TSNTM) would be four under Assumption 3.1.

In Theorem 3.6 and 3.13 the error bounds are too pessimistic. That is why
in practice we shall use the computational order of convergence (COC) (see
eg. [6]) defined by

% ≈ ln

(
‖xn+1 − xδα‖
‖xn − xδα‖

)
/ ln

(
‖xn − xδα‖
‖xn−1 − xδα‖

)
.

The (COC) % will then be close to 4 which is the order of convergence of
(TSNTM).

Hereafter we assume that r̃ < 1
K0

and K1 <
1−K0r̃

1−c .
We quote the following Theorems for our further analysis, whose proofs are

given in [11].

Theorem 3.15 (see [11, Theorem 3.7]). Suppose xδc,αk is the solution of

F (x) +
αk
c

(x− x0) = zδαk (3.37)

and Assumption 3.2 and 3.10 hold. Then

‖x̂− xδc,αk‖ 6
ϕ1(αk) + (2 + 4µ

µ−1 )µψ−1(δ + εh)

1− (1− c)K1 −K0r̃
.

Theorem 3.16 (see [11, Theorem 3.8]). Suppose xh,δc,αk is the solution of (3.22)
and Assumption 2.1 and Theorem 3.15 hold. In addition if τ0 < 1, then

‖xh,δc,αk − x
δ
c,αk
‖ 6 2

1− τ0

(
δ + εh√
αk

)
.

Theorem 3.17. Let x̃h,δn,αk be as in (3.24), assumptions in Theorem 3.13, Theo-
rem 3.15 and Theorem 3.16 hold. Then

‖x̂−x̃h,δn,αk‖ 6
(1 + b̃)b̃2nγ̃ρ

1− b̃2
+
ϕ1(αk) + (2 + 4µ

µ−1 )µψ−1(δ + εh)

1− (1− c)K1 −K0r̃
+

2

1− τ0

(
δ + εh√
αk

)
.
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Theorem 3.18. Let x̃h,δn,αk be as in (3.24) and assumptions in Theorem 3.17 hold.
Further let ϕ1(αk) 6 ϕ(αk) and

nk := min

{
n : b̃2n 6

δ + εh√
αk

}
.

Then
‖x̂− x̃h,δn,αk‖ = O(ψ−1(δ + εh)).

4. Algorithm

Note that for i, j ∈ {0, 1, 2, · · · , N},

zh,δαi −z
h,δ
αj = (αj−αi)(PhK∗KPh+αjI)−1(PhK

∗KPh+αiI)−1PhK
∗(fδ−KF (x0)).

Therefore the balancing principle algorithm associated with the choice of the pa-
rameter specified in section 2 involves the following steps.

Step 1: Choose α0 such that δ0 + ε0 <
2
√
α0

β(2M+3) , µ > {1, β(2M+3)
2 } for Case 1

and δ0 + ε0 <
2
√
α0

2M+3 and µ > 1 for Case 2;
Step 2: αi = µ2iα0;

Step 3: solve for wi:

(PhK
∗KPh + αiI)wi = PhK

∗(fδ −KF (x0)); (4.1)

Step 4: solve for j < i, zh,δij : (PhK
∗KPh + αjI)zh,δij = (αj − αi)wi;

Step 5: if ‖zh,δij ‖ >
4C(δ+εh)√

αj
, then take k = i− 1;

Step 6: otherwise, repeat with i+ 1 in place of i.
Step 7: choose nk := min{n : b2n 6 δ+εh√

αk
} in Section 3.1 and nk := min{n :

b̃2n 6 δ+εh√
αk
} in Section 3.2

Step 8: solve xh,δnk,αk using the iteration (3.3) or x̃h,δnk,αk using the iteration (3.24).

5. Implementation of the method

Let Vn be a sequence of finite dimensional subspaces of X and let Ph = P 1
n

denote the orthogonal projection on X with range R(Ph) = Vn. We assume that
dimVn = n+ 1 and ‖Phx− x‖ → 0 as h→ 0 for all x ∈ X. We choose the linear
splines {v1, v2, · · · , vn+1} in a uniform grid of n+1 points in [0, 1] as a basis of Vn.

Since wi ∈ Vn, wi is of the form
∑n+1
i=1 λivi for some scalars λ1, λ2, · · · , λn+1.

It can be seen that wi is a solution of (4.1) if and only if λ̄ = (λ1, λ2, · · · , λn+1)T

is the unique solution of
(Mn + αiBn)λ̄ = ā
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where

Mn = (〈Kvi,Kvj〉), i, j = 1, 2, · · · , n+ 1

Bn = (〈vi, vj〉), i, j = 1, 2, · · · , n+ 1

and
ā = (〈PhK∗(fδ −KF (x0)), vi〉)T , i = 1, 2, · · · , n+ 1.

Observe that zh,δij in step 4 of algorithm is again in Vn and hence zh,δij =∑n+1
k=1 µ

ij
k vk for some µijk , k = 1, 2, · · · , n + 1. One can see that for j < i, zh,δij is

a solution of
(PhK

∗KPh + αjI)zh,δij = (αj − αi)wi

if and only if µij = (µij1 , µ
ij
2 , · · · , µ

ij
n+1)T is the unique solution of

(Mn + αjBn)µij = b̄

where
b̄ = (〈(αj − αi)wi, vi〉)T .

Compute zh,δij till ‖zh,δij ‖ >
4C(δ+εh)√

αj
and fix k = i − 1. Now choose nk = min{n :

b2n 6 δ+εh√
αk
} for Case 1 and nk = min{n : b̃2n 6 δ+εh√

αk
} for Case 2.

Case 1: Since yh,δnk,αk , x
h,δ
nk,αk

∈ Vn, let yh,δnk,αk =
∑n+1
i=1 ξ

n
i vi and xh,δnk,αk =∑n+1

i=1 η
n
i vi, where ξni and ηni are some scalars. Then from (3.2) we have

PhF
′(xh,δnk,αk)(yh,δnk,αk − x

h,δ
nk,αk

) = Ph[zh,δαk − F (xh,δnk,αk)]. (5.1)

Observe that (yh,δnk,αk − x
h,δ
nk,αk

) is a solution of (5.1) if and only if (ξn − ηn) =

(ξn1 − ηn1 , ξn2 − ηn2 , · · · , ξnn+1 − ηnn+1)T is the unique solution of

Qn(ξn − ηn) = Bn[λn − Fh1]

where

Qn = 〈F ′(xh,δnk,αk)vi, vj〉, i, j = 1, 2, · · · , n+ 1,

Fh1 = [F (xh,δnk,αk)(t1), F (xh,δnk,αk)(t2), · · · , F (xh,δnk,αk)(tn+1)]T ,

where t1, t2, · · · , tn+1 are the grid points.
Further from (3.3) it follows that

PhF
′(yh,δnk,αk)(xh,δnk+1,αk

− yh,δnk,αk) = Ph[zh,δαk − F (yh,δnk,αk)]. (5.2)

Thus (xh,δnk+1,αk
−yh,δnk,αk) is a solution of (5.2) if and only if (ηn+1 − ξn) = (ηn+1

1 −
ξn1 , η

n+1
2 − ξn2 , · · · , ηn+1

n+1 − ξnn+1)T is the unique solution of

Q̃n(ηn+1 − ξn) = Bn[λn − Fh2]
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where

Q̃n = 〈F ′(yh,δnk,αk)vi, vj〉, i, j = 1, 2, · · · , n+ 1,

Fh2 = [F (yh,δnk,αk)(t1), F (yh,δnk,αk)(t2), · · · , F (yh,δnk,αk)(tn+1)]T .

Case 2: Let ξ̃n = (ξ̃n1 , ξ̃
n
2 , · · · , ξ̃nn+1), η̃n = (η̃n1 , η̃

n
2 , · · · , η̃nn+1), ỹh,δn,αk =

∑n+1
i=1 ξ̃

n
i vi

and x̃h,δn,αk =
∑n+1
i=1 η̃

n
i vi. Then from (3.23) we have

(PhF
′(x̃h,δn,αk) +

αk
c

)

n+1∑
i=1

(ξ̃ni − η̃ni )vi =

n+1∑
i=1

λivi −
n+1∑
i=1

PhF (x̃h,δn,αk)vi

+
αk
c

n+1∑
i=1

(x0(ti)− η̃ni )vi,

where t1, t2, · · · , tn+1 are the grid points.
Observe that (ỹh,δn,αk − x̃

h,δ
n,αk

) is a solution of (3.23) if and only if (ξ̃n − η̃n) =

(ξ̃n1 − η̃n1 , ξ̃n2 − η̃n2 , · · · , ξ̃nn+1 − η̃nn+1)T is the unique solution of

(Sn +
αk
c
Bn)(ξ̃n − η̃n) = Bn[λ− Fh3 +

αk
c

(X0 − η̃n)],

where

Sn = 〈F ′(x̃h,δn,αk)vi, vj〉, i, j = 1, 2, · · · , n+ 1

Fh3 = [F (x̃h,δn,αk)(t1), F (x̃h,δn,αk)(t2), · · · , F (x̃h,δn,αk)(tn+1)]T

and X0 = [x0(t1), x0(t2), · · · , x0(tn+1)]T .
Further from (3.24) it follows that

(PhF
′(ỹh,δn,αk) +

αk
c

)(x̃h,δn+1,αk
− ỹh,δn,αk) = Ph[zh,δαk − F (ỹh,δn,αk) +

αk
c

(xh,δ0,αk
− ỹh,δn,αk)].

(5.3)
Thus (x̃h,δn+1,αk

− ỹh,δn,αk) is a solution of (5.3) if and only if (η̃n+1 − ξ̃n) = (η̃n+1
1 −

ξ̃n1 , η̃
n+1
2 − ξ̃n2 , · · · , η̃n+1

n+1 − ξ̃nn+1)T is the unique solution of

(S̃n +
αk
c
Bn)(η̃n+1 − ξ̃n) = Bn[λ− Fh4 +

αk
c

(X0 − ξ̃n)],

where

S̃n = 〈F ′(ỹh,δn,αk)vi, vj〉, i, j = 1, 2, · · · , n+ 1,

Fh4 = [F (ỹh,δn,αk)(t1), F (ỹh,δn,αk)(t2), · · · , F (ỹh,δn,αk)(tn+1)]T .

Example 5.1. To illustrate the method for Case 1, we consider the operator
KF : L2(0, 1) −→ L2(0, 1) where F : D(F ) ⊆ L2(0, 1) −→ L2(0, 1) defined by

F (u) := u3,
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and K : L2(0, 1) −→ L2(0, 1) defined by

K(x)(t) =

∫ 1

0

k(t, s)x(s)ds

where

k(t, s) =

{
(1− t)s, 0 6 s 6 t 6 1

(1− s)t, 0 6 t 6 s 6 1.

The Fréchet derivative of F is given by

F ′(u)w = 3(u2)w,

[F ′(v)− F ′(u)]w = 3(v2 − u2)w

= 3u2

(
v2

u2
− 1

)
w

= F ′(u)Φ(u, v, w),

where Φ(u, v, w) = ( v
2

u2 − 1)w = (v+u)(v−u)
u2 w. Thus F satisfies the Assumption 3.2

with k0 > ‖ (v+u)
u2 ‖.

We take y(t) = −1
144π2 [−54 + 63π2t2 − 220 sin(πt) + 16 sin(πt) cos2(πt) +

54 cos2(πt)− 63π2t] and yδ = y + δ. Then the exact solution

x̂(t) = 1/2 + sinπt.

We use
x0(t) = sinπt+ 3/5

as our initial guess, then

F (x0)− F (x̂) = x3
0 − x̂3.

Even though we are unable to write F (x0)− F (x̂) = ϕ(K∗K)w for some function
ϕ, we use the function ϕ(λ) = λ and obtain the results as given in the last column
of the Table 1. Thus we expect to have an accuracy of order at least O(δ

1
2 ).

We choose α0 = (1.5)(δ + εh)2, µ = 1.3, (δ + εh) = 0.1, g(γρ) = 0.54 approx-
imately. In this example, for all n, the number of iteration nk = 1. The results
of the computation are presented in Table 1. The plots of the exact and the
approximate solution obtained for n=256 to 1024 are given in Figure 1.

Example 5.2. To illustrate the method for Case 2, we consider the operator
KF : L2(0, 1) −→ L2(0, 1) where K : L2(0, 1) −→ L2(0, 1) defined by

K(x)(t) =

∫ 1

0

k(t, s)x(s)ds
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Table 1.

n k αk ‖xk − x̂‖ ‖xk−x̂‖
δ1/2

8 4 0.1094 0.2199 0.6902
16 4 0.1069 0.1645 0.5192
32 4 0.1063 0.1342 0.4242
64 4 0.1061 0.1178 0.3725
128 4 0.1061 0.1091 0.3451
256 4 0.1060 0.1046 0.3308
512 4 0.1060 0.1023 0.3236
1024 4 0.1060 0.1012 0.3199
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Figure 4. Curve of the exact and approximate solutions of Case 1

and F : D(F ) ⊆ L2(0, 1) −→ L2(0, 1) defined by

F (u) :=

∫ 1

0

k(t, s)u3(s)ds,
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where

k(t, s) =

{
(1− t)s, 0 6 s 6 t 6 1

(1− s)t, 6 t 6 s 6 1.

Then for all x(t), y(t) : x(t) > y(t) :

〈F (x)− F (y), x− y〉 =

∫ 1

0

[∫ 1

0

k(t, s)(x3 − y3)(s)ds

]
× (x− y)(t)dt > 0.

Thus the operator F is monotone. The Fréchet derivative of F is given by

F ′(u)w = 3

∫ 1

0

k(t, s)(u(s))2w(s)ds.

So for any u ∈ Br(x0), x0
2(s) > k3 > 0,∀s ∈ (0, 1), we have

F ′(u)w = F ′(x0)G(u, x0)w,

where G(u, x0) = ( ux0
)2.

Further observe that for u(s) > 0, ∀s ∈ (0, 1),

[F ′(v)− F ′(u)]w(s) = 3

∫ 1

0

k(t, s)u2(s)

[
(v2(s)− u2(s))w(s)

u2(s)

]
ds

:= F ′(u)Φ(u, v, w),

where Φ(u, v, w) = (v2(s)−u2(s))w(s)
u2(s) .

Note that

Φ(u, v, w) =
(v(s) + u(s))(v(s)− u(s))w(s)

u2(s)
.

Thus F satisfies the Assumption 3.2 with

K0 >

∥∥∥∥ (v(s) + u(s))

u2(s)

∥∥∥∥ .
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In our computation, we take

f(t) =

(
1

18π2

)
(1− t)(14t− 7 + cos3(πt)

+ 6cos(πt))t2 −
(

1

18π2

)
t(14t− 7 + cos3(πt)

+ 6cos(πt))(1− t2) +

(
1

9π2

)
t(1− t)(14t− 7 + cos3(πt) + 6cos(πt))

and fδ = f + δ. Then the exact solution

x̂(t) = cosπt.

We use

x0(t) = cos(πt) + 3

[
−1

4π2
(1− t+ 2πt2cos(πt)

× sin(πt) + π2t3 + tcos2(πt)− 2πtcos(πt)

× sin(πt)− π2t2 − cos2(πt)) +
1

4π2
t

× (−2cos(πt)sin(πt)π − 2π2t+ 2πtcos(πt)

× sin(πt) + π2t2 + cos2(πt) + π2 − cos2(πt))

]

as our initial guess, so that the function x0 − x̂ satisfies the source condition

x0 − x̂ = ϕ1(F ′(x0))1

where ϕ1(λ) = λ. Thus we expect to have an accuracy of order at least O(δ
1
2 ).

We choose α0 = (1.3)δ2, µ = 1.3, δ = 0.1 = c, ρ = 0.19, γ̃ρ = 0.8173 and
g(γ̃ρ) = 0.54 approximately. For all n the number of iteration nk = 1. The results
of the computation are presented in Table 2. The plots of the exact and the
approximate solution obtained for n=128 to 1024 are given in Figure 2.

Next we present two examples where Assumption 3.1 is not satisfied but 3.2 is
satisfied.

Example 5.3. Let X = Y = R, D = [0,∞), x0 = 1 and define function F on D
by

F (x) =
x1+ 1

i

1 + 1
i

+ c1x+ c2, (5.4)

where c1, c2 are real parameters and i > 2 an integer. Then F ′(x) = x1/i + c1 is
not Lipschitz on D. However central Lipschitz condition Assumption 3.2 holds for
K0 = 2.
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Table 2.

n k δ α ‖x̃k − x̂‖ ‖x̃k−x̂‖
(δ)1/2

8 4 0.1016 0.1094 0.3652 1.1458
16 4 0.1004 0.1069 0.2664 0.8408
32 4 0.1001 0.1063 0.1994 0.6303
64 4 0.1000 0.1061 0.1554 0.4914
128 4 0.1000 0.1061 0.1278 0.4042
256 4 0.1000 0.1060 0.1115 0.3526
512 4 0.1000 0.1060 0.1024 0.3238
1024 4 0.1000 0.1060 0.0975 0.3083
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Figure 5. Curve of the exact and approximate solutions of Case 2

Indeed, we have

‖F ′(x)− F ′(x0)‖ = |x1/i − x1/i
0 | =

|x− x0|

x
i−1
i

0 + · · ·+ x
i−1
i

so
‖F ′(x)− F ′(x0)‖ 6 1|x− x0|.

Example 5.4. We consider the integral equations

u(s) = f(s) + λ

∫ b

a

G(s, t)u(t)1+1/ndt, n ∈ N. (5.5)
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Here, f is a given continuous function satifying f(s) > 0, s ∈ [a, b], λ is a real
number, and the kernel G is continuous and positive in [a, b]× [a, b].

For example, when G(s, t) is the Green kernel, the corresponding integral equa-
tion is equivalent to the boundary value problem

u′′ = λu1+1/n

u(a) = f(a), u(b) = f(b).

These type of problems have been considered in [1]–[6].
Equation of the form (5.5) generalize equations of the form

u(s) =

∫ b

a

G(s, t)u(t)ndt (5.6)

studied in [1]-[6]. Instead of (5.5) we can try to solve the equation F (u) = 0 where

F : Ω ⊆ C[a, b]→ C[a, b], Ω = {u ∈ C[a, b] : u(s) > 0, s ∈ [a, b]},

and

F (u)(s) = u(s)− f(s)− λ
∫ b

a

G(s, t)u(t)1+1/ndt.

The norm we consider is the max-norm.
The derivative F ′ is given by

F ′(u)v(s) = v(s)− λ
(

1 +
1

n

)∫ b

a

G(s, t)u(t)1/nv(t)dt, v ∈ Ω.

First of all, we notice that F ′ does not satisfy a Lipschitz-type condition in Ω. Let
us consider, for instance, [a, b] = [0, 1], G(s, t) = 1 and y(t) = 0. Then F ′(y)v(s) =
v(s) and

‖F ′(x)− F ′(y)‖ = |λ|
(

1 +
1

n

)∫ b

a

x(t)1/ndt.

If F ′ were a Lipschitz function, then

‖F ′(x)− F ′(y)‖ 6 L1‖x− y‖,

or, equivalently, the inequality∫ 1

0

x(t)1/ndt 6 L2 max
x∈[0,1]

x(s), (5.7)

would hold for all x ∈ Ω and for a constant L2. But this is not true. Consider, for
example, the functions

xj(t) =
t

j
, j > 1, t ∈ [0, 1].

If these are substituted into (5.7)

1

j1/n(1 + 1/n)
6
L2

j
⇔ j1−1/n 6 L2(1 + 1/n), ∀j > 1.

This inequality is not true when j →∞.



Expanding the applicability of a Two Step Newton-type projection method 165

Therefore, condition (5.7) is not satisfied in this case. However, condition
Assumption 3.2 holds. To show this, let x0(t) = f(t) and γ = mins∈[a,b] f(s), α > 0
Then for v ∈ Ω,

‖[F ′(x)− F ′(x0)]v‖ = |λ|
(

1 +
1

n

)
max
s∈[a,b]

∣∣∣∣∣
∫ b

a

G(s, t)(x(t)1/n − f(t)1/n)v(t)dt

∣∣∣∣∣
6 |λ|

(
1 +

1

n

)
max
s∈[a,b]

Gn(s, t)

where Gn(s, t) = G(s,t)|x(t)−f(t)|
x(t)(n−1)/n+x(t)(n−2)/nf(t)1/n+···+f(t)(n−1)/n ‖v‖.

Hence,

‖[F ′(x)− F ′(x0)]v‖ =
|λ|(1 + 1/n)

γ(n−1)/n
max
s∈[a,b]

∫ b

a

G(s, t)dt‖x− x0‖

6 K̄0‖x− x0‖,

where K̄0 = |λ|(1+1/n)
γ(n−1)/n N, K0 = 2K̄0 and N = maxs∈[a,b]

∫ b
a
G(s, t)dt. Then condi-

tion Assumption 3.2 holds for sufficiently small λ.

Acknowledgement. Ms. Shobha, thanks National Institute of Technology Kar-
nataka, India, for the financial support.

References

[1] I.K. Argyros, Convergenve and Applications of Newton-type Iterations,
Springer, New York, 2008.

[2] I.K. Argyros, Approximating solutions of equations using Newton’s method
with a modified Newton’s method iterate as a starting point, Rev. Anal. Numer.
Theor. Approx. 36 (2007), 123–138.

[3] I.K. Argyros, A Semilocal convergence for directional Newton methods,
Math.Comput.(AMS). 80 (2011), 327–343.

[4] I.K. Argyros and S. Hilout, Weaker conditions for the convergence of Newton’s
method, J. Complexity 28 (2012), 364–387.

[5] I.K.Argyros, and Said Hilout(2010), A convergence analysis for directional
two-step Newton methods, Numer. Algor. 55, 503–528.

[6] I.K. Argyros, Y.J. Cho and S. Hilout, Numerical methods for equations and
its applications, CRC Press, Taylor and Francis, New York, 2012.

[7] S. George, Newton-Tikhonov regularization of ill-posed Hammerstein operator
equation, J. Inverse and Ill-Posed Problems 2 (2006), 14, 135–146.

[8] S. George and M. Kunhanandan, An iterative regularization method for Ill-
posed Hammerstein type operator equation, J. Inv. Ill-Posed Problems 17
(2009), 831–844.

[9] S. George and M.T. Nair, A modified Newton-Lavrentiev regularization for
nonlinear ill-posed Hammerstein-Type operator equation, Journal of Complex-
ity 24 (2008), 228–240.



166 Ioannis K. Argyros, Monnanda E. Shobha, Santhosh George

[10] S. George and M.E. Shobha, On Improving the Semilocal Convergence of
Newton-Type Iterative method for Ill-posed Hammerstein type operator equa-
tions, IAENG-International Journal of Applied Mathematics 43 (2013), no. 2,
64–70.

[11] S. George and M.E. Shobha, Two-Step Newton-Tikhonov Method for
Hammerstein-Type Equations: Finite-Dimensional Realization, ISRN Ap-
plied Mathematics, vol. 2012, Article ID 783579, 22 pages, 2012,
doi:10.5402/2012/783579.

[12] B. Kaltenbacher, A. Neubauer, O. Scherzer, Iterative regularisation methods
for nolinear ill-posed porblems, de Gruyter, Berlin, New York, 2008.

[13] P. Mahale and M.T. Nair, A Simplified generalized Gauss-Newton method for
nonlinear ill-posed problems, Math. Comp. 78 (2009), no. 265, 171–184.

[14] S. Pereverzev and E. Schock, On the adaptive selection of the parameter in
regularization of ill-posed problems, SIAM. J. Numer. Anal. 43 (2005), no. 5,
2060–2076.

[15] A.G. Ramm, A.B. Smirnova and A. Favini, Continuous modified Newton’s-
type method for nonlinear operator equations, Ann. Mat. Pura Appl. 182
(2003), 37–52.

[16] E.V. Semenova, Lavrentiev regularization and balancing principle for solving
ill-posed problems with monotone operators, Comput. Methods Appl. Math.
(2010), no.4, 444–454.

[17] C.W. Groetsch and A. Neubauer, Convergence of a general projection method
for an operator equation of the first kind, Houstan. J. Math. 14 (1988), 201–
208

[18] A. Krisch, An introduction to the Mathematical Theory of inverse problems,
Springer, NewYork, 1996.

[19] S.V. Perverzev and S. Probdorf, On the characterization of self-regularization
properties of a fully discrete projection method for Symms integral equation,
J. Integral Equat. Appl. 12 (2000), 113–130.

[20] P. Mahale and M.T. Nair, Iterated Lavrentiev regularization for nonlinear
ill-posed problems, ANZIAM 51 (2009), 191–217.

[21] U. Tautenhahn, On the method of Lavrentiev regularization for nonlinear ill-
posed problems, Inverse Problems 18 (2002), 191–207.

Addresses: Ioannis K. Argyros: Department of Mathematicsal Sciences, Cameron University
Lawton, OK 73505, USA;
Monnanda E. Shobha and Santhosh George: Department of Mathematical and Compu-
tational Sciences, National Institute of Technology Karnataka, India-757 025.

E-mail: ioannisa@cameron.edu, shobha.me@gmail.com, sgeorge@nitk.ac.in
Received: 27 February 2013; revised: 29 August 2013




