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POLY-EULER POLYNOMIALS AND ARAKAWA–KANEKO TYPE
ZETA FUNCTIONS

Yoshinori Hamahata

Abstract: We introduce poly-Euler polynomials, which generalize Euler polynomials. Various
results about them are provided. Furthermore, we introduce zeta functions of Arakawa–Kaneko
type, and discuss their properties and the relation with poly-Euler polynomials.
Keywords: polylogarithms, Euler numbers and polynomials, Bernoulli numbers and polynomi-
als, zeta function.

1. Introduction

Euler polynomials En(x) (n = 0, 1, 2, . . .) are defined by the generating function

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
.

The first few values are E0(x) = 1, E1(x) = x − 1/2, E2(x) = x2 − x, E3(x) =
x3−3x2/2 + 1/4. Let x > 0. We define the Euler zeta function of Hurwitz type by

ζE(s, x) = 2

∞∑
n=0

(−1)n

(n+ x)s
(1.1)

for Re(s) > 0. This function is analytically continued to the whole complex s-
plane as an entire function. In fact, this follows from the fact that for λ ∈ R \ Z,
the Lerch zeta function

L(λ, x, s) =

∞∑
n=0

e2πiλn

(n+ x)s
, Re(s) > 0

is analytically continued to the whole complex s-plane as an entire function
(see [13, (2.2)]). It is known that for each non-negative integer n, ζE(−n, x) =
En(x).
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In this article, we introduce poly-Euler polynomials, which generalize Euler
polynomials. These poly-Euler polynomials are different from those defined in
Son-Kim [15]. Various results about them are provided. Furthermore, we intro-
duce zeta functions of Arakawa–Kaneko type, and discuss their properties and the
relation with poly-Euler polynomials. We establish some results to lay the foun-
dation of poly-Euler polynomials and their associated zeta functions. The rest
of this paper will be organized as follows: we introduce poly-Euler polynomials
and numbers in Section 2 and present basic results. In Section 3, we prove some
theorems stated in Section 2. In Section 4, we define zeta functions of Arakawa–
Kaneko type, which are associated to poly-Euler polynomials. In Section 5, using
Dirichlet characters, we generalize poly-Euler polynomials, Arakawa–Kaneko type
zeta functions, and related results. In Section 6, we prove some theorems stated
in Section 5. In Section 7, we make a remark.

2. Poly-Euler polynomials

2.1. Polylogarithms

For an integer k, let Lik(x) be the formal power series given by

Lik(x) =

∞∑
m=1

xm

mk
. (2.1)

If k is a negative integer, for instance k = −r, then it converges for |x| < 1 and
equals

Li−r(x) =

∑r
j=0

〈
r
j

〉
xr−j

(1− x)r+1
, (2.2)

where the
〈
r
j

〉
are the Eulerian numbers. The Eulerian number

〈
r
j

〉
is the number

of permutations of {1, . . . , r} with j permutation ascents. One has〈
r

j

〉
=

j+1∑
l=0

(−1)l
(
r + 1

l

)
(j − l + 1)r. (2.3)

See [9] for some properties of Eulerian numbers. We give Li−r(x) for some r:

Li0(x) =
x

1− x
, Li−1(x) =

x

(1− x)2
,

Li−2(x) =
x2 + x

(1− x)3
, Li−3(x) =

x3 + 4x2 + x

(1− x)4
,

Li−4(x) =
x4 + 11x3 + 11x2 + x

(1− x)5
, Li−5(x) =

x5 + 26x4 + 66x3 + 26x2 + x

(1− x)6
.

From (2.2) we immediately deduce that, when k is a negative integer, Lik(x)
is a rational function whose denominator is (1 − x)|k|+1 . Summing up, for an
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integer k ∈ Z, the formal power series Lik(x) is the k-th polylogarithm if k > 1,
and a rational function if k 6 0. When k = 1,

Li1(x) = − log(1− x). (2.4)

2.2. Poly-Euler polynomials and numbers

Using Lik(x), let us introduce poly-Euler polynomials and numbers.

Definition 2.1. For every integer k, we define a sequence of polynomials
{E(k)

n (x)}, which we call poly-Euler polynomials, by

2Lik(1− e−t)
t(et + 1)

ext =

∞∑
n=0

E(k)
n (x)

tn

n!
. (2.5)

The numbers E(k)
n := E

(k)
n (0) are called poly-Euler numbers.

It is easy to see that for any n > 0,

E(1)
n (x) = En(x).

Remark 2.2.

(1) We can extend poly-Euler polynomials by

(1− u)Lik(1− e−t)
t(et − u)

ext =

∞∑
n=0

E(k)
n (u;x)

tn

n!
.

for a given real algebraic number u.
(2) Our poly-Euler polynomials are different from those of Son-Kim [15]. They

define poly-Euler polynomials E(k)
n (x) (n = 0, 1, 2, . . .) by

−Lik(1− e2)

et + 1
ext =

∞∑
n=0

E(k)
n (x)

tn

n!
.

Since
d

dt
Lik(1− e−t) =

1

et − 1
Lik−1(1− e−t),

if k > 1, then the generating function
∑∞
n=0E

(k)
n (x)tn/n! can be written as iterated

integrals:

∞∑
n=0

E(k)
n (x)

tn

n!
=

2ext

t(et + 1)

∫ t

0

1

et − 1

∫ t

0

1

et − 1
· · ·
∫ t

0

1

et − 1
tdtdt · · · dt︸ ︷︷ ︸

(k−1)-times

.
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2.3. Some identities

By (2.5), ( ∞∑
n=0

E(k)
n

tn

n!

)
ext =

∞∑
n=0

E(k)
n (x)

tn

n!
.

Hence, E(k)
n (x) form the Appell sequence (see [14], Chapter 2). We have therefore

the following result.

Theorem 2.3. For k ∈ Z, n > 0, we have

E(k)
n (x) =

n∑
m=0

(
n

m

)
E(k)
m xn−m, (2.6)

E(k)
n (x+ y) =

n∑
m=0

(
n

m

)
E(k)
m (x)yn−m,

d

dx
E

(k)
n+1(x) = (n+ 1)E(k)

n (x).

We can express E(k)
n (x) in terms of Euler polynomials.

Theorem 2.4. For k ∈ Z, n > 0, we have

E(k)
n (x) =

1

n+ 1

∞∑
m=0

1

(m+ 1)k

m+1∑
j=0

(−1)j
(
m+ 1

j

)
En+1(x− j).

2.4. Poly-Euler polynomials with non-positive index

We introduce two-variable polynomials with non-positive index −k to connect
E

(−k)
n (x) and E(−n)

k (x).

Definition 2.5. For m,n > 0, define

F (−m)
n (x, y) =

m∑
k=0

(
m

k

)
E(−k)
n (x)

Em−k+1(y)− Em−k+1(y − 1)

2(m− k + 1)
.

In addition, put F (−m)
n := F

(−m)
n (0, 0).

Theorem 2.6 (Symmetric formula).

∞∑
n=0

∞∑
m=0

F (−m)
n (x, y)

tn

n!

um

m!
=

∞∑
n=0

∞∑
m=0

F (−n)
m (y, x)

tn

n!

um

m!

=
2ext+yuet+u(1− e−t)(1− e−u)

tu(et + 1)(eu + 1)(et + eu − et+u)
.

This result yields a duality theorem for poly-Euler polynomials.
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Theorem 2.7 (Duality). For m,n > 0, we have

F (−m)
n (x, y) = F (−n)

m (y, x).

In particular,

F (−m)
n = F (−n)

m ,
∞∑
n=0

∞∑
m=0

F (−m)
n

tn

n!

um

m!
=

et+u(1− e−t)(1− e−u)

tu(et + 1)(eu + 1)(et + eu − et+u)
.

Theorem 2.8 (Inversion formula). For m,n > 0, we have

E(−m)
n (x) =

m∑
k=0

(−1)m−k
(
m

k

)
F (−k)
n (x, y)(Bm−k(y − 1) +Bm−k(y)),

where Bn(x) are the classical Bernoulli polynomials given by the generating func-
tion

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
.

Theorem 2.9. For m,n > 0, we have

F (−m)
n (x, y) =

1

2(n+ 1)(m+ 1)

×
min(n+1,m+1)∑

j=1

(j!)2

(
n+1∑
k=0

En+1−k(x)

(
n+ 1

k

){
k

j

})
(
m+1∑
l=0

Em+1−l(x)

(
m+ 1

l

){
l

j

})

where

{ n
m

}
=

(−1)m

m!

m∑
l=0

(−1)l
(
m

l

)
ln

are the Stirling numbers of the second kind.
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2.5. A relation with poly-Bernoulli polynomials

We briefly review poly-Bernoulli polynomials and numbers ([3]). Let k denote
a fixed integer. Poly-Bernoulli polynomials B(k)

n (x) (n = 0, 1, 2, . . .) are defined by
the generating function

Lik(1− e−t)
1− e−t

ext =

∞∑
n=0

B(k)
n (x)

tn

n!
.

Moreover, we call B(k)
n := B

(k)
n (0) (n = 0, 1, 2, . . .) poly-Bernoulli numbers, which

were introduced in [12], and then investigated in [1, 2, 10, 11]. If k = 1, then

(−1)nB(1)
n (−x) = Bn(x) (n > 0).

The following result yields a relation among poly-Bernoulli and poly-Euler
polynomials.

Theorem 2.10. For k ∈ Z and n > 1, we have

nE
(k)
n−1(x) + nE

(k)
n−1(x+ 1) = 2B(k)

n (x)− 2B(k)
n (x− 1).

3. Proofs of theorems in Section 2

Proof of Theorem 2.4. We use the generating function for poly-Euler polyno-
mials.

2Lik(1− e−t)ext

t(1 + et)
=

∞∑
m=0

(1− e−t)m+1

(m+ 1)k
· 2ext

t(1 + et)

=

∞∑
m=0

1

(m+ 1)k

m+1∑
j=0

(−1)j
(
m+ 1

j

)
· 2e(x−j)t

t(1 + et)

=

∞∑
m=0

1

(m+ 1)k

m+1∑
j=0

(−1)j
(
m+ 1

j

) ∞∑
n=−1

En+1(x− j)
n+ 1

tn

n!
. �

Proof of Theorem 2.6. We need the following result.

Lemma 3.1.
∞∑
k=0

Lik(1− e−t)u
k

k!
=

et+u(1− e−t)
et + eu − et+u

.
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Proof. As stated in Kaneko [12], it holds that

∞∑
k=0

∞∑
n=0

B(−k)
n

tn

n!

uk

k!
=

et+u

et + eu − et+u
. �

To prove Theorem 2.6, we note that the left-hand side becomes

1

2

∞∑
n=0

∞∑
m=0

∑
k+l=m

(
m

k

)
E(−k)
n (x)

El+1(y)− El+1(y − 1)

l + 1

tn

n!

um

m!

=
1

2u

∞∑
k=0

∞∑
n=0

E(−k)
n (x)

tn

n!

uk

k!

∞∑
l=0

(El+1(y)− El+1(y − 1))
ul+1

(l + 1)!

=
1

2u

∞∑
k=0

2Li−k(1− e−t)ext

t(et + 1)

uk

k!

∞∑
l=0

(El+1(y)− El+1(y − 1))
ul+1

(l + 1)!

=
ext

tu(et + 1)

( ∞∑
k=0

Li−k(1− e−t)u
k

k!

)( ∞∑
l=0

(El(y)− El+1(y − 1))
ul

l!

)

=
et+u(1− e−t)ext

tu(et + 1)(et + eu − et+u)
· 2(eyu − e(y−1)u

eu + 1
(by Lemma 3.1).

This is the right-hand side. �

Proof of Theorem 2.8. Starting with the right-hand side, we obtain

∞∑
n=0

∞∑
m=0

m∑
k=0

(−1)m−k
(
m

k

)
F (−k)
n (x, y)(Bm−k(y − 1) +Bm−k(y))

tn

n!

um

m!

(put l = m− k)

=

( ∞∑
n=0

∞∑
k=0

F (−k)
n (x, y)

tn

n!

uk

k!

)( ∞∑
l=0

(Bl(y − 1) +Bl(y))
(−u)l

l!

)

=
2ext+yuet+u(1− e−t)(1− e−u)

tu(et + 1)(eu + 1)(et + eu − et+u)

(
(−u)e(y−1)(−u)

e−u − 1
+

(−u)ey(−u)

e−u − 1

)
(by Theorem 2.6)

=
2extet+u(1− e−t)

t(et + 1)(et + eu − et+u)

=

∞∑
n=0

∞∑
m=0

E(−m)
n (x)

tn

n!

um

m!
(by Lemma 3.1),

which gives the left-hand side. �
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Proof of Theorem 2.9. From the left-hand side we get with Theorem 2.6,

∞∑
n=0

∞∑
m=0

F (−m)
n (x, y)

tn

n!

um

m!
=

2ext+yuet+u(1− e−t)(1− e−u)

tu(et + 1)(eu + 1)(et + eu − et+u)

=
2ext+yu(et − 1)(eu − 1)

tu(et + 1)(eu + 1){1− (et − 1)(eu − 1)}

=
2ext+yu

tu(1 + et)(1 + eu)

∞∑
j=1

(et − 1)j(eu − 1)j

=
1

tu

∞∑
j=1

{
2ext

1 + et
(et − 1)j

}{
2eyu

1 + eu
(eu − 1)j

}
.

Using the identity
(et − 1)j

j!
=

∞∑
n=j

{
n

j

}
tn

n!
,

we obtain

1

2tu

∞∑
j=1

( ∞∑
n=0

En(x)
tn

n!
j!

∞∑
k=0

{
k

j

}
tk

k!

)( ∞∑
m=0

Em(y)
um

m!
j!

∞∑
l=0

{
l

j

}
ul

l!

)

=
1

2

∞∑
p=0

∞∑
q=0

∞∑
j=1

(j!)2

(
p∑
k=0

Ep−k(x)

(
p

k

){
k

j

})

×

(
q∑
l=0

Eq−l(y)

(
q

l

){
l

j

})
tp−1

p!

uq−1

q!

=

∞∑
n=0

∞∑
m=0

1

2(n+ 1)(m+ 1)

∞∑
j=1

(j!)2

(
n+1∑
k=0

En+1−k(x)

(
n+ 1

k

){
k

j

})

×

(
m+1∑
l=0

Em+1−l(x)

(
m+ 1

l

){
l

j

})
tn

n!

um

m!

=

∞∑
n=0

∞∑
m=0

1

2(n+ 1)(m+ 1)

min(n+1,m+1)∑
j=1

(j!)2

(
n+1∑
k=0

En+1−k(x)

(
n+ 1

k

){
k

j

})

×

(
m+1∑
l=0

Em+1−l(x)

(
m+ 1

l

){
l

j

})
tn

n!

um

m!

Equating coefficients, we obtain the result. �

Proof of Theorem 2.10. We compute both sides of

2Lik(1− e−t)
t(1 + et)

(1 + et)extt =
2Lik(1− e−t)

1− e−t
(1− e−t)ext.
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While the left-hand side is

2Lik(1− e−t)
t(1 + et)

extt+
2Lik(1− e−t)
t(1 + et)

e(x+1)tt =

∞∑
n=1

(
nE

(k)
n−1(x) + nE

(k)
n−1(x+ 1)

) tn
n!
,

the right-hand side is

2Lik(1− e−t)
1− e−t

ext − 2Lik(1− e−t)
1− e−t

e(x−1)t =

∞∑
n=0

(
2B(k)

n (x)− 2B(k)
n (x− 1)

) tn
n!
,

from which we deduce the result. �

4. Arakawa–Kaneko type zeta functions

4.1. Arakawa–Kaneko type zeta functions – basic properties

Definition 4.1. For k ∈ Z, set

ZE,k(s, x) =
2

Γ(s)

∫ ∞
0

Lik(1− e−t)
1 + et

e−xtts−2dt,

the Laplace–Mellin integral. We call it the Arakawa–Kaneko type zeta function for
poly-Euler polynomials.

Proposition 4.2. The zeta function ZE,k(s, x) is defined for Re(s) > 1 and x > 0
if k > 1, and for Re(s) > 1 and x > |k|+ 1 if k 6 0.

Proof. We prove that ZE,k(s, x) converges for each case.
Case k > 1: for t > 0, we have

Lik(1− e−t)
1 + et

e−xtts−2 6 Lik(1− e−t)e−xtts−2 6
ts−1

ext
.

Case k = 0: for t > 0, we have

Lik(1− e−t)
1 + et

e−xtts−2 =
et − 1

1 + et
e−xtts−2 6

ts−1

ext
.

Case k < 0: for t > 0, using (2.2), we have

Lik(1− e−t)
1 + et

e−xtts−2 =

∑|k|−1
j=0

〈
|k|
j

〉
(1− e−t)|k|−j

(1 + et)e(x−|k|−1)t
ts−2

6
|k|!
∑|k|−1
j=0 (1− e−t)|k|−j

(1 + et)e(x−|k|−1)t
ts−2

=
|k|!(et − 1)

{
1− (1− e−t)|k|

}
(1 + et)e(x−|k|−1)t

ts−2.
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Since 1− (1− e−t)|k| 6 t for all t > 0,

R.H.S. 6
|k|!ts−1

e(x−|k|−1)t
.

These ensure the convergence of ZE,k(s, x). �

Here is a result about the values at non-positive integers.

Theorem 4.3. We assume that x > 0 if k > 1, and x > |k| + 1 if k 6 0. Then,
the function s 7→ ZE,k(s, x) has analytic continuation to an entire function on the
whole complex s-plane and

ZE,k(−n, x) = (−1)nE(k)
n (−x)

holds for n > 0.

Proof. We express ZE,k(s, x) as the sum of two integrals:

ZE,k(s, x) =
2

Γ(s)

∫ ∞
1

Lik(1− e−t)
1 + et

e−xtts−2dt

+
2

Γ(s)

∫ 1

0

Lik(1− e−t)
1 + et

e−xtts−2dt.

The first integral converges absolutely for any s ∈ C and x > 0 and cancels at
non-positve integers because 1/Γ(s) does so. If Re(s) > 1, then the second integral
can be written as

1

Γ(s)

∞∑
i=0

E
(k)
i (−x)

i!
· 1

i+ s
,

from which we have for a non-negative integer n

ZE,k(−n, x) =

(
lim
s→−n

1

Γ(s)(n+ s)

)
E

(k)
n (−x)

n!
= (−1)nE(k)

n (−x). �

When k = 1, one obtains the zeta function in (1.1):

ZE,1(s, x) =
2

Γ(s)

∫ ∞
0

e−xt

et + 1
ts−1dt = 2

∞∑
n=1

(−1)n−1

(n+ x)s

= ζE(s, x+ 1). (4.1)

We give two kinds of expressions for ZE,k(s, x).

Theorem 4.4. The zeta function ZE,k(s, x) can be expressed as follows.
(i) If s 6= 1, then

ZE,k(s, x) =
1

s− 1

∞∑
m=0

1

(m+ 1)k

m+1∑
j=0

(−1)j
(
m+ 1

j

)
ζE(s− 1, x+ j + 1).
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(ii) If k 6 0, then

ZE,k(s, x) =

|k|∑
j=0

〈
|k|
j

〉 |k|−j∑
i=0

(−1)i
(
|k| − j
i

)
ζE(s− 1, x− |k|+ i).

Proof. (i) One computes

ZE,k(s, x) =
2

Γ(s)

∞∑
m=0

1

(m+ 1)k

∫ ∞
0

(1− e−t)m+1

1 + et
e−xtts−2dt

=
1

s− 1

2

Γ(s− 1)

∞∑
m=0

1

(m+ 1)k
e−(x+j)t

1 + et
ts−2dt,

which is the right-hand side by (4.1).
(ii) Since

Lik(1− e−t) = e(|k|+1)t

|k|∑
j=0

〈
|k|
j

〉
(1− e−t)|k|−j

by (2.2), we have

ZE,k(s, x) =

|k|∑
j=0

〈
|k|
j

〉 |k|−j∑
i=0

(−1)i
(
|k| − j
i

)∫ ∞
0

e−(x+i−|k|−1)t

1 + et
ts−2dt.

This yields the formula. �

4.2. A relation with the Arakawa–Kaneko zeta function ZB,k(s, x)

We review the zeta function investigated in [3]. For k ∈ Z we set

ZB,k(s, x) :=
1

Γ(s)

∫ ∞
0

Lik(1− e−t)
1− e−t

e−xtts−1dt,

the Laplace–Mellin integral. It is defined for Re(s) > 0 and x > 0 if k > 1, and
for Re(s) > 0 and x > |k| + 1 if k 6 0. The function s 7→ ZB,k(s, x) has analytic
continuation to an entire function on the whole complex s-plane and

ZB,k(−n, x) = (−1)nB(k)
n (−x). (4.2)

holds for n > 0, x > 0.
There is a relation between ZE,k(s, x) and ZB,k(s, x).

Theorem 4.5. For k ∈ Z, we have

sZE,k(s+ 1, x) + sZE,k(s+ 1, x− 1) = 2ZB,k(s, x)− 2ZB,k(s, x+ 1).
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Proof. The left-hand side of the identity in the theorem equals

2

Γ(s)

∫ ∞
0

Lik(1− e−t)
t(1 + et)

t(1 + et)e−xtts−1dt

=
2

Γ(s)

∫ ∞
0

Lik(1− e−t)
1− e−t

(1− e−t)e−xtts−1d,

which is nothing but the right-hand of the identity. �

5. Generalized poly-Euler polynomials and Arakawa–Kaneko type
L-functions

In this section, using a Dirichlet character, we extend poly-Euler polynomials and
Arakawa–Kaneko type zeta functions.

5.1. Generalized poly-Euler polynomials

Let f be a positive integer and χ the Dirichlet character with conductor f = fχ. As
is well-known, generalized Euler polynomials are defined by the generating function

2

f−1∑
a=0

(−1)aχ(a)
eat

eft + 1
ext =

∞∑
n=0

En,χ(x)
tn

n!
.

Definition 5.1. Let k ∈ Z. We define generalized poly-Euler polynomials E(k)
n,χ(x)

(n = 0, 1, 2, . . .) by

2

f

f−1∑
a=0

(−1)aχ(a)
Lik(1− e−ft)
t(eft + 1)

e(x+a)t =

∞∑
n=0

E(k)
n,χ(x)

tn

n!
.

We call E(k)
n,χ := E

(k)
n,χ(0) (n = 0, 1, 2, . . .) generalized poly-Euler numbers.

One can easily prove the following two theorems as in poly-Euler polynomial
case.

Theorem 5.2 (Addition formula). For k ∈ Z, n > 0, we have

E(k)
n,χ(x+ y) =

n∑
m=0

(
n

m

)
E(k)
m,χ(x)yn−m.

Theorem 5.3 (Appell sequence). For k ∈ Z, n > 0, we have

d

dx
E

(k)
n+1,χ(x) = (n+ 1)E(k)

n,χ(x).

We have the following expressions of E(k)
n,χ(x) in terms of E(k)

n (x) and En(x).
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Theorem 5.4. For any n > 0, we have

E(k)
n,χ(x) = fn

f−1∑
a=0

(−1)aχ(a)E(k)
n

(
x+ a

f

)
,

E(k)
n,χ = fn

f−1∑
a=0

(−1)aχ(a)E(k)
n

(
a

f

)
.

Theorem 5.5. For k ∈ Z, n > 0, we have

E(k)
n,χ(x)

=
fn

n+ 1

f−1∑
a=0

(−1)aχ(a)

∞∑
m=0

1

(m+ 1)k

m+1∑
j=0

(−1)j
(
m+ 1

j

)
En+1

(
x+ a− fj

f

)
.

5.2. Arakawa–Kaneko type L-functions

Definition 5.6. For k ∈ Z, define the L-series attached to χ by the Laplace–Mellin
integral

LE,k(s, x, χ) =
2

f

f−1∑
a=0

(−1)aχ(a)
1

Γ(s)

∫ ∞
0

Lik(1− e−ft)
t(eft + 1)

e−(x−a)tts−1dt.

By Proposition 4.2, LE,k(s, x, χ) is defined for Re(s) > 1 and x > 0 if k > 1,
and Re(s) > 1 and x > |k| + 1 if k 6 0. We call LE,k(s, x, χ) the Arakawa–
Kaneko type L-function. These functions include Arakawa–Kaneko and Hurwitz
L-functions:

Theorem 5.7. One has

LE,k(s, x, χ) = f−s
f−1∑
a=0

(−1)aχ(a)ZE,k

(
s,
x− a
f

)
. (5.1)

Especially,

LE,1(s, x, χ) = f−s
f−1∑
a=0

(−1)aχ(a)ζE

(
s,
x− a
f

+ 1

)
.

Furthermore, if χ = χ0, the trivial character, then

LE,1(s, x, χ0) = ZE,1(s, x) = ζE(s, x+ 1).

Theorem 5.8. The function s 7→ LE,k(s, x, χ) has analytic continuation to an
entire function on the whole complex s-plane and has the identity

LE,k(−n, x, χ) = (−1)nE(k)
n,χ(−x)

for n > 0, x > 0.
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6. Proofs of theorems in Section 5

Proof of Theorem 5.4. To begin with, let us prove the first identity. We make
use of the generating function for E(k)

n,χ(x). We calculate

∞∑
n=0

{
fn

f−1∑
a=0

(−1)aχ(a)E(k)
n

(
x+ a

f

)}
tn

n!
=

f−1∑
a=0

(−1)aχ(a)

∞∑
n=0

E(k)
n

(
x+ a

f

)
(ft)n

n!

=

f−1∑
a=0

(−1)aχ(a)
2Lik(1− e−ft)
ft(eft + 1)

e( x+a
f )ft,

which yields the generating function for E(k)
n,χ(x). The second identity comes from

the first identity for x = 0. �

Proof of Theorem 5.5. The result follows from Theorems 2.4 and 5.4. �

Proof of Theorem 5.7. The first identity is proved by

LE,k(s, x, χ) =

f−1∑
a=0

(−1)aχ(a)
2

Γ(s)

∫ ∞
0

Lik(1− e−ft)
(ft)(eft + 1)

e−( x−af )ftts−1dt

(put u = ft)

= f−s
f−1∑
a=0

(−1)aχ(a)ZE,k

(
s,
x− a
f

)
.

Recalling (4.1), we obtain the second result. �

Proof of Theorem 5.8. The first claim follows from Theorem 4.3, 5.7. As for
the second claim, by Theorem 4.3, Definition 5.1 and Theorem 5.4,

LE,k(−n, x, χ) = (−1)nfn
f−1∑
a=0

(−1)aχ(a)E(k)
n

(
−x+ a

f

)
= (−1)nE(k)

n,χ(−x). �

7. Concluding remark

Dilcher [8] and Chen [6] investigated the following sums of products of Euler poly-
nomials: ∑

i1+···+im=n
i1,...,im>0

(
n

i1, . . . , im

)
Ei1(x1) · · ·Eim(xm)
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for n > 0. It seems interesting to consider the following sums of poly-Euler poly-
nomials: ∑

i1+···+im=n
i1,...,im>0

(
n

i1, . . . , im

)
E

(k)
i1

(x1) · · ·E(k)
im

(xm)

for n > 0 and k ∈ Z.
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