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DIOPHANTINE APPROXIMATION IN Q(
√
−30), Q(

√
−33)

AND Q(
√
−57)

L. Ya. Vulakh

Abstract: For the imaginary quadratic fields with discriminants -120, -132 and -248, the first
three, five and two points of the Lagrange and Markov spectra respectively are found.
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1. Introduction

1.1. History

Let α be a real irrational number. In 1891 A. Hurwitz [7] showed that the inequal-
ity

|α− a/c| < 1/(hc2)

has infinitely many solutions in coprime integers a and c when h =
√
5, and

√
5

is the best constant possible. In 1917 the first geometric proof of this result was
obtained by L. Ford in [3], where he makes use of properties of the modular group.

Let d > 0 be a square-free integer. Let Od be the ring of integers of the field
Q(

√
−d). Let θ ∈C−Q

(√
−d
)
. Denote by n(p, q) the norm of the ideal generated

by p,q ∈ Od. Let

νd(θ) = lim inf
|q(qθ − p)|
n(p, q)

, (1.1)

where p, q ∈ Od, q ̸= 0. Then the inequality∣∣∣∣θ − p

q

∣∣∣∣ < νd(θ)
n(p, q)

|q|2
(1.2)

has infinitely many solutions in p, q ∈ Od with n(p, q) < 2
√
d (see e.g. [5],

$17(5), XVI*, for the justification of this inequality). The set of numbers Ld ={
νd(θ), θ ∈ C−Q

(√
−d
)}

is the Lagrange spectrum for the imaginary quadratic
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field Q
(√

−d
)

and Cd = supLd the Hurwitz constant for the field. If k∞ is the
highest limit point of Ld, then Ld ∩ (k∞,∞) is called the discrete part of Ld.

In 1925 Ford [4], applying his method to the Picard group PSL2(O1), showed
that the Hurwitz constant for the Gauss field C1 = 1/

√
3. For the fields with class

number one with d = 1, 2, 3, 7, 11, and 19, the Hurwitz constants were found by
Ford [4], Perron [9], [10], [11], Hofreiter [6], Poitou [12]), (see also A. Schmidt [14]).
After Ford [4], none of these authors applied his geometric ideas to Diophantine
approximation of complex numbers. In [27], these ideas, as they were developed in
[29], were used to obtain an upper bound for the Hurwitz constant of an imaginary
quadratic number field (see Theorem 3.1 below). In the cases of d = 1, 2, 5, 6,
30 and 33, this bound is sharp [27], [35]. For the class two field with d = 15,
the Hurwitz constant was found in [30]. For d = 2 and 7, the second minimum
is known [14]. For d = 1 (A. Schmidt [15], Vulakh [20], [21]), d = 3 (A. Schmidt
[17]), d = 5, d = 6 (Vulakh [31]) and d = 11 (A. Schmidt [16]), the discrete part
of the Lagrange spectrum (which coincides with the discrete part of the Markov
spectrum) was found. Applying the results of [22], it can be shown that the
Lagrange spectrum of an imaginary quadratic field is continuous in its lower part.
There are known upper (see Hofreiter [6], Perron [11]) and lower [23], [35] bounds
for the Hurwitz constants Cd. Lower bounds for the highest limit point of Ld for
some values of d are given in [23] and [35].

1.2. Main results

The Hurwitz constants for the fields Q
(√

−30
)

and Q
(√

−33
)

are found in [35].
The Hurwitz constants for the field Q

(√
−57

)
is found in Section 5 of the present

paper. Here, the method, which was used in [31] to find the discrete part of the
Lagrange spectrum of the fields Q

(√
−5
)

and Q
(√

−6
)
, is applied to the fields

Q
(√

−30
)
, Q

(√
−33

)
and Q

(√
−57

)
. It is based on application of the Farey

polygons associated with the extended Bianchi groups Bd, introduced in [30], to
reduce the problem of finding the discrete part of the Markov spectrum for Bd

to the corresponding problem for one of its maximal Fuchsian subgroups. Such
reduction is used in Sections 3, 4 and 5 to show that

L30 ∩ (2.2936,∞) =
{√

37/7,
√
22/2,

√
23/2

}
,

L33 ∩
[√

14/2, ∞
)
=
{ √

14/2,
√
437/124, 2,

√
17/2,

√
19/2

}
,

L57 ∩ (3.1735,∞) =
{√

41/2,
√
46/2

}
respectively.

1.3. Background and Terminology

The upper half-space H3 = {(z, t) : z ∈ C, t > 0} with the metric ds2 =
t−2(|dz|2 + dt2) can be used as a model of the 3-dimensional hyperbolic space.
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PSL2(C) is the group of orientation-preserving isometries of H3. The action of

F =

(
a b
c d

)
∈ PSL2(C) on (z, t) ∈ H3 is given by

F (z, t) =

(
(az + b)(cz + d) + act2

|cz + d|2 + |c|2t2
,

t

|cz + d|2 + |c|2t2

)
(1.3)

(see e.g. [2], p. 58, or [18], p. 15). The Bianchi group PSL2(Od) is a geometri-
cally finite discrete subgroup of PSL2(C). We denote by Bd the maximal discrete
subgroup of the group of isometries of H3, which contains PSL2(Od) (see [25]; in
[26], this group is denoted by RBd). The type of g ∈ Bd is elliptic, parabolic or
loxodromic depending on whether it has a fixed point in H3, a single fixed point
in C, or exactly two fixed points in C. If g is loxodromic, the geodesic connecting
its fixed points is called the axis of g. The transformation g is hyperbolic if it is
loxodromic and every plane containing its axis is g-invariant. The set of parabolic
fixed points (cusps) of Bd can be identified with Q(

√
−d).

Let P be a Dirichlet polygon of G∞ = Stab(∞, Bd) in C. Denote P∞ =
{(z, t) ∈ H3 : z ∈ P}. The region

D = P∞ ∩ {x ∈ H3 : |g′(x)| < 1, g ∈ Bd} (1.4)

is an isometric fundamental domain for Bd in H3 (see [1], p. 66, or [18], p.18).
Here g′(x) stands for the Jacobian of the transformation g.

Denote
K = K(∞) = G∞D, K(u) = gK(∞), (1.5)

where u = g(∞). It is clear that ∪K(u) = H3, u ∈ Bd∞, and that dim(K(u) ∩
K(u′)) 6 2 if u ̸= u′. We shall call the tessellation of H3 by K(u), u ∈ Bd∞,
the K-tessellation. Let ∂K be the boundary of K. We shall say that ∂K ∩ D is
the floor of D. The components of ∂K (and D) of dimensions 0, 1, and 2 will
be called the vertices (or cusps), edges, and faces of K respectively. The vertices
(and edges) of K which belong to D will be called the vertices (and edges) of D.
For any region R in H3, the components of the boundary of R of dimension 2
which lie in vertical planes will be called the vertical faces of R. (Notice that, in
general, according to these definitions, the components of the boundary of D of
dimension 0 (or 1) which lie in the vertical faces of D are not vertices (or edges)
of D).

A geodesic in H3 is a semicircle or a ray, which is orthogonal to C. For
a geodesic L with endpoints θ, θ′ in C, denote k(L) = |θ−θ′| and ν(L) = inf |g(θ)−
g(θ′)|−1, the infimum being taken over all g ∈ Bd. A geodesic L is said to be
extremal with respect to Bd if ν(L) = 1/k(L). Note that an extremal L cuts
K(∞). The set of numbers M(Bd) = {ν(L)} is called the Markov spectrum for
Bd.

Denote by Cl(K) the class group of a field K = Q
(√

−d
)
. There are 65 fields

K such that Bd(∞) = K, that is ∞ is the only cusp of a fundamental domain of
Bd in H3. The condition Bd(∞) = K holds for
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1) d = 1, 2, 3, 7, 11, 19, 43, 67, 163 with Cl(K) = (1),
2) d = 5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267, 403, 427 with

Cl(K) = (2),
3) d = 21, 30, 33, 42, 57, 70, 78, 85, 93, 102, 130, 133, 177, 190, 195, 253, 435, 483,

555, 595, 627, 715, 795, 1435 with Cl(K) = (2, 2),
4) d = 105, 165, 210, 273, 330, 345, 357, 385, 462, 1155, 1995, 3003, 3315 with

Cl(K) = (2, 2, 2),
5) d = 1365 with Cl(K) = (2, 2, 2, 2).

Weinberger ([36], Theorem 2) showed that there is at most one imaginary
quadratic field with exponent 2 and d > 1365. It follows that the condition
Bd(∞) = K holds for at most one field K with d > 1365.

For all these values of d, and therefore for d = 30, 33 and 57, M(Bd) coincide
with the Markov spectrum of the field Q(

√
−d) (see [31], p. 41).

Let

Mh(Bd) = {ν(L) ∈ M(Bd), L is the axis of a hyperbolic g ∈ Bd}.

In all the known cases (see [20], [21], [31], [15], [16], [17]), almost all the points in
the discrete part of M(Bd) (that is the part of M(Bd) that lies above its highest
limit point) belong to Mh(Bd). Since every hyperbolic g ∈ Bd belongs to some
maximal Fuchsian subgroup of Bd, the problem of finding Mh(Bd) can be reduced
to the problem of finding the Markov spectra for the maximal Fuchsian subgroups
of Bd. The classification of such subgroups of Bd is known (see [24], [25], [33],
[8]). They can be identified with the Bd-unit groups of indefinite integral binary
Hermitian forms.

1.4. Outline

It is shown in [25] how the problem of classification of maximal Fuchsian subgroups
of Bd can be reduced to the problem of classification of indefinite primitive Her-
mitian forms (see [31], Theorem 2.1, see also [33], [8]). Let S be a hemisphere in
H3 with center in C. Denote GS = Stab(S,Bd). Let L be a geodesic in S. Denote
νS(L) = inf |g(θ) − g(θ′)|−1, the infimum being taken over all g ∈ GS . We say
that a geodesic L ⊂ S is extremal with respect to GS if νS(L) = 1/k(L). Denote
MS = {νS(L), L ⊂ S}. Theorem 2.2 from [31] contains a sufficient condition
for a geodesic L ⊂ S, which is extremal with respect to GS , to be extremal with
respect to Bd.

Let Hd be the spectrum of minima of binary indefinite Hermitian forms over
Od (see e.g. [31], Chapter 2). It is shown in [34] that (1/2)Hd ⊂ M(Bd) and that,
for any point ν ∈ Hd, there is a one-parameter family of extremal geodesics Lθ,
0 6 θ < 2π, such that ν(Lθ) = ν/2 ([34], Theorem 1.1). Moreover, the geodesics
Lθ, which are the axes of some elements in Bd, form a dense subset of this family
(see [34] for more details).

For a one-parameter family of extremal geodesics Lθ, 0 6 θ < 2π, introduced
in Theorem 1.1 from [34], the point ν(Lθ) = 1/(2R) = ν(Φ)/2 in the Markov
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spectrum of Bd (and in the Lagrange spectrum Ld) is called a Hermitian point. Let
Hd be the largest Hermitian point in M(Bd). It is shown in [34], that H30 =

√
5,

H33 =
√
11/2 and H57 =

√
38/2 (see Sections 3, 4 and 5 below).

In Section 2, we recall some definitions and results from [30] related to the
Farey polygons associated with the groups Bd.

Denote by S(b,R) the hemisphere in H3 with center b ∈ C and radius R. In
Subsection 3.1, the Farey polygons are used to show that, for d = 30, Theorem 2.2
from [31] is applicable to the hemisphere S = S

(
1/2− 12/ω, 1/

√
20
)
. For this

hemisphere S, it is shown in Section 3 that

M(B30) ∩ (
√
5,
√
23/2] = MS ∩ (

√
5,
√
23/2]. (1.6)

This reduction is used in Subsection 3.3 to prove Theorem 3.1, which is one of
the three main results of this paper.

The outline of Section 4 is similar to that of Section 3. However, for d = 33, the
reduction similar to (1.6) does not exist. In Subsection 4.1, the Farey polygons
are used to show that, for d = 33, Theorem 2.2 from [31] is applicable to the
hemisphere S = S

(
2ω/11, 1/

√
11
)
. For this hemisphere S, by Lemma 4.1,

M(B33) ∩ (
√
14/2,

√
19/2] = MS ∩ (

√
14/2,

√
19/2] ∪ {2},

where 2 ∈ M(B33) is not attained at any geodesic L ⊂ S. However, this reduction
is sufficient to prove Theorem 4.1, which is the second main result of this paper.

In Subsection 5.1, the generators (Theorem 5.1) and the isometric funda-
mental domain of B57 are found. Then the Farey polygons are used to show
that, for d = 57, Theorem 2.2 from [31] is applicable to the hemisphere S =
S
(
1/2− 33/(2ω), 1/

√
38
)
. For this hemisphere S, it is shown in Section 5 that

M(B57) ∩ [
√
38/2,

√
46/2] = MS ∩ [

√
38/2,

√
46/2].

This reduction is used in Subsection 5.3 to prove Theorem 5.2, which is the third
main result of this paper.

In each of these three cases, a face of the isometric fundamental domain D of
Bd lies in the hemisphere S, the reflection in S in H3 belongs to Bd and the radius
of S is the smallest among all the hemispheres containing the faces of D, which
makes the reduction mentioned above relatively easy. Not all the hemispheres
defined by the Hermitian forms enumerated in the Tables 1-5 of [35] possess these
properties. Thus, in the cases of d = 19, 43, 67 and 163, none of them holds.

The author thanks the referee for the remarks.

2. Farey polygons

Here we summarize some results from [30], Section 2. Assume that the summits of
all the edges in the floor of K(∞) belong to K(∞). (Anke Pohl has indicated that
this assumption should be made in the statement of Theorem 5.4 from [30]). Let
v ∈ H3 be a vertex of K(u). Assume that v belongs to the edges ej , j = 1, ..., t.



188 L. Ya. Vulakh

Let Fj be the plane through u which is orthogonal to ej . Denote by A(u, v) the
part of K(u) which is bounded by the planes Fj , j = 1, ..., t. Thus, each of the
sets A(u, v) has one cusp u and one vertex v. The union of all the sets A(u, v)
with the same cusp u is K(u). The union of all A(u, v) with the same vertex v is
called the v-cell (see [30]). Denote the v-cell by N(v). The faces of N(v) are called
hyperbolic Farey polygons and the vertical projections of the faces of N(v) from ∞
into C the Farey polygons. Let B be a face of N(v) with vertices at the cusps um,
m = 1, ..., n. Let h(B) be the largest value of k such that the horoballs bounded
by the horospheres Q(um, k), m = 1, ..., n, cover B. Recall that the horosphere
Q(p/q, k), where p, q ∈ Od, is a euclidean sphere in H3 with center (p/q, r) and
radius r = n(p, q)/(k|q|2). We shall call the number h(B) the Farey constant of B.
Denote by kd the smallest value of h(B) over all the faces B of all the v-cells. By
Theorem 3.1 from [31], the Hurwitz constant for the field Q(

√
−d), Cd 6 1/kd. It

is shown in [27], [35] and in the present paper that this bound is sharp for d = 1,
2, 5, 6, 30, 33 and 57.

3. Diophantine approximation in Q(
√
−30)

3.1. Reduction

Let d = 30 and ω =
√
−30. Then {1, ω} is the standard basis of the ring of

integers O30 of the field Q(
√
−30). The group G∞ = Stab(∞, B30) is generated

by reflections in the vertical plains in H3 through the lines Re z = 0, Re z = 1/2,
Im z = 0 and Im z =

√
30/2 in C, which will be denoted by S11, S8, S9, and S10

respectively. It is shown in [13] that the group B30 is generated by reflections in
the faces of its fundamental domain D, whose four faces lie in these vertical planes
and the floor of D lies in seven hemispheres

S1 = S(0, 1), S2 = S

(
−30√
D
,
1√
2

)
, S3 = S

(
−20√
D
,
1√
3

)
,

S4 = S

(
−12√
D
,
1√
5

)
, S5 = S

(
1

2
− 15√

D
,

1

2
√
2

)
,

S6 = S

(
1

2
− 10√

D
,

1

2
√
3

)
, S7 = S

(
1

2
− 24√

D
,

1

2
√
5

)
.

For Si = S (bi, Ri), let Φi(x, y) = |x − biy|2 − R2
i |y|2 = (1, bi, |bi|2 − R2

i ), so
that Φi(z, 1) + t2 = R2

i is an equation of the hemisphere Si in H3. Then the
corresponding Hermitian forms Φi are integral (see e.g. [31], p. 29) and the values
of r(Φi) = R2

i |D| = 60, 40, 24, 15, 10, 6 for Si, i = 2, 3, ..., 7 respectively. Notice
that

Φi(x, y) = Φi+3(x− y, 2y), i = 2, 3, Φ4(x,−y) = Φ7(x− (1 + ω)y, 2y).

The hemisphere S7 is anisotropic, that is the only solution of Φ7(x, y) = 0 in
x, y ∈ O30 is x = y = 0, and the lowest face of D lies in S7. Since the diameter of
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S is 1/
√
5, the highest Hermitian point of M(B30) is

H30 =
√
5

(cf. [34], Example 5.1). Denote by hij the height of the edge Lij = Si ∩ Sj of D.
Then

h18 =

√
3

2
, h28 =

1

2
, h23 =

1√
5
, h14 =

1√
6
,

h34 =
1√
8
, h35 =

1√
11
, h38 =

1√
12
, h16 = h45 =

1√
13
,

h46 =
1√
17
, h56 =

1√
20
, h27 =

1√
22
, h37 =

1√
23
.

Since the height of any edge of D > 1/
√
23, there is no extremal geodesic L in H3,

whose height is less than 1/
√
23 (see [28], Theorem 1).

The relations can be given in terms of τi, where τi is the reflection in the plane
Si in H3.

The groupG = Stab(S7, B30) = ⟨τ2, τ3, τ8⟩. Since (τ2τ3)2 = (τ2τ8)
4 = (τ3τ8)

6 =
1, the group G contains the (2, 4, 6)-triangle group as a subgroup of index two.
The triangular face DS of D, which lies in S7, with vertices at

v1 =

(
1

2
+

5ω

12
,

1√
24

)
, v2 =

(
1

2
+

3ω

8
,

1√
32

)
, v3 =

(
2

5
+

2ω

5
,
1

5

)
is a fundamental domain of G, S7 ∩K(∞) consists of two copies of DS . and

Stab(v1, B30) = {τ2, τ7, τ8 : (τ2τ7)
2 = (τ7τ8)

2 = (τ8τ2)
4 = 1},

Stab(v2, B30) = {τ3, τ7, τ8 : (τ3τ7)
2 = (τ7τ8)

2 = (τ8τ3)
6 = 1},

Stab(v3, B30) = {τ2, τ3, τ7 : (τ2τ3)
2 = (τ3τ7)

2 = (τ7τ2)
2 = 1}.

The geodesic L37 is perpendicular to S2 and the axis L38 of τ8τ3. Denote
U = (τ8τ3)

3. Then Γ37 = Stab(L37, B30) = ⟨τ2, U⟩. Let t1 = L37 ∩ S2 and
t2 = L37 ∩ L38. Then the arc [t1, t2] = L37 ∩K(∞) is a fundamental domain of
Γ37 on L37 and, by Corollary 24, [30], L37 is extremal. Since the height of L37 is
1/
√
23 and, as shown above, the height of any extremal geodesic is at least 1/

√
23,

the Hurwitz constant of the field Q
(√

−30
)

is

C30 =
√
23/2

(cf. [35], Table 1).

3.1.1. The v-cells N(v1), N(v2), and N(v3).

The hemisphere S7 contains four vertices of D, v1, v2, v3 and v′3 = τ8(v3). The
v-cell N(v3) is a rectangular parallelepiped. The v-cells N(v1) and N(v2) are
square and hexagonal prisms respectively.



190 L. Ya. Vulakh

The vertices of N(v3) are the points B = ω/2, C = ω/3, D = 2ω/5, E =
1/2 + 2ω/5, F = 2/5 + 2ω/5, J = (10 + 9ω)/23, K = (10 + 9ω)/22 in C and
A = ∞. The projection of N(v3) from infinity into C is the triangle with vertices
at B, C and E. The Farey constant of the congruent faces ABDC and KEJF
is 2h23 = 2/

√
5, the Farey constant of the congruent faces ABKE and CDFJ is

2h27 = 2/
√
22 and the Farey constant of the congruent faces ACJE and BDFK

is 2h37 = 2/
√
23. Since the v-cells N(v3) and N(v′3) are symmetrical with respect

to the vertical plane in H3 through the line Re z = 1/2 in C, if X is a vertex of
N(v3), then X ′ = 1−X is the corresponding vertex of N(v′3).

The vertices of N(v1) are the points B, B′ = 1+ω/2, B1 = 1/2+ω/2, E, K,
K ′ = (12 + 9ω)/22, L = 1/2 + 5ω/12 in C and A = ∞. The projection of N(v1)
from infinity into C is the triangle with vertices at B, B′ and E. There are two
congruent square faces ABB1B

′ and EKLK ′, whose Farey constant is 2h28 = 1,
and four congruent rectangular faces ABKE, BB1LK, AB

′K ′E, B′B1LK
′. (We

call these faces squares and rectangles only because of their groups of symmetry).
The axis of τ8τ2 is the axis of order four in N(v1).

The vertices of N(v2) are the points C, C ′ = 1 + ω/3, C1 = (1 + ω)/3, C2 =
1/2 + ω/3, C ′

1 = (2 + ω)/3, E, J , J ′ = (13 + 9ω)/23, M = 1/2 + 3ω/8, N =
(13 + 11ω)/29, N ′ = (16 + 11ω)/29 in C and A = ∞. The projection of N(v2)
from infinity into C is the triangle with vertices at C, C ′ and E. There are two
congruent hexagonal faces ACC1C2C

′
1C

′ and EJNMN ′J ′, whose Farey constant
is 2h38 = 1/

√
3, and six congruent rectangular faces ACJE, CC1NJ, C1NMC2,

AC ′J ′E, C ′C ′
1N

′J ′, C ′
1N

′MC ′
2, whose Farey constant is 2h37 = 2/

√
23. The axis

of τ8τ3 is the axis of order six in N(v2).
Let 2/

√
23 6 k < 1/

√
5. Then N(vi, k) has a geodesic face ϕ if and only if

ϕ lies in a rectangular face of N(vi), which is congruent to ABKE or ACJE,
since only for such a face the Farey constant is less than 1/

√
5. But, the centers

of all such faces lie in S7. Hence, if the height of an extremal geodesic L is less
than 1/

√
20, then g(L) ⊂ S7 for some translation g ∈ B30. Indeed, an extremal

geodesic L, which cuts N(v, k), must enter through one of its geodesic faces and
exit through another. Since the limit points of the sequence of v-cells cut by L are
the endpoints of L and they lie in S7, L itself lies in S7.

Lemma 3.1. If the height of an extremal geodesic L in H3 is less than 1/
√
20,

then L ⊂ gS, g ∈ G∞. Thus, M(B30) ∩ (
√
5,
√
23/2] = MS ∩ (

√
5,
√
23/2].

3.2. A group with signature (0; 2, 4, 6)

The reflections τ2, τ3 and τ8 are represented in G by τ2τ7, τ3τ7 and τ8τ7. respec-
tively. By Theorem 2.2 from [31], if a geodesic L ⊂ S7 is extremal with respect to
GS , then L is extremal with respect to B30, and therefore MS ⊂ M(B30).

Let ρ =

(
R7 b7
0 1

)
. Let C1 be the circle |z − b7| = 1/

√
20 in the complex

plane C. Then GS = Stab(C1, B30) and C1 = ρ(C), where C is the unit circle
|z| = 1. The Klein model D2 of the hyperbolic plane, which is used in [32], is
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obtained as the projection of the unit upper hemisphere model of the hyperbolic
plane in H3 from ∞ into C, so that C is the boundary of D2 (cf. [19], p. 68).

The group Γ = ρ−1GS ρ is a discrete cocompact subgroup of the group of
isometries GC of D2. Below, we shall denote the fixed point of F ∈ GC by the
corresponding lower case letter. Thus, the fixed point of F1 is f1. The fixed point

of F =

(
a b
b̄ ā

)
∈ GC in C is f = ib/ Im a. The fixed points of F and F ′ in GC

are said to be Γ-equivalent if there is g ∈ Γ such that F ′ = gFg−1.
Let c =

√
5 + i

√
6 and c1 = −3

√
5 + 2i

√
6. The group Γ is generated by

reflections

σ =

[
−1 −c
c 1

]
, σ0 =

[
3 −c1
c1 −3

]
, σ1 =

[
0 1
−1 0

]
across the sides of the triangle with vertices a = −i

√
6/4, b = i

√
6/6, and s =

−1/
√
5, which are the fixed points of A = σ1σ0, B = σ1σ, S = σσ0. Here

σ = ρ−1τ2τ7ρ, σ0 = ρ−1τ3τ7ρ and σ1 = ρ−1τ8τ7ρ. One has S2 = A6 = B4 = id,
and Γ =

⟨
σ, σ0, σ1 : (σ0σ)

2 = (σσ1)
4 = (σ1σ0)

6 = 1
⟩
.

Denote σi+1 = Aσi, i = 0, ..., 5, and σi+6 = σi, S1 = ASA−1 = σ1Sσ1,
S2 = A2SA−2 = σ′

0Sσ
′
0, where σ′

0 = σ2 = σ1σ0σ1, U = A3, ϕ = Sσ = σ3S,
ϕ1 = σ′S = Sσ0, ϕ2 = σ′

0S = S2σ
′
0, where σ′ = σ1σσ1.

It is shown above that the axis L37 of ρϕρ−1 is extremal with respect to B30.
Similarly, the axes of ρϕ1ρ−1 and ρϕ2ρ−1 are also extremal with respect to B30.

Lemma 3.2. For the fixed points f , f1, f2 of ϕ, ϕ1 and ϕ2 respectively, we have

(f, σw) = (f, σ3w) = −(f, σ0w) = −(f, Sw) = −(f, Uw) = 1,

(f1, σ
′w) = (f1, σ0w) = −(f1, σw) = −(f1, Sw) = −(f1, B

2w) = 1,

(f2, σ
′
0w) = (f2, Sσ

′
0Sw) = −(f2, φ2w) = −(f2, S2w) = −(f2, Sw) = 1.

Proof. Since f is the fixed point of the reflection σ0, (f, σ0w) = −1. Since f is
the fixed point of ϕ = Sσ = σ3S, (f, σw) = (f, σ3w) = −(f, Sw) = 1. Since U =
σ0σ3, (f, Uw) = −1.

Similarly, since f1 is the fixed point of the reflection σ, (f1, σw) = −1, and since
f1 is the fixed point of ϕ1 = σ′S = Sσ0, (f1, σ′w) = (f, σ0w) = −(f, Sw) = 1.
Since B2 = σσ′, (f,B2w) = −1.

The last statement is true because f2 is the fixed point of ϕ2 = σ′
0S. �

3.3. Uniqueness

Denote by DT the disc |z| < 11/
√
6 and D′

T = {z ∈ DT : Re z 6 0}. Since
Γw = ⟨σ1⟩, we can assume that z ∈ D′

T . Below, we assume that z ∈ D′
T is an

extremal point.

Definition 3.1. For any g ∈ GC , denote by P (g) and N(g) the conditions
(z, gw) > 1 and (z, gw) 6 −1 respectively.



192 L. Ya. Vulakh

If P (σ) and P (σ0) hold, then z ∈ DΓ, a fundamental domain of Γ. If N(σ′)
holds, then |z| > 11/

√
6. If N(σ′

0) holds, then |z| > 23/(2
√
6). In both cases,

z /∈ D′
T . Thus, for z ∈ D′

T , P (σ′) and P (σ′
0) both hold. If P (S) holds, then an

indefinite z ∈ D′
T belongs to p(U). Hence any indefinite z ∈ D′

T belongs to D′′
T ,

the part of D′
T , where P (σ′), P (σ′

0) and N(S) hold.
Assume that z ∈ D

′′

T . If P (σ0) holds, then either, by Lemma 3.2, z = f1 =
−
√
5 + i

√
6 or N(σ0) holds. If N(σ0) and N(B2) hold, then |z|2 > 33 and an

extremal z /∈ D
′′

T . Hence, P (B2) holds. If N(σ) and P (B2) hold, then |z| >
|−2

√
5+ i/

√
6| = 11/

√
6 and z /∈ D

′′

T . Thus, P (σ) holds. If P (σ) and P (σ3) hold,
then either, by Lemma 3.2, z = f = −

√
5 − i23

√
6 or N(σ3) holds. If N(σ3) and

P (ϕ2) hold, then |z| >
∣∣− 13

9

√
5− i3827

√
6
∣∣ and z /∈ D

′′

T . Hence, N(ϕ2) holds. If
P (S2) and N(ϕ2) hold, then |z|2 > 97 and z /∈ D

′′

T . Hence, N(S2) holds.
If N(S2) and N(Sσ′

0S) hold, then |z|2 >
∣∣− 5

4

√
5− i 4124

√
6
∣∣2 and z /∈ D

′′

T . Thus,
P (Sσ′

0S) holds and, by Lemma 3.2, z = f2 = −
√
5− i 32

√
6.

We have proved the following.

Lemma 3.3. Let an extremal z ∈ D′
T . Then z = f = −

√
5− i 23

√
6, or z = f1 =

−
√
5 + i

√
6, or z = f2 = −

√
5− i 32

√
6, or |z| > 11/

√
6.

Let S = S(b, R) and let L be a geodesic in S of height h. Let ρ(S) = S(0, 1).
Let f be the pole of the projection of ρ(L) from ∞ into C in H3. Then

h = R
√

1− |f |−2. (3.1)

Thus, by (3.1) and Lemma 3.3, the first three points of M(B30) are
√
23/2,√

22/2 and
√

37/7. We have proved the following.

Theorem 3.1. M(B30) ∩ (2.2936,∞) =
{√

37/7,
√
22/2,

√
23/2

}
.

Let L0, L1 and L2 be the axes of ρϕρ−1, ρϕ1ρ−1 and ρϕ2ρ−1 respectively.
If ν(L) =

√
23/2 for a geodesic L in H3, then L = g(L0) for some g ∈ B30.

If ν(L) =
√
22/2 for a geodesic L in H3, then L = g(L1) for some g ∈ B30.

If ν(L) =
√
37/7 for a geodesic L in H3, then L = g(L2) for some g ∈ B30.

As mentioned above, M(B30) coincides with the Markov spectrum of the field
Q(

√
−30), which, as follows from Theorem 3.1, equals to L30 in the interval

(2.2936,∞) (see e.g. [31], p. 41).

4. Diophantine approximation in Q(
√
−33)

4.1. Reduction

Let d = 33 and ω =
√
−33. Then {1, ω} is the standard basis of the ring of

integers O33 of the field Q(
√
−33). The group G∞ = Stab(∞, B33) is generated

by reflections in the vertical plains in H3 through the lines Re z = 0, Re z = 1/2,
Im z = 0 and Im z =

√
33/2 in C, which will be denoted by S7, S8, S9, and S10

respectively. It is shown in [13] that the group B33 is reflective. But B33 itself is
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not generated by reflections in the faces of their isometric fundamental domain D.
The floor of D lies in six hemispheres

S1 = S(0, 1), S2 = S

(
1 + ω

2
,
1√
2

)
, S3 = S

(
ω

3
,
1√
3

)
,

S4 = S

(
3 + ω

6
,
1√
6

)
, S5 = S

(
1 + ω

4
,

1

2
√
2

)
, S6 = S

(
2ω

11
,

1√
11

)
.

The reflections in the hemispheres Si, i ̸= 3, belong to B33, but the reflection in

S3 does not. The axis of ρ0 =

(
ω 12
3 −ω

)
−3

∈ B33 with endpoints ω/3 ± 1/
√
3

in C belongs to S3, ρ0(∞) = ω/3 and ρ0(S3) = S3.
We have Φ2 = (1, (1+ω)/2, 8), Φ5 = (1, (1+ω)/4, 2), and ρ∗0Φ2ρ0 = Φ5, where

ρ∗0 = (ρ0)
T . Hence ρ(S2) = S5. Thus, B33 is generated by ρ and the reflections in

the hemispheres Si, 1 6 i 6 10, i ̸= 3.
The hemisphere S6 is anisotropic, and the lowest face of D lies in S6. Since

the diameter of S6 is 2/
√
11, the highest Hermitian point of M(B33) is

H33 =
√
11/2

(cf. [34], Example 5.3). Denote by hij the height of the edge Lij = Si ∩ Sj of D.
Then

h18 =

√
3

2
, h27 =

1

2
, h23 =

1√
5
, h48 =

1√
6
,

h14 =
1√
7
, h35 = h23 =

√
5

42
, h38 = h16 =

1√
12
, h45 =

1√
14
,

h57 = h58 =
1

4
, h46 =

1√
17
, h56 =

1√
19
.

Since the height of any edge of D > 1/
√
19, there is no extremal geodesic L in H3,

whose height is less than 1/
√
19 (see [28], Theorem 1).

Denote by τi the reflection in the plane Si, i ̸= 3, in H3.
The group ΓS = Stab(S6, B33) = ⟨τ1, τ4, τ5, τ7⟩. Since (τ1τ7)

2 = (τ1τ4)
2 =

(τ4τ5)
2 = (τ5τ7)

4 = 1, the group ΓS contains a group with signature (0; 2, 2, 2, 4)
as a subgroup of index two. The quadrangular face DS of D, which lies in S6, with
vertices

v1 =

(
1 + ω

6
,

1√
18

)
, v2 =

(
1 + ω

5
,
1

5

)
, v3 =

(
2ω

9
,

1√
27

)
.

and v4 = (ω/6, 1/
√
12) = S1 ∩ S6 ∩ S7 is a fundamental domain of ΓS ,

and S6 ∩ K(∞) = DS ∪ τ7(DS) is the pentagon with vertices at v1, v2, v3,
τ7(v1) and τ7(v2). Thus, by Theorem 2.2 from [31], if a geodesic L ⊂ S6 is
extremal with respect to ΓS , then L is extremal with respect to B33, and therefore
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MS ⊂ M(B33). We have

Stab(v1, B33) = {τ1, τ4, τ5 : (τ1τ4)
2 = (τ4τ6)

2 = (τ6τ1)
2 = 1},

Stab(v2, B33) = {τ4, τ5, τ6 : (τ4τ5)
2 = (τ5τ6)

2 = (τ6τ4)
2 = 1},

Stab(v3, B33) = {τ5, τ6, τ7 : (τ7τ6)
2 = (τ6τ5)

2 = (τ5τ7)
4 = 1}.

The geodesic L56 is perpendicular to the planes S4 and S′
5 = τ7(S5). Denote

τ ′5 = τ7τ5τ7. Then Γ56 = Stab(L56, B33) = ⟨τ4, τ ′5⟩. Let t1 = L56 ∩ S4 and
t2 = L56 ∩ S′

5. Then the arc [t1, t2] = L56 ∩ K(∞) is a fundamental domain of
Γ56 on L56 and, by Corollary 24, [30], L56 is extremal. Since the height of L56 is
1/
√
19 and, as shown above, the height of any extremal geodesic is at least 1/

√
19,

the Hurwitz constant of the field Q
(√

−33
)

is

C33 =
√
19/2

(cf. [35], Table 3).

4.2. The v-cells N(v1), N(v2) and N(v3)

The v-cells N(v1) and N(v2) are rectangular parallelepipeds and N(v3) is a square
prism.

The vertices of N(v1) are the points B = 0, C = ω/6, D = 2ω/11, E =
6/(1 − ω), F = (1 + ω)/6, J = 6/(3 − ω), K = (3 + ω)/6 in C and A = ∞. The
projection of N(v1) from infinity into C is the triangle with vertices at B, D and
K. The Farey constant of the congruent faces ABDC and KEFJ is 2h16 = 1/

√
3,

the Farey constant of the congruent faces ABJK and CDEF is 2h14 = 2/
√
7 and

the Farey constant of the congruent faces ADEK and BCFJ is 2h46 = 2/
√
17.

The vertices of N(v2) are the points D, E, K, L = (1 + ω)/5, M = (1 +
ω)/4, N = (2 + 4ω)/19, P = (5 + 3ω)/14 in C and A = ∞. The projection of
N(v2) from infinity into C is the triangle with vertices at M, D and K. The
Farey constant of the congruent faces ADNM and KELP is 2h56 = 2/

√
19, the

Farey constant of the congruent faces AKPM and DELN is 2h45 = 2/
√
14 and

the Farey constant of the congruent faces ADEK and LNMP is 2h46 = 2/
√
17.

Since the v-cells N(vk) and N(v′k), k = 1, 2, are symmetrical with respect to
the vertical plane in H3 through the line Re z = 1/2 in C, if X is a vertex of
N(vk), then X ′ = 1−X is the corresponding vertex of N(v′k).

The vertices of N(v3) are the points A1 = ω/4, D, D1 = 2ω/9, M , M ′ =
(−1+ω)/4, N , N ′ = (−2+4ω)/19 in C and A = ∞. The projection of N(v1) from
infinity into C is the triangle with vertices at D, M and M ′. There are two con-
gruent square faces AMA1M

′ and DND1N
′, whose Farey constant is 2h28 = 1/2,

and four congruent rectangular faces ADNM, A1D1NM, ADN ′M ′, A1D1N
′M ′.

(We call these faces squares and rectangles only because of their groups of sym-
metry). The axis of τ5τ7 is the axis of order four in N(v3).

Let 2/
√
19 6 k < 2/

√
14. If a geodesic L cuts a square face, which is congruent

to AMA1M
′, we can assume that L cuts AMA1M

′. If L is extremal, then L cuts
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the geodesic face ϕ in AMA1M
′, which exists for 1/2 < k < 2/

√
14. For these

values of k, ϕ ⊂ Q(ω/3, k), the horoball with equation |z−ω/3|2+(t−1/(3k))2 <
1/(3k)2 in H3. Hence, there is no extremal geodesic, which cuts a square face of
N(v3). Thus, an extremal geodesic can cut only the rectangular faces of N(vi).
Assume that an extremal geodesic L cuts N(vi, k). Then L cuts the geodesic faces
of N(vi, k), which lie in the rectangular faces of N(vi) congruent to ADNM or
ADEK, whose Farey constants are less than 2/

√
14. The centers of all such

rectangular faces lie in S6. Hence, if the height of an extremal geodesic L is less
than 1/

√
14, then g(L) ⊂ S6 for some translation g ∈ B33. Indeed, an extremal

geodesic L, which cuts N(vi, k), must enter through one of its geodesic faces and
exit through another. Since the limit points of the sequence of v-cells cut by L are
the endpoints of L and they lie in S6, L itself lies in S6.

The reflection τ11 with respect to the hemisphere

S11 = S

(
1 + ω

3
,
1

3

)
belongs to B33 and S11∩S8 = S3∩S8. Let v4 = S11∩S8∩S5 and v5 = S4∩S8∩S5.
Then

v4 =

(
1

2
+

19ω

66
,

1√
66

)
, v5 =

(
1

2
+

5ω

22
,

1√
22

)
,

and

Stab(v4, B33) = {τ5, τ8, τ11 : (τ11τ5)
2 = (τ5τ8)

4 = (τ8τ11)
3 = 1},

Stab(v5, B33) = {τ4, τ5, τ8 : (τ4τ5)
2 = (τ5τ8)

4 = (τ8τ4)
2 = 1}.

4.3. The v-cells N(v4) and N(v5)

The geodesic L58 = S8 ∩ S5 is a common axis of order four of N(v4) and N(v5)
both. N(v4) is the same v-cell, which appears in the case of d = 6 (see [31],
Sec. 5.1). It is a cube whose vertices and edges are replaced by triangular and
rectangular faces respectively. N(v5) is a square prism.

We describe the v-cell N(v4). Denote

ρ1 = τ8τ11 =

(
1 + ω 10− ω
3 −2− ω

)
, τ = τ11τ5 =

(
−10 3 + 3ω

−1 + ω 10

)
,

The group S4 = ⟨τ, ρ1⟩ is the subgroup of the orientation-preserving isomorphisms
in Stab(v,B33). One has τ2 = ρ31 = (τρ1)

4 = id. The order of S4 is 24. The
vertical plane S8 in H3 is the plane of symmetry of the v-cell N(v4). Hence, if X
is a vertex of N(v) in C, then X ′ = 1 −X is also a vertex. Thus it is enough to
enumerate the vertices of N(v4) on the line Re z = 1/2 and to the left of this line.
At any vertex of N(v4), one triangular, one square, and two rectangular faces of
N(v4) meet. The group S4 acts transitively on the vertices of N(v4).



196 L. Ya. Vulakh

Thus N(v4) has 24 vertices: B = (1 + ω)/4, C = (1 + ω)/3, D = 5(1 + ω)/17,
E = (13 + 9ω)/29, F = (15 + 11ω)/37, H = (27 + 17ω)/58, K = (3 + 2ω)/7,
L = (27 + 16ω)/57, M = (11 + 8ω)/29, N = (17 + 10ω)/37 and their reflections
across the line Re z = 1/2 in C, the points B1 = 1/2+ω/4, G = 1/2+ 3ω/10 and
J = 1/2+ 19ω/66 on this line, and A = ∞. The projection of N(v4) from infinity
into C is the trapezoid with vertices at B, C, C ′, B′.

The v-cell N(v4) has 6 congruent square faces: ABB1B
′, CDFE, C ′D′F ′E′,

GHJH ′, KLNM , K ′L′N ′M ′, whose Farey constant equals 2h58 = 1/2; 12 con-
gruent rectangular faces: ABDC, AB′D′C ′, BB1NM , B′B1N

′M ′, DFKM ,
D′F ′K ′M ′, JLKH, JL′K ′H ′, EFHG, E′F ′H ′G, LNN ′L′ and CEE′C ′, whose
Farey constant equal 2h5,11 = 2/

√
17; and 8 congruent triangular faces: ACC ′,

GEE′, JLL′, B1NN
′, BDM , B′D′M ′, FHK and F ′H ′K ′, whose Farey constant

equals 2h38 = 1/
√
3.

The vertices ofN(v5) are the points B, B1, B
′ = (3+ω)/4, P = 1/2+ω/6, R =

(5+3ω)/14, R′ = (9+3ω)/14, T = 1/2+5ω/22 in C and A = ∞. The projection of
N(v5) from infinity into C is the triangle with vertices at B, B′ and P . There are
two congruent square faces ABB1B

′ and PRTR′, whose Farey constant is 2h58 =
1/2, and four congruent rectangular faces ABRP, BB1TR, AB

′R′P, B′B1TR
′,

whose Farey constant is 2h45 = 2/
√
14. The axis of τ8τ5 is the axis of order four

in N(v5).
Let 2/

√
19 6 k < 2/

√
14. If a geodesic L cuts a rectangular face, which is

congruent to ABDC, we can assume that L cuts ABDC. If L is extremal, then
L cuts the geodesic face ϕ in ABDC, which exists for 2/

√
17 < k < 2/

√
14. For

these values of k, ϕ ⊂ Q(ω/3, k). Hence, there is no extremal geodesic, which
cuts a triangular or rectangular face of N(v4). Thus, an extremal geodesic L,
which cuts N(v4) or N(v5), can cut only the square faces of these v-cells. Up to
a symmetry, L cuts either (1) the opposite or (2) adjacent square faces of N(v4).
If L cuts only the opposite faces of cubes, then L = L58, whose endpoints are
1/2 + ω/4 ± i/4. Since the arc [v4, v5] = L ∩K(∞) is a fundamental domain of
Stab(L,B33) on L, L is an extremal geodesic and ν(L) = 1/(2h58) = 2.

Let T0 = ((1+ω)/4+
√
1/8− k2/4, k/2) and T1 = ((3+ω)/4−

√
1/8− k2/4, k/2).

The geodesic face ψ of N(v4, k) that lies in the common vertical square face
ABB1B

′ of N(v4) and N(v5) has one side T0T1, which lies on the line t = k/2
or, more precisely, on Q(A, k)∩ABB1B

′. The opposite side T2T3 of ψ lies on the
circle Q(B1, k)∩ABB1B

′. The diagonals T0T3 and T1T2 of ψ lie on S5 ∩ABB1B
′

and S′
5∩ABB1B

′ respectively. Here S′
5 = S((3+ω)/4, 1/

√
8). The point of inter-

section of these diagonals is Cs = (1/2 + ω/4, 1/4). It is the center of symmetry
of both ABB1B

′ and ψ. Notice that when k = 1/
√
2, all four vertices of ψ lie on

the boundary of ABB1B
′.

Assume that an extremal geodesic L cuts two adjacent square faces of N(v5).
We can assume that L cuts ψ and ρ(ψ), the geodesic face in ρ(ABB1B

′) = CDFE.
Then L also cuts τ4(ψ), the geodesic face in the square face τ4(ABB1B

′) of N(v4)
with center (1/2 + 3ω/14, 1/154). But, any geodesic which cuts ρ(ψ) and τ4(ψ)
does not meet ψ. Hence there is no extremal geodesic L, which cuts two adjacent
square faces of N(v5).
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Geodesic L45 is perpendicular to the hemisphere S6. Since the arc [v2, v5] =
L45∩K(∞) is a fundamental domain of Stab(L45, B33) on L45, L45 is an extremal
geodesic and ν(L45) = 1/(2h45) = 2/

√
14.

We have proved the following.

Lemma 4.1. Let the height of a geodesic L in H3 be less than 1/
√
14. If L is

extremal, then L is equivalent to L58 or L ⊂ gS6, g ∈ G∞. Thus, M(B33) ∩
(
√
14/2,

√
19/2] = MS ∩ (

√
14/2,

√
19/2] ∪ {2}.

The geodesic L45 is extremal with respect to B33 and ν(L45) = 2/
√
14.

Remark. The hemisphere S4 is anisotropic and r(Φ4) = 22. The group
Stab(S4, B33) is generated by reflections in L48, L14, L45, and L46 with heights
1/
√
6, 1/

√
7, 1/

√
14, and 1/

√
17 respectively. It contains a subgroup with signa-

ture (0; 2, 2, 3, 4) as a subgroup of index 2.

4.4. A group with signature (0; 2, 2, 2, 4)

Now let ρ =

(
i
√
3 −6

0 ω

)
. Let C1 be the circle |z − 2ω/11| = 1/

√
11 in the

complex plane C. Then GS = Stab(C1, B33) and C1 = ρ(C), where C is the unit
circle |z| = 1. The group Γ = ρ−1ΓS ρ is a discrete cocompact subgroup of the
group of isometries GS of D2. It is generated by reflections

σ =

(
1 2i

√
3

2i
√
3 −1

)
, σ0 =

(
−4

√
11 + 3i

√
3

−
√
11 + 3i

√
3 4

)
,

σ1 =

(
0 1
−1 0

)
, σ2 =

(
−2i

√
3 1 + ω

1− ω 2i
√
3

)
across the sides of the quadrilateral with vertices s0 = i(4/9)

√
3, v = −i

√
3/6,

s1 =
(√

11− i
√
3
)
/6, and u =

(√
11 + i

√
3
)
/5, which are the fixed points of

A = σ0σ1, V = σ1σ, S1 = σσ2, U = σ2σ0

respectively. One has A4 = V 2 = S2
1 = U2 = ABS1U = id, and Γ =<

σ, σ0, σ1, σ2 : (σ0σ1)
4 = (σ1σ)

2 = (σσ2)
2 = (σ2σ0)

2 = 1 >. Here σ = ρ−1τ6τ1ρ,
σ0 = ρ−1τ6τ5ρ, σ1 = ρ−1τ6τ7ρ and σ2 = ρ−1τ6τ4ρ.

For g ∈ GS , denote g′ = σ1gσ1. If z is the fixed point of g, then the fixed
points of g′ is −z. Denote

S0 = A2, φ = U ′σ0, ψ = σ0S1,

F0 = U ′S0 = φσ′
0, H0 = US1 = σ2ψ,

H = φψ−1 = U ′S2, H ′′ = σ0Hσ0 = φ−1H−1φ = ψ−1H−1ψ = φ−1ψ.



198 L. Ya. Vulakh

Then

f0 = −1

4

√
11 + i

3

4

√
3, h0 =

1

2

√
11− i

1

6

√
3,

h = −1

8

√
11 + i

29

24

√
3, h′′ =

5

8

√
11 + i

7

24

√
3

and f0 is the common fixed point of σ′
0, φ and F0, h0 is the common fixed points

of σ2, ψ and H0. We have F0 = U ′S0 = σ′
2σ0 and H0 = US1 = σ0σ.

Lemma 4.2. For the fixed points of F0, H0, H and H ′′,

(f0, σ0w) = (f0, σ
′
2w) = −(f0, σ

′
0w) = −(f0, S0w) = −(f0, U

′w) = 1,

(h0, σw) = (h0, σ0w) = −(h0, σ2w) = −(h0, S1w) = −(h0, Uw) = 1,

(h, φw) = (h, ψw) = −(h, σ0w) = −(h, S2w) = −(h,U ′w) = 1,

(h′′, φ−1w) = (h′′, ψ−1w) = −(h′′, σ0w) = −(h′′, S1w) = 1.

Proof. Since h′′ = −σ0h, we have (h,U ′w) = −(σ0h
′′, U ′w) = −(h′′, σ0U

′w) =
−(h′′, φ−1w) = −1 and (h, ψw) = (h,Hψw) = (h, φw) = 1. Similarly,

(h′′, S1w) = −(σ0h, S1w) = −(h, σ0S1w) = −(h, ψw) = −1

and

(h′′, φ−1w) = (h′′, (H ′′)−1φ−1w) = (h′′, ψ−1w) = 1,

since H ′′ = ψ−1H−1ψ = ψ−1ψφ−1ψ = φ−1ψ. �

4.5. Uniqueness

Denote by DT the disc |z|2 < 14/3 and D′
T = {z ∈ DT : Re z 6 0}. Since

Γw = ⟨σ1⟩, we can assume that z ∈ D′
T .

If N(σ) holds, then |z|2 > | − i2
√
3|2 = 12. Thus, for an extremal z ∈ D′

T ,
P (σ) holds. If P (σ0) and P (σ2) hold, then z ∈ DΓ, a fundamental domain of Γ.

If N(σ2) and P (σ0) hold, then z = h0 =
√
11/2− i

√
3/6, |h0|2 = 17/6 = 2.8333

(see Lemma 4.2).
Let us assume that P (σ2) and N(σ0) hold. If P (σ′

0) holds, then z = f ′0
=
(√

11 + i3
√
3
)
/4, |f0|2 = 19/8 = 2.375 (see Lemma 4.2).

If P (U) holds, then z ∈ DΓ. Hence we can assume that N(U) holds. If N(σ′
0)

holds, then |z|2 > |h′|2 = |
√
11/8 + i29

√
3/24|2 = 427/96 = 4.55208333.

If N(σ2) and N(σ0) hold, then N(S1) and N(σ0) hold, in which case |z|2 >
|h′′|2 = |5

√
11/8 + i7

√
3/24|2 = 427/96 = 4.55208333.
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We have proved the following.

Lemma 4.3. Let an extremal indefinite z ∈ D′
T . Then z = f ′0 or z = h0 or

1) N(σ′
0) and N(U) hold, or

2) N(S1) and N(σ0) hold.

1) Assume that N(σ0) and N(U ′) hold. If P (φ) and P (ψ) hold, then z =
h = −

√
11/8 + i29

√
3/24 (see Lemma 4.2). If N(φ) and N(σ0) hold, then |z|2 >

5.27348. If N(ψ) and N(U ′) hold, then |z|2 > 6.24218. If N(φ) and N(ψ) hold,
then |z|2 > 8.3383. Thus, if N(σ0) and N(U ′) hold, then either z = h or |z|2 >
5.27348.

2) Let N(σ0) and N(S1) hold. If P (φ−1) and P (ψ−1) hold, then z = h′′ =
5
√
11/8+i7

√
3/24 (see Lemma 4.2). IfN(φ−1) andN(S1) hold, then |z|2 > 5.2324.

If N(φ−1) and N(ψ−1) hold, then |z|2 > 8.3383. If N(ψ−1) and N(σ0) hold, then
|z|2 > 5.9738. Thus, if N(σ0) and N(S1) hold, then either z = h′′ or |z|2 > 5.2324.

We have proved the following.

Lemma 4.4. Let an extremal indefinite z ∈ D′
T . Then z = f ′0 or z = h0 or z = h

or z = h′′.

By (3.1), Lemmas 4.1 and 4.4 imply the following.

Theorem 4.1. M(B33) ∩ [
√
14/2,∞) = {

√
14/2,

√
437/124, 2,

√
17/2,

√
19/2}.

Let L0, L1 and L2 be the axes of ρF0ρ
−1, ρH0ρ

−1 and ρHρ−1 respectively.
If ν(L) =

√
19/2 for a geodesic L in H3, then L = g(L0) for some g ∈ B33.

If ν(L) =
√
17/2 for a geodesic L in H3, then L = g(L1) for some g ∈ B33.

If ν(L) = 2 for a geodesic L in H3, then L = g(L58) for some g ∈ B33.
If ν(L) =

√
437/124 for a geodesic L in H3, then L = g(L2) for some g ∈ B33.

The geodesic L45 is extremal with respect to B33 and ν(L45) = 2/
√
14.

As mentioned above, M(B33) coincides with the Markov spectrum of the field
Q(

√
−33), which, as follows from Theorem 4.1, equals to L33 in the interval

[
√
14/2,∞) (see e.g. [31], p. 41).

5. Diophantine approximation in Q(
√
−57)

5.1. Reduction

Let d = 57 and ω = i
√
57. The group G∞ = Stab(∞, B57) is generated by

reflections in the vertical plains in H3 through the lines Re z = 0, Re z = 1/2,
Im z = 0 and Im z =

√
57/2 in C, which will be denoted by S15, S16, S17, and S18
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respectively. The floor of the isometric fundamental domain D lies in hemispheres

S1 = S(0, 1), S2 = S

(
1 + ω

2
,
1√
2

)
, S3 = S

(
ω

3
,
1√
3

)
,

S4 = S

(
3 + ω

6
,
1√
6

)
, S5 = S

(
1 + ω

4
,
1√
8

)
, S6 = S

(
ω

6
,

1√
12

)
,

S7 = S

(
−24

ω
,

1√
19

)
, S8 = S

(
−12

ω
,

1√
19

)
, S9 = S

(
24 + ω

3− ω
,

1√
22

)
,

S10 = S

(
9 + ω

9− ω
,

1√
23

)
, S11 = S

(
−18 + 4ω

9 + ω
,

1√
23

)
,

S12 = S

(
2(1 + ω)

5
,
1

5

)
, S13 = S

(
1 + ω

5
,
1

5

)
, S14 = S

(
−33 + ω

2ω
,

1√
38

)
.

The forms Φ5 = (2, (1 + ω)/2, 7) and Φ6 = (2, ω/3, 3) are reflection forms since
∆(Φ5) = 1/2, ∆(Φ6) = 1/3 and 6|D (see [26], Lemma 4). Reflections in hemi-
spheres Si, i = 1, 2, 3, 5, 6, 14, 15, 16, 17, 18, belong to B57. Hemispheres S3, S5

and S14 are mutually perpendicular. Also, S14 is a boundary hemisphere with
r(Φ14) = 6. Denote by τi reflection in the hemisphere Si and

H1 =

[
−24 5ω
ω 12

]
−3

, τ =

[
24 + ω 18− 10ω
3− ω −24− ω

]
−3

,

τ ′ =

[
3 + ω 9− ω
6 −3− ω

]
−6

,

H2 = τH1 and H3 = τ ′(H2)
−1. The axis of H1 lies in the plane Re z = 0, the axis

of τ ′ is perpendicular to the plane Re z = 1/2 and the axis of τ is perpendicular
to the hemispheres S2 and S3.

Since the isometric fundamental domain of ⟨H1⟩ is the exterior of the hemi-
spheres S7 and S8 in H3, the isometric fundamental domain of ⟨H2⟩ is the exterior
of the hemispheres S12 and τ15(S13) in H3, the isometric fundamental domain of
⟨H3⟩ is the exterior of the hemispheres S10 and τ15(S11) in H3, τ(S9) = S9 and
τ ′(S4) = S4, we have proved the following.

Theorem 5.1. The extended Bianchi group B57 is generated by τ , τ ′, H1 and by
reflections in Si, i = 1, 2, 3, 5, 6, 14, 15, 16, 17, 18.

The hemisphere S14 is anisotropic, and the lowest face of D lies in S14. Since
the diameter of S14 is 2/

√
38, the highest Hermitian point of M(B57) is

H57 =
√
38/2.

(cf. [34], Example 5.1). Denote by hij the height of the geodesic Lij = Si ∩ Sj .
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Then

h2,15 =
1

2
, h35 =

1√
11
, h3,16 =

1√
12
, h5,15 = h5,16 =

1

4
,

h46 =
1√
18
, h14,7 = h14,8 =

1√
19
, h10,1 = h11,16 =

√
91

46
,

h58 = h27 =

√
37

874
, h29 =

1√
24
, h39 =

1

5
,

h10,4 = h4,13 = h12,11 =
1

5

√
67

69
, h37 = h68 =

1

10

√
73

19
,

h13,8 = h9,12 = h97 =
1

5

√
177

209
, h5,13 = h2,12 =

1√
29

√
49

50
,

h10,6 = h11,3 =
1

2

√
89

667
, h6,13 = h3,12 =

1√
31

√
97

100
,

h45 = h1,4 =
1√
33
, h3,14 =

1√
41
, h5,14 =

1√
46
.

If the center of Si is located in S15 (or S16) then hi,15 = Ri (or hi,16 = Ri).
The hemispheres S1, S6, S10 and S15 meet at a vertex of D, and the hemispheres

S2, S11, S12 and S16 meet at another vertex of D.
The group GS = Stab(S14, B57) = ⟨γ, γ0, γ1⟩, where γ = τ5τ14, γ0 = τ3τ14,

γ1 = τ16τ14.
The heights of all the edges in the floor of D, which do not lie in S14, are

greater than 1/
√
38. Thus, the reduction for d = 57 is similar to that for d = 30.

Let S = γγ0, A = γ1γ0, B = γ1γ. Then S2 = A6 = B4 = id. Thus the group
GS contains the (2, 4, 6)-triangle group as a subgroup of index two. The triangular
face DS of D, which lies in S14, with vertices at

v1 =

(
9 + 5ω

18
,

1√
54

)
, v2 =

(
5 + 3ω

10
,

1√
50

)
, v3 =

(
3 + 2ω

7
,
1

7

)
,

is a fundamental domain of GS , S14 ∩K(∞) consists of two copies of DS . and

Stab(v1, B57) = {τ5, τ14, τ16 : (τ5τ14)
2 = (τ14τ16)

2 = (τ16τ5)
4 = 1},

Stab(v2, B57) = {τ3, τ14, τ16 : (τ3τ14)
2 = (τ14τ16)

2 = (τ16τ3)
6 = 1},

Stab(v3, B57) = {τ3, τ5, τ14 : (τ3τ5)
2 = (τ5τ14)

2 = (τ14τ3)
2 = 1}.

The geodesic L5,14 is perpendicular to S3 and to the axis L5,16 of τ16τ5. Denote
U = (τ16τ5)

2. Then Γ5,14 = Stab(L5,14, B57) = ⟨τ3, U⟩. Let t1 = L5,14 ∩ S3 and
t2 = L5,14 ∩ L5,16. Then the arc [t1, t2] = L5,14 ∩K(∞) is a fundamental domain
ofΓ5,14 on L5,14 and, by Corollary 24, [30], L5,14 is extremal. Since the height of
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L5,14 is 1/
√
46 and, as shown above, the height of any extremal geodesic is at least

1/
√
46, the Hurwitz constant of the field Q

(√
−57

)
is

C57 =
√
46/2.

(cf. [35], Table 1).
The hemisphere S14 contains four vertices of D, v1, v2, v3 and v′3 = τ16(v3).

The v-cells N(v1), N(v2), and N(v3) are of the same type as in the case of
d = 30 (see Section 3). The v-cell N(v3) is a rectangular parallelepiped. The v-
cells N(v1) and N(v2) are square and hexagonal prisms respectively. The geodesic
L5,16 is the axis of symmetry of order 4 in N(v1) and L3,16 is the axis of symmetry
of order 6 in N(v2).

The common rectangular face ϕ23 of N(v3) and N(v2) has vertices at ω/3, (19+
12ω)/41, (−33 + ω)/(2ω) and ∞. Its Farey constant is 2h3,14 = 2/

√
41. All the

rectangular faces of N(v2) are congruent to this face.
The common rectangular face ϕ13 of N(v3) and N(v1) has vertices at (1 +

ω)/4, (21+13ω)/46, (−33+ω)/(2ω) and ∞. Its Farey constant is 2h5,14 = 2/
√
46.

All the rectangular faces of N(v1) are congruent to this face.
Let 2/

√
46 6 k < 2/

√
38. Then N(vi, k) has a geodesic face ϕ if and only if

ϕ lies in a rectangular face of N(vi), which is congruent to ϕ23 or ϕ13, since only
for such a face the Farey constant is less than 2/

√
38. But, the centers of all such

faces lie in S14. Hence, if the height of an extremal geodesic L is less than 1/
√
38,

then g(L) ⊂ S14 for some translation g ∈ B57. Indeed, an extremal geodesic L,
which cuts N(v, k), must enter through one of its geodesic faces and exit through
another. Since the limit points of the sequence of v-cells cut by L are the endpoints
of L and they lie in S14, L itself lies in S14.

Lemma 5.1. If the height of an extremal geodesic L in H3 is less than 1/
√
38,

then L ⊂ gS, g ∈ G∞. Thus,

M(B57) ∩ [
√
38/2,

√
46/2] = MS ∩ [

√
38/2,

√
46/2].

5.2. A group with signature (0; 2, 4, 6)

Let S14 = S(b14, R14) and ρ =

(
R14 b14
0 1

)
. Let C1 be the circle |z − b14| =

1/
√
38 in the complex plane C. Then GS = Stab(C1, B57) and C1 = ρ(C), where

C is the unit circle |z| = 1. The group Γ = ρ−1GS ρ is a discrete cocompact
subgroup of the group of isometries GC of D2. It is generated by reflections

σ =

[
i
√
6 5 + ω

5− ω −i
√
6

]
, σ0 =

[
−2i

√
6 9− ω

9 + ω 2i
√
6

]
, σ1 =

[
0 1
−1 0

]
across the sides of the triangle with vertices a = i

√
6/5, b = −2i

√
6/9, and s =

−(
√
38 + i

√
6)/14, which are the fixed points of A = σ1σ0, B = σ1σ and S = σσ0

respectively. One has S2 = A6 = B4 = id. Denote σk = σ0A
k, k = 1, ..., 5. For

g ∈ Γ, denote g′ = σ1gσ1. Let ϕ = σ3S and ϕ1 = σ′S.
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Lemma 5.2. For the fixed points f , f1 of ϕ, and ϕ1 respectively, we have

(f, σw) = (f, σ3w) = −(f, σ0w) = −(f, Sw) = −(f, Uw) = 1,

(f1, σ
′w) = (f1, σ0w) = −(f1, σw) = −(f1, Sw) = −(f1, B

2w) = 1.

5.3. Uniqueness

Denote by DT the disc |z| < 4.2 and D′
T = {z ∈ DT : Re z 6 0}. Since Γw = ⟨σ1⟩,

we can assume that z ∈ D′
T .

If P (σ) and P (σ0) hold, then z ∈ DΓ, a fundamental domain of Γ. If N(σ)
and N(σ0) hold, then |z| > | − 57

√
38 + 13i

√
6|/84 > 4.2.

If N(S′) holds, then |z| > |i7
√
6/3| = 5.7. Hence P (S′) holds. If N(σ′) holds,

then |z| > | − 15
√
38− 139i

√
6|/84 > 4.2. Hence P (σ′) holds. If N(σ) and P (σ0)

hold, then z = f1 = −(
√
38 + 3i

√
6)/4.

Assume that N(σ0) holds. If P (S) holds, then |z| > |−27
√
38+127i

√
6|/84 >

4.2. Hence N(S) holds. If N(σ3) hold, then z /∈ D′
T . Hence P (σ3) holds. If P (σ)

hold, then z = f = −
√
38/2 + i5/

√
6.

Lemma 5.3. Let z ∈ D′
T . Then z = f = −

√
38/2+ i5/

√
6, or z = f1 = −(

√
38+

3i
√
6)/4, or |z| > 4.2.

Thus, by (3.1) and Lemma 5.3, the first two points of M(B57) are ν(f) =√
46/2 and ν(f1) =

√
41/2. We have proved the following.

Theorem 5.2. M(B57) ∩ (3.1735,∞) =
{√

41/2,
√
46/2

}
.

If ν(L) =
√
46/2 for a geodesic L in H3, then L = g(L5,14) for some g ∈ B57.

If ν(L) =
√
41/2 for a geodesic L in H3, then L = g(L3,14) for some g ∈ B57.

As mentioned above, M(B57) coincides with the Markov spectrum of the field
Q(

√
−57), which, as follows from Theorem 5.2, equals to L57 in the interval

(3.1735,∞) (see e.g. [31], p. 41).
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