DIOPHANTINE APPROXIMATION IN $\mathbf{Q}(\sqrt{-30}), \mathbf{Q}(\sqrt{-33})$
 AND $\mathbf{Q}(\sqrt{-57})$

L. Ya. Vulakh

Abstract: For the imaginary quadratic fields with discriminants $-120,-132$ and -248 , the first
three, five and two points of the Lagrange and Markov spectra respectively are found.
Keywords: Diophantine approximation, hyperbolic geometry, Bianchi groups

1. Introduction

1.1. History

Let α be a real irrational number. In 1891 A. Hurwitz [7] showed that the inequality

$$
|\alpha-a / c|<1 /\left(h c^{2}\right)
$$

has infinitely many solutions in coprime integers a and c when $h=\sqrt{5}$, and $\sqrt{5}$ is the best constant possible. In 1917 the first geometric proof of this result was obtained by L. Ford in [3], where he makes use of properties of the modular group.

Let $d>0$ be a square-free integer. Let \mathcal{O}_{d} be the ring of integers of the field $\mathbf{Q}(\sqrt{-d})$. Let $\theta \in \mathbf{C}-\mathbf{Q}(\sqrt{-d})$. Denote by $n(p, q)$ the norm of the ideal generated by $p, q \in \mathcal{O}_{d}$. Let

$$
\begin{equation*}
\nu_{d}(\theta)=\liminf \frac{|q(q \theta-p)|}{n(p, q)}, \tag{1.1}
\end{equation*}
$$

where $p, q \in \mathcal{O}_{d}, q \neq 0$. Then the inequality

$$
\begin{equation*}
\left|\theta-\frac{p}{q}\right|<\nu_{d}(\theta) \frac{n(p, q)}{|q|^{2}} \tag{1.2}
\end{equation*}
$$

has infinitely many solutions in $p, q \in \mathcal{O}_{d}$ with $n(p, q)<2 \sqrt{d}$ (see e.g. [5], $\$ 17(5), \mathrm{XVI}^{*}$, for the justification of this inequality). The set of numbers $\mathcal{L}_{d}=$ $\left\{\nu_{d}(\theta), \theta \in \mathbf{C}-\mathbf{Q}(\sqrt{-d})\right\}$ is the Lagrange spectrum for the imaginary quadratic
field $\mathbf{Q}(\sqrt{-d})$ and $C_{d}=\sup \mathcal{L}_{d}$ the Hurwitz constant for the field. If k_{∞} is the highest limit point of \mathcal{L}_{d}, then $\mathcal{L}_{d} \cap\left(k_{\infty}, \infty\right)$ is called the discrete part of \mathcal{L}_{d}.

In 1925 Ford [4], applying his method to the Picard group $P S L_{2}\left(\mathcal{O}_{1}\right)$, showed that the Hurwitz constant for the Gauss field $C_{1}=1 / \sqrt{3}$. For the fields with class number one with $d=1,2,3,7,11$, and 19 , the Hurwitz constants were found by Ford [4], Perron [9], [10], [11], Hofreiter [6], Poitou [12]), (see also A. Schmidt [14]). After Ford [4], none of these authors applied his geometric ideas to Diophantine approximation of complex numbers. In [27], these ideas, as they were developed in [29], were used to obtain an upper bound for the Hurwitz constant of an imaginary quadratic number field (see Theorem 3.1 below). In the cases of $d=1,2,5,6$, 30 and 33 , this bound is sharp [27], [35]. For the class two field with $d=15$, the Hurwitz constant was found in [30]. For $d=2$ and 7 , the second minimum is known [14]. For $d=1$ (A. Schmidt [15], Vulakh [20], [21]), $d=3$ (A. Schmidt [17]), $d=5, d=6$ (Vulakh [31]) and $d=11$ (A. Schmidt [16]), the discrete part of the Lagrange spectrum (which coincides with the discrete part of the Markov spectrum) was found. Applying the results of [22], it can be shown that the Lagrange spectrum of an imaginary quadratic field is continuous in its lower part. There are known upper (see Hofreiter [6], Perron [11]) and lower [23], [35] bounds for the Hurwitz constants C_{d}. Lower bounds for the highest limit point of \mathcal{L}_{d} for some values of d are given in [23] and [35].

1.2. Main results

The Hurwitz constants for the fields $\mathbf{Q}(\sqrt{-30})$ and $\mathbf{Q}(\sqrt{-33})$ are found in [35]. The Hurwitz constants for the field $\mathbf{Q}(\sqrt{-57})$ is found in Section 5 of the present paper. Here, the method, which was used in [31] to find the discrete part of the Lagrange spectrum of the fields $\mathbf{Q}(\sqrt{-5})$ and $\mathbf{Q}(\sqrt{-6})$, is applied to the fields $\mathbf{Q}(\sqrt{-30}), \mathbf{Q}(\sqrt{-33})$ and $\mathbf{Q}(\sqrt{-57})$. It is based on application of the Farey polygons associated with the extended Bianchi groups B_{d}, introduced in [30], to reduce the problem of finding the discrete part of the Markov spectrum for B_{d} to the corresponding problem for one of its maximal Fuchsian subgroups. Such reduction is used in Sections 3, 4 and 5 to show that

$$
\begin{aligned}
\mathcal{L}_{30} \cap(2.2936, \infty) & =\{\sqrt{37 / 7}, \sqrt{22} / 2, \sqrt{23} / 2\} \\
\mathcal{L}_{33} \cap[\sqrt{14} / 2, \infty) & =\{\sqrt{14} / 2, \sqrt{437 / 124}, 2, \sqrt{17} / 2, \sqrt{19} / 2\}, \\
\mathcal{L}_{57} \cap(3.1735, \infty) & =\{\sqrt{41} / 2, \sqrt{46} / 2\}
\end{aligned}
$$

respectively.

1.3. Background and Terminology

The upper half-space $H^{3}=\{(z, t): z \in \mathbf{C}, t>0\}$ with the metric $d s^{2}=$ $t^{-2}\left(|d z|^{2}+d t^{2}\right)$ can be used as a model of the 3-dimensional hyperbolic space.
$\mathrm{PSL}_{2}(\mathbf{C})$ is the group of orientation-preserving isometries of H^{3}. The action of $F=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{PSL}_{2}(\mathbf{C})$ on $(z, t) \in H^{3}$ is given by

$$
\begin{equation*}
F(z, t)=\left(\frac{(a z+b)(\overline{c z+d})+a \bar{c} t^{2}}{|c z+d|^{2}+|c|^{2} t^{2}}, \frac{t}{|c z+d|^{2}+|c|^{2} t^{2}}\right) \tag{1.3}
\end{equation*}
$$

(see e.g. [2], p. 58, or [18], p. 15). The Bianchi group $\mathrm{PSL}_{2}\left(\mathcal{O}_{d}\right)$ is a geometrically finite discrete subgroup of $\mathrm{PSL}_{2}(\mathbf{C})$. We denote by B_{d} the maximal discrete subgroup of the group of isometries of H^{3}, which contains $\mathrm{PSL}_{2}\left(\mathcal{O}_{d}\right)$ (see [25]; in [26], this group is denoted by $R B_{d}$). The type of $g \in B_{d}$ is elliptic, parabolic or loxodromic depending on whether it has a fixed point in H^{3}, a single fixed point in \mathbf{C}, or exactly two fixed points in \mathbf{C}. If g is loxodromic, the geodesic connecting its fixed points is called the axis of g. The transformation g is hyperbolic if it is loxodromic and every plane containing its axis is g-invariant. The set of parabolic fixed points (cusps) of B_{d} can be identified with $\mathbf{Q}(\sqrt{-d})$.

Let P be a Dirichlet polygon of $G_{\infty}=\operatorname{Stab}\left(\infty, B_{d}\right)$ in C. Denote $P_{\infty}=$ $\left\{(z, t) \in H^{3}: z \in P\right\}$. The region

$$
\begin{equation*}
\mathcal{D}=P_{\infty} \cap\left\{x \in H^{3}:\left|g^{\prime}(x)\right|<1, g \in B_{d}\right\} \tag{1.4}
\end{equation*}
$$

is an isometric fundamental domain for B_{d} in H^{3} (see [1], p. 66, or [18], p.18). Here $g^{\prime}(x)$ stands for the Jacobian of the transformation g.

Denote

$$
\begin{equation*}
K=K(\infty)=G_{\infty} \overline{\mathcal{D}}, \quad K(u)=g K(\infty) \tag{1.5}
\end{equation*}
$$

where $u=g(\infty)$. It is clear that $\cup K(u)=H^{3}, u \in B_{d} \infty$, and that $\operatorname{dim}(K(u) \cap$ $\left.K\left(u^{\prime}\right)\right) \leqslant 2$ if $u \neq u^{\prime}$. We shall call the tessellation of H^{3} by $K(u), u \in B_{d} \infty$, the K-tessellation. Let ∂K be the boundary of K. We shall say that $\partial K \cap \overline{\mathcal{D}}$ is the floor of \mathcal{D}. The components of ∂K (and \mathcal{D}) of dimensions 0 , 1 , and 2 will be called the vertices (or cusps), edges, and faces of K respectively. The vertices (and edges) of K which belong to $\overline{\mathcal{D}}$ will be called the vertices (and edges) of \mathcal{D}. For any region R in H^{3}, the components of the boundary of R of dimension 2 which lie in vertical planes will be called the vertical faces of R. (Notice that, in general, according to these definitions, the components of the boundary of \mathcal{D} of dimension 0 (or 1) which lie in the vertical faces of \mathcal{D} are not vertices (or edges) of \mathcal{D}).

A geodesic in H^{3} is a semicircle or a ray, which is orthogonal to \mathbf{C}. For a geodesic L with endpoints θ, θ^{\prime} in \mathbf{C}, denote $k(L)=\left|\theta-\theta^{\prime}\right|$ and $\nu(L)=\inf \mid g(\theta)-$ $\left.g\left(\theta^{\prime}\right)\right|^{-1}$, the infimum being taken over all $g \in B_{d}$. A geodesic L is said to be extremal with respect to B_{d} if $\nu(L)=1 / k(L)$. Note that an extremal L cuts $K(\infty)$. The set of numbers $\mathcal{M}\left(B_{d}\right)=\{\nu(L)\}$ is called the Markov spectrum for B_{d}.

Denote by $C l(K)$ the class group of a field $K=\mathbf{Q}(\sqrt{-d})$. There are 65 fields K such that $B_{d}(\infty)=K$, that is ∞ is the only cusp of a fundamental domain of B_{d} in H^{3}. The condition $B_{d}(\infty)=K$ holds for

1) $d=1,2,3,7,11,19,43,67,163$ with $C l(K)=(1)$,
2) $d=5,6,10,13,15,22,35,37,51,58,91,115,123,187,235,267,403,427$ with $C l(K)=(2)$,
3) $d=21,30,33,42,57,70,78,85,93,102,130,133,177,190,195,253,435,483$, $555,595,627,715,795,1435$ with $C l(K)=(2,2)$,
4) $d=105,165,210,273,330,345,357,385,462,1155,1995,3003,3315$ with $C l(K)=(2,2,2)$,
5) $d=1365$ with $C l(K)=(2,2,2,2)$.

Weinberger ([36], Theorem 2) showed that there is at most one imaginary quadratic field with exponent 2 and $d>1365$. It follows that the condition $B_{d}(\infty)=K$ holds for at most one field K with $d>1365$.

For all these values of d, and therefore for $d=30,33$ and $57, \mathcal{M}\left(B_{d}\right)$ coincide with the Markov spectrum of the field $\mathbf{Q}(\sqrt{-d})$ (see [31], p. 41).

Let

$$
\mathcal{M}_{h}\left(B_{d}\right)=\left\{\nu(L) \in \mathcal{M}\left(B_{d}\right), L \text { is the axis of a hyperbolic } g \in B_{d}\right\}
$$

In all the known cases (see [20], [21], [31], [15], [16], [17]), almost all the points in the discrete part of $\mathcal{M}\left(B_{d}\right)$ (that is the part of $\mathcal{M}\left(B_{d}\right)$ that lies above its highest limit point) belong to $\mathcal{M}_{h}\left(B_{d}\right)$. Since every hyperbolic $g \in B_{d}$ belongs to some maximal Fuchsian subgroup of B_{d}, the problem of finding $\mathcal{M}_{h}\left(B_{d}\right)$ can be reduced to the problem of finding the Markov spectra for the maximal Fuchsian subgroups of B_{d}. The classification of such subgroups of B_{d} is known (see [24], [25], [33], [8]). They can be identified with the B_{d}-unit groups of indefinite integral binary Hermitian forms.

1.4. Outline

It is shown in [25] how the problem of classification of maximal Fuchsian subgroups of B_{d} can be reduced to the problem of classification of indefinite primitive Hermitian forms (see [31], Theorem 2.1, see also [33], [8]). Let S be a hemisphere in H^{3} with center in C. Denote $G_{S}=\operatorname{Stab}\left(S, B_{d}\right)$. Let L be a geodesic in S. Denote $\nu_{S}(L)=\inf \left|g(\theta)-g\left(\theta^{\prime}\right)\right|^{-1}$, the infimum being taken over all $g \in G_{S}$. We say that a geodesic $L \subset S$ is extremal with respect to G_{S} if $\nu_{S}(L)=1 / k(L)$. Denote $\mathcal{M}_{S}=\left\{\nu_{S}(L), L \subset S\right\}$. Theorem 2.2 from [31] contains a sufficient condition for a geodesic $L \subset S$, which is extremal with respect to G_{S}, to be extremal with respect to B_{d}.

Let \mathcal{H}_{d} be the spectrum of minima of binary indefinite Hermitian forms over \mathcal{O}_{d} (see e.g. [31], Chapter 2). It is shown in [34] that $(1 / 2) \mathcal{H}_{d} \subset \mathcal{M}\left(B_{d}\right)$ and that, for any point $\nu \in \mathcal{H}_{d}$, there is a one-parameter family of extremal geodesics L_{θ}, $0 \leqslant \theta<2 \pi$, such that $\nu\left(L_{\theta}\right)=\nu / 2$ ([34], Theorem 1.1). Moreover, the geodesics L_{θ}, which are the axes of some elements in B_{d}, form a dense subset of this family (see [34] for more details).

For a one-parameter family of extremal geodesics $L_{\theta}, 0 \leqslant \theta<2 \pi$, introduced in Theorem 1.1 from [34], the point $\nu\left(L_{\theta}\right)=1 /(2 R)=\nu(\Phi) / 2$ in the Markov
spectrum of B_{d} (and in the Lagrange spectrum \mathcal{L}_{d}) is called a Hermitian point. Let H_{d} be the largest Hermitian point in $\mathcal{M}\left(B_{d}\right)$. It is shown in [34], that $H_{30}=\sqrt{5}$, $H_{33}=\sqrt{11} / 2$ and $H_{57}=\sqrt{38} / 2$ (see Sections 3,4 and 5 below).

In Section 2, we recall some definitions and results from [30] related to the Farey polygons associated with the groups B_{d}.

Denote by $S(b, R)$ the hemisphere in H^{3} with center $b \in \mathbf{C}$ and radius R. In Subsection 3.1, the Farey polygons are used to show that, for $d=30$, Theorem 2.2 from [31] is applicable to the hemisphere $S=S(1 / 2-12 / \omega, 1 / \sqrt{20})$. For this hemisphere S, it is shown in Section 3 that

$$
\begin{equation*}
\mathcal{M}\left(B_{30}\right) \cap(\sqrt{5}, \sqrt{23} / 2]=\mathcal{M}_{S} \cap(\sqrt{5}, \sqrt{23} / 2] . \tag{1.6}
\end{equation*}
$$

This reduction is used in Subsection 3.3 to prove Theorem 3.1, which is one of the three main results of this paper.

The outline of Section 4 is similar to that of Section 3. However, for $d=33$, the reduction similar to (1.6) does not exist. In Subsection 4.1, the Farey polygons are used to show that, for $d=33$, Theorem 2.2 from [31] is applicable to the hemisphere $S=S(2 \omega / 11,1 / \sqrt{11})$. For this hemisphere S, by Lemma 4.1,

$$
\mathcal{M}\left(B_{33}\right) \cap(\sqrt{14} / 2, \sqrt{19} / 2]=\mathcal{M}_{S} \cap(\sqrt{14} / 2, \sqrt{19} / 2] \cup\{2\}
$$

where $2 \in \mathcal{M}\left(B_{33}\right)$ is not attained at any geodesic $L \subset S$. However, this reduction is sufficient to prove Theorem 4.1, which is the second main result of this paper.

In Subsection 5.1, the generators (Theorem 5.1) and the isometric fundamental domain of B_{57} are found. Then the Farey polygons are used to show that, for $d=57$, Theorem 2.2 from [31] is applicable to the hemisphere $S=$ $S(1 / 2-33 /(2 \omega), 1 / \sqrt{38})$. For this hemisphere S, it is shown in Section 5 that

$$
\mathcal{M}\left(B_{57}\right) \cap[\sqrt{38} / 2, \sqrt{46} / 2]=\mathcal{M}_{S} \cap[\sqrt{38} / 2, \sqrt{46} / 2] .
$$

This reduction is used in Subsection 5.3 to prove Theorem 5.2, which is the third main result of this paper.

In each of these three cases, a face of the isometric fundamental domain \mathcal{D} of B_{d} lies in the hemisphere S, the reflection in S in H^{3} belongs to B_{d} and the radius of S is the smallest among all the hemispheres containing the faces of \mathcal{D}, which makes the reduction mentioned above relatively easy. Not all the hemispheres defined by the Hermitian forms enumerated in the Tables 1-5 of [35] possess these properties. Thus, in the cases of $d=19,43,67$ and 163 , none of them holds.

The author thanks the referee for the remarks.

2. Farey polygons

Here we summarize some results from [30], Section 2. Assume that the summits of all the edges in the floor of $K(\infty)$ belong to $K(\infty)$. (Anke Pohl has indicated that this assumption should be made in the statement of Theorem 5.4 from [30]). Let $v \in H^{3}$ be a vertex of $K(u)$. Assume that v belongs to the edges $e_{j}, j=1, \ldots, t$.

Let F_{j} be the plane through u which is orthogonal to e_{j}. Denote by $A(u, v)$ the part of $K(u)$ which is bounded by the planes $F_{j}, j=1, \ldots, t$. Thus, each of the sets $A(u, v)$ has one cusp u and one vertex v. The union of all the sets $A(u, v)$ with the same cusp u is $K(u)$. The union of all $A(u, v)$ with the same vertex v is called the v-cell (see [30]). Denote the v-cell by $N(v)$. The faces of $N(v)$ are called hyperbolic Farey polygons and the vertical projections of the faces of $N(v)$ from ∞ into \mathbf{C} the Farey polygons. Let B be a face of $N(v)$ with vertices at the cusps u_{m}, $m=1, \ldots, n$. Let $h(B)$ be the largest value of k such that the horoballs bounded by the horospheres $Q\left(u_{m}, k\right), m=1, \ldots, n$, cover B. Recall that the horosphere $Q(p / q, k)$, where $p, q \in \mathcal{O}_{d}$, is a euclidean sphere in H^{3} with center $(p / q, r)$ and radius $r=n(p, q) /\left(k|q|^{2}\right)$. We shall call the number $h(B)$ the Farey constant of B. Denote by k_{d} the smallest value of $h(B)$ over all the faces B of all the v-cells. By Theorem 3.1 from [31], the Hurwitz constant for the field $\mathbf{Q}(\sqrt{-d}), C_{d} \leqslant 1 / k_{d}$. It is shown in [27], [35] and in the present paper that this bound is sharp for $d=1$, $2,5,6,30,33$ and 57 .

3. Diophantine approximation in $Q(\sqrt{-30})$

3.1. Reduction

Let $d=30$ and $\omega=\sqrt{-30}$. Then $\{1, \omega\}$ is the standard basis of the ring of integers \mathcal{O}_{30} of the field $\mathbf{Q}(\sqrt{-30})$. The group $G_{\infty}=\operatorname{Stab}\left(\infty, B_{30}\right)$ is generated by reflections in the vertical plains in H^{3} through the lines $\operatorname{Re} z=0, \operatorname{Re} z=1 / 2$, $\operatorname{Im} z=0$ and $\operatorname{Im} z=\sqrt{30} / 2$ in \mathbf{C}, which will be denoted by S_{11}, S_{8}, S_{9}, and S_{10} respectively. It is shown in [13] that the group B_{30} is generated by reflections in the faces of its fundamental domain \mathcal{D}, whose four faces lie in these vertical planes and the floor of \mathcal{D} lies in seven hemispheres

$$
\begin{aligned}
& S_{1}=S(0,1), \quad S_{2}=S\left(\frac{-30}{\sqrt{D}}, \frac{1}{\sqrt{2}}\right), \quad S_{3}=S\left(\frac{-20}{\sqrt{D}}, \frac{1}{\sqrt{3}}\right) \\
& S_{4}=S\left(\frac{-12}{\sqrt{D}}, \frac{1}{\sqrt{5}}\right), \quad S_{5}=S\left(\frac{1}{2}-\frac{15}{\sqrt{D}}, \frac{1}{2 \sqrt{2}}\right) \\
& S_{6}=S\left(\frac{1}{2}-\frac{10}{\sqrt{D}}, \frac{1}{2 \sqrt{3}}\right), \quad S_{7}=S\left(\frac{1}{2}-\frac{24}{\sqrt{D}}, \frac{1}{2 \sqrt{5}}\right) .
\end{aligned}
$$

For $S_{i}=S\left(b_{i}, R_{i}\right)$, let $\Phi_{i}(x, y)=\left|x-b_{i} y\right|^{2}-R_{i}^{2}|y|^{2}=\left(1, b_{i},\left|b_{i}\right|^{2}-R_{i}^{2}\right)$, so that $\Phi_{i}(z, 1)+t^{2}=R_{i}^{2}$ is an equation of the hemisphere S_{i} in H^{3}. Then the corresponding Hermitian forms Φ_{i} are integral (see e.g. [31], p. 29) and the values of $r\left(\Phi_{i}\right)=R_{i}^{2}|D|=60,40,24,15,10,6$ for $S_{i}, i=2,3, \ldots, 7$ respectively. Notice that

$$
\Phi_{i}(x, y)=\Phi_{i+3}(x-y, 2 y), \quad i=2,3, \quad \Phi_{4}(x,-y)=\Phi_{7}(x-(1+\omega) y, 2 y)
$$

The hemisphere S_{7} is anisotropic, that is the only solution of $\Phi_{7}(x, y)=0$ in $x, y \in \mathcal{O}_{30}$ is $x=y=0$, and the lowest face of \mathcal{D} lies in S_{7}. Since the diameter of
S is $1 / \sqrt{5}$, the highest Hermitian point of $\mathcal{M}\left(B_{30}\right)$ is

$$
H_{30}=\sqrt{5}
$$

(cf. [34], Example 5.1). Denote by $h_{i j}$ the height of the edge $L_{i j}=S_{i} \cap S_{j}$ of \mathcal{D}. Then

$$
\begin{array}{llll}
h_{18}=\frac{\sqrt{3}}{2}, & h_{28}=\frac{1}{2}, & h_{23}=\frac{1}{\sqrt{5}}, & h_{14}=\frac{1}{\sqrt{6}}, \\
h_{34}=\frac{1}{\sqrt{8}}, & h_{35}=\frac{1}{\sqrt{11}}, & h_{38}=\frac{1}{\sqrt{12}}, & h_{16}=h_{45}=\frac{1}{\sqrt{13}} \\
h_{46}=\frac{1}{\sqrt{17}}, & h_{56}=\frac{1}{\sqrt{20}}, & h_{27}=\frac{1}{\sqrt{22}}, & h_{37}=\frac{1}{\sqrt{23}} .
\end{array}
$$

Since the height of any edge of $\mathcal{D} \geqslant 1 / \sqrt{23}$, there is no extremal geodesic L in H^{3}, whose height is less than $1 / \sqrt{23}$ (see [28], Theorem 1).

The relations can be given in terms of τ_{i}, where τ_{i} is the reflection in the plane S_{i} in H^{3}.

The group $G=\operatorname{Stab}\left(S_{7}, B_{30}\right)=\left\langle\tau_{2}, \tau_{3}, \tau_{8}\right\rangle$. Since $\left(\tau_{2} \tau_{3}\right)^{2}=\left(\tau_{2} \tau_{8}\right)^{4}=\left(\tau_{3} \tau_{8}\right)^{6}=$ 1 , the group G contains the ($2,4,6$)-triangle group as a subgroup of index two. The triangular face D_{S} of \mathcal{D}, which lies in S_{7}, with vertices at

$$
v_{1}=\left(\frac{1}{2}+\frac{5 \omega}{12}, \frac{1}{\sqrt{24}}\right), \quad v_{2}=\left(\frac{1}{2}+\frac{3 \omega}{8}, \frac{1}{\sqrt{32}}\right), \quad v_{3}=\left(\frac{2}{5}+\frac{2 \omega}{5}, \frac{1}{5}\right)
$$

is a fundamental domain of $G, S_{7} \cap K(\infty)$ consists of two copies of D_{S}. and

$$
\begin{aligned}
& \operatorname{Stab}\left(v_{1}, B_{30}\right)=\left\{\tau_{2}, \tau_{7}, \tau_{8}:\left(\tau_{2} \tau_{7}\right)^{2}=\left(\tau_{7} \tau_{8}\right)^{2}=\left(\tau_{8} \tau_{2}\right)^{4}=1\right\}, \\
& \operatorname{Stab}\left(v_{2}, B_{30}\right)=\left\{\tau_{3}, \tau_{7}, \tau_{8}:\left(\tau_{3} \tau_{7}\right)^{2}=\left(\tau_{7} \tau_{8}\right)^{2}=\left(\tau_{8} \tau_{3}\right)^{6}=1\right\}, \\
& \operatorname{Stab}\left(v_{3}, B_{30}\right)=\left\{\tau_{2}, \tau_{3}, \tau_{7}:\left(\tau_{2} \tau_{3}\right)^{2}=\left(\tau_{3} \tau_{7}\right)^{2}=\left(\tau_{7} \tau_{2}\right)^{2}=1\right\} .
\end{aligned}
$$

The geodesic L_{37} is perpendicular to S_{2} and the axis L_{38} of $\tau_{8} \tau_{3}$. Denote $U=\left(\tau_{8} \tau_{3}\right)^{3}$. Then $\Gamma_{37}=\operatorname{Stab}\left(L_{37}, B_{30}\right)=\left\langle\tau_{2}, U\right\rangle$. Let $t_{1}=L_{37} \cap S_{2}$ and $t_{2}=L_{37} \cap L_{38}$. Then the arc $\left[t_{1}, t_{2}\right]=L_{37} \cap K(\infty)$ is a fundamental domain of Γ_{37} on L_{37} and, by Corollary 24, [30], L_{37} is extremal. Since the height of L_{37} is $1 / \sqrt{23}$ and, as shown above, the height of any extremal geodesic is at least $1 / \sqrt{23}$, the Hurwitz constant of the field $Q(\sqrt{-30})$ is

$$
C_{30}=\sqrt{23} / 2
$$

(cf. [35], Table 1).

3.1.1. The v-cells $N\left(v_{1}\right), N\left(v_{2}\right)$, and $N\left(v_{3}\right)$.

The hemisphere S_{7} contains four vertices of $\mathcal{D}, v_{1}, v_{2}, v_{3}$ and $v_{3}^{\prime}=\tau_{8}\left(v_{3}\right)$. The v-cell $N\left(v_{3}\right)$ is a rectangular parallelepiped. The v-cells $N\left(v_{1}\right)$ and $N\left(v_{2}\right)$ are square and hexagonal prisms respectively.

The vertices of $N\left(v_{3}\right)$ are the points $B=\omega / 2, C=\omega / 3, D=2 \omega / 5, E=$ $1 / 2+2 \omega / 5, F=2 / 5+2 \omega / 5, J=(10+9 \omega) / 23, K=(10+9 \omega) / 22$ in \mathbf{C} and $A=\infty$. The projection of $N\left(v_{3}\right)$ from infinity into \mathbf{C} is the triangle with vertices at B, C and E. The Farey constant of the congruent faces $A B D C$ and $K E J F$ is $2 h_{23}=2 / \sqrt{5}$, the Farey constant of the congruent faces $A B K E$ and $C D F J$ is $2 h_{27}=2 / \sqrt{22}$ and the Farey constant of the congruent faces $A C J E$ and $B D F K$ is $2 h_{37}=2 / \sqrt{23}$. Since the v-cells $N\left(v_{3}\right)$ and $N\left(v_{3}^{\prime}\right)$ are symmetrical with respect to the vertical plane in H^{3} through the line $\operatorname{Re} z=1 / 2$ in \mathbf{C}, if X is a vertex of $N\left(v_{3}\right)$, then $X^{\prime}=1-\bar{X}$ is the corresponding vertex of $N\left(v_{3}^{\prime}\right)$.

The vertices of $N\left(v_{1}\right)$ are the points $B, B^{\prime}=1+\omega / 2, B_{1}=1 / 2+\omega / 2, E, K$, $K^{\prime}=(12+9 \omega) / 22, L=1 / 2+5 \omega / 12$ in \mathbf{C} and $A=\infty$. The projection of $N\left(v_{1}\right)$ from infinity into \mathbf{C} is the triangle with vertices at B, B^{\prime} and E. There are two congruent square faces $A B B_{1} B^{\prime}$ and $E K L K^{\prime}$, whose Farey constant is $2 h_{28}=1$, and four congruent rectangular faces $A B K E, B B_{1} L K, A B^{\prime} K^{\prime} E, B^{\prime} B_{1} L K^{\prime}$. (We call these faces squares and rectangles only because of their groups of symmetry). The axis of $\tau_{8} \tau_{2}$ is the axis of order four in $N\left(v_{1}\right)$.

The vertices of $N\left(v_{2}\right)$ are the points $C, C^{\prime}=1+\omega / 3, C_{1}=(1+\omega) / 3, C_{2}=$ $1 / 2+\omega / 3, C_{1}^{\prime}=(2+\omega) / 3, E, J, J^{\prime}=(13+9 \omega) / 23, M=1 / 2+3 \omega / 8, N=$ $(13+11 \omega) / 29, N^{\prime}=(16+11 \omega) / 29$ in \mathbf{C} and $A=\infty$. The projection of $N\left(v_{2}\right)$ from infinity into \mathbf{C} is the triangle with vertices at C, C^{\prime} and E. There are two congruent hexagonal faces $A C C_{1} C_{2} C_{1}^{\prime} C^{\prime}$ and $E J N M N^{\prime} J^{\prime}$, whose Farey constant is $2 h_{38}=1 / \sqrt{3}$, and six congruent rectangular faces $A C J E, C C_{1} N J, C_{1} N M C_{2}$, $A C^{\prime} J^{\prime} E, C^{\prime} C_{1}^{\prime} N^{\prime} J^{\prime}, C_{1}^{\prime} N^{\prime} M C_{2}^{\prime}$, whose Farey constant is $2 h_{37}=2 / \sqrt{23}$. The axis of $\tau_{8} \tau_{3}$ is the axis of order six in $N\left(v_{2}\right)$.

Let $2 / \sqrt{23} \leqslant k<1 / \sqrt{5}$. Then $N\left(v_{i}, k\right)$ has a geodesic face ϕ if and only if ϕ lies in a rectangular face of $N\left(v_{i}\right)$, which is congruent to $A B K E$ or $A C J E$, since only for such a face the Farey constant is less than $1 / \sqrt{5}$. But, the centers of all such faces lie in S_{7}. Hence, if the height of an extremal geodesic L is less than $1 / \sqrt{20}$, then $g(L) \subset S_{7}$ for some translation $g \in B_{30}$. Indeed, an extremal geodesic L, which cuts $N(v, k)$, must enter through one of its geodesic faces and exit through another. Since the limit points of the sequence of v-cells cut by L are the endpoints of L and they lie in S_{7}, L itself lies in S_{7}.

Lemma 3.1. If the height of an extremal geodesic L in H^{3} is less than $1 / \sqrt{20}$, then $L \subset g S, g \in G_{\infty}$. Thus, $\mathcal{M}\left(B_{30}\right) \cap(\sqrt{5}, \sqrt{23} / 2]=\mathcal{M}_{S} \cap(\sqrt{5}, \sqrt{23} / 2]$.

3.2. A group with signature $(0 ; 2,4,6)$

The reflections τ_{2}, τ_{3} and τ_{8} are represented in G by $\tau_{2} \tau_{7}, \tau_{3} \tau_{7}$ and $\tau_{8} \tau_{7}$. respectively. By Theorem 2.2 from [31], if a geodesic $L \subset S_{7}$ is extremal with respect to G_{S}, then L is extremal with respect to B_{30}, and therefore $\mathcal{M}_{S} \subset \mathcal{M}\left(B_{30}\right)$.

Let $\rho=\left(\begin{array}{cc}R_{7} & b_{7} \\ 0 & 1\end{array}\right)$. Let C_{1} be the circle $\left|z-b_{7}\right|=1 / \sqrt{20}$ in the complex plane C. Then $G_{S}=\operatorname{Stab}\left(C_{1}, B_{30}\right)$ and $C_{1}=\rho(C)$, where C is the unit circle $|z|=1$. The Klein model D^{2} of the hyperbolic plane, which is used in [32], is
obtained as the projection of the unit upper hemisphere model of the hyperbolic plane in H^{3} from ∞ into \mathbf{C}, so that C is the boundary of D^{2} (cf. [19], p. 68).

The group $\Gamma=\rho^{-1} G_{S} \rho$ is a discrete cocompact subgroup of the group of isometries G_{C} of D^{2}. Below, we shall denote the fixed point of $F \in G_{C}$ by the corresponding lower case letter. Thus, the fixed point of F_{1} is f_{1}. The fixed point of $F=\left(\begin{array}{cc}a & b \\ \bar{b} & \bar{a}\end{array}\right) \in G_{C}$ in \mathbf{C} is $f=i b / \operatorname{Im} a$. The fixed points of F and F^{\prime} in G_{C} are said to be Γ-equivalent if there is $g \in \Gamma$ such that $F^{\prime}=g F g^{-1}$.

Let $c=\sqrt{5}+i \sqrt{6}$ and $c_{1}=-3 \sqrt{5}+2 i \sqrt{6}$. The group Γ is generated by reflections

$$
\sigma=\left[\begin{array}{cc}
-1 & -\bar{c} \\
c & 1
\end{array}\right], \quad \sigma_{0}=\left[\begin{array}{cc}
3 & -\overline{c_{1}} \\
c_{1} & -3
\end{array}\right], \quad \sigma_{1}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

across the sides of the triangle with vertices $a=-i \sqrt{6} / 4, b=i \sqrt{6} / 6$, and $s=$ $-1 / \sqrt{5}$, which are the fixed points of $A=\sigma_{1} \sigma_{0}, B=\sigma_{1} \sigma, S=\sigma \sigma_{0}$. Here $\sigma=\rho^{-1} \tau_{2} \tau_{7} \rho, \sigma_{0}=\rho^{-1} \tau_{3} \tau_{7} \rho$ and $\sigma_{1}=\rho^{-1} \tau_{8} \tau_{7} \rho$. One has $S^{2}=A^{6}=B^{4}=\mathrm{id}$, and $\Gamma=\left\langle\sigma, \sigma_{0}, \sigma_{1}:\left(\sigma_{0} \sigma\right)^{2}=\left(\sigma \sigma_{1}\right)^{4}=\left(\sigma_{1} \sigma_{0}\right)^{6}=1\right\rangle$.

Denote $\sigma_{i+1}=A \sigma_{i}, i=0, \ldots, 5$, and $\sigma_{i+6}=\sigma_{i}, S_{1}=A S A^{-1}=\sigma_{1} S \sigma_{1}$, $S_{2}=A^{2} S A^{-2}=\sigma_{0}^{\prime} S \sigma_{0}^{\prime}$, where $\sigma_{0}^{\prime}=\sigma_{2}=\sigma_{1} \sigma_{0} \sigma_{1}, U=A^{3}, \phi=S \sigma=\sigma_{3} S$, $\phi_{1}=\sigma^{\prime} S=S \sigma_{0}, \phi_{2}=\sigma_{0}^{\prime} S=S_{2} \sigma_{0}^{\prime}$, where $\sigma^{\prime}=\sigma_{1} \sigma \sigma_{1}$.

It is shown above that the axis L_{37} of $\rho \phi \rho^{-1}$ is extremal with respect to B_{30}. Similarly, the axes of $\rho \phi_{1} \rho^{-1}$ and $\rho \phi_{2} \rho^{-1}$ are also extremal with respect to B_{30}.

Lemma 3.2. For the fixed points f, f_{1}, f_{2} of ϕ, ϕ_{1} and ϕ_{2} respectively, we have

$$
\begin{aligned}
(f, \sigma w) & =\left(f, \sigma_{3} w\right)=-\left(f, \sigma_{0} w\right)=-(f, S w)=-(f, U w)=1 \\
\left(f_{1}, \sigma^{\prime} w\right) & =\left(f_{1}, \sigma_{0} w\right)=-\left(f_{1}, \sigma w\right)=-\left(f_{1}, S w\right)=-\left(f_{1}, B^{2} w\right)=1 \\
\left(f_{2}, \sigma_{0}^{\prime} w\right) & =\left(f_{2}, S \sigma_{0}^{\prime} S w\right)=-\left(f_{2}, \varphi_{2} w\right)=-\left(f_{2}, S_{2} w\right)=-\left(f_{2}, S w\right)=1
\end{aligned}
$$

Proof. Since f is the fixed point of the reflection $\sigma_{0},\left(f, \sigma_{0} w\right)=-1$. Since f is the fixed point of $\phi=S \sigma=\sigma_{3} S,(f, \sigma w)=\left(f, \sigma_{3} w\right)=-(f, S w)=1$. Since $U=$ $\sigma_{0} \sigma_{3},(f, U w)=-1$.

Similarly, since f_{1} is the fixed point of the reflection $\sigma,\left(f_{1}, \sigma w\right)=-1$, and since f_{1} is the fixed point of $\phi_{1}=\sigma^{\prime} S=S \sigma_{0},\left(f_{1}, \sigma^{\prime} w\right)=\left(f, \sigma_{0} w\right)=-(f, S w)=1$. Since $B^{2}=\sigma \sigma^{\prime},\left(f, B^{2} w\right)=-1$.

The last statement is true because f_{2} is the fixed point of $\phi_{2}=\sigma_{0}^{\prime} S$.

3.3. Uniqueness

Denote by D_{T} the disc $|z|<11 / \sqrt{6}$ and $D_{T}^{\prime}=\left\{z \in D_{T}: \operatorname{Re} z \leqslant 0\right\}$. Since $\Gamma_{w}=\left\langle\sigma_{1}\right\rangle$, we can assume that $z \in D_{T}^{\prime}$. Below, we assume that $z \in D_{T}^{\prime}$ is an extremal point.

Definition 3.1. For any $g \in G_{C}$, denote by $P(g)$ and $N(g)$ the conditions $(z, g w) \geqslant 1$ and $(z, g w) \leqslant-1$ respectively.

If $P(\sigma)$ and $P\left(\sigma_{0}\right)$ hold, then $z \in \mathcal{D}_{\Gamma}$, a fundamental domain of Γ. If $N\left(\sigma^{\prime}\right)$ holds, then $|z| \geqslant 11 / \sqrt{6}$. If $N\left(\sigma_{0}^{\prime}\right)$ holds, then $|z| \geqslant 23 /(2 \sqrt{6})$. In both cases, $z \notin D_{T}^{\prime}$. Thus, for $z \in D_{T}^{\prime}, P\left(\sigma^{\prime}\right)$ and $P\left(\sigma_{0}^{\prime}\right)$ both hold. If $P(S)$ holds, then an indefinite $z \in D_{T}^{\prime}$ belongs to $p(U)$. Hence any indefinite $z \in D_{T}^{\prime}$ belongs to $D_{T}^{\prime \prime}$, the part of D_{T}^{\prime}, where $P\left(\sigma^{\prime}\right), P\left(\sigma_{0}^{\prime}\right)$ and $N(S)$ hold.

Assume that $z \in D_{T}^{\prime \prime}$. If $P\left(\sigma_{0}\right)$ holds, then either, by Lemma 3.2, $z=f_{1}=$ $-\sqrt{5}+i \sqrt{6}$ or $N\left(\sigma_{0}\right)$ holds. If $N\left(\sigma_{0}\right)$ and $N\left(B^{2}\right)$ hold, then $|z|^{2} \geqslant 33$ and an extremal $z \notin D_{T}^{\prime \prime}$. Hence, $P\left(B^{2}\right)$ holds. If $N(\sigma)$ and $P\left(B^{2}\right)$ hold, then $|z| \geqslant$ $|-2 \sqrt{5}+i / \sqrt{6}|=11 / \sqrt{6}$ and $z \notin D_{T}^{\prime \prime}$. Thus, $P(\sigma)$ holds. If $P(\sigma)$ and $P\left(\sigma_{3}\right)$ hold, then either, by Lemma $3.2, z=f=-\sqrt{5}-i \frac{2}{3} \sqrt{6}$ or $N\left(\sigma_{3}\right)$ holds. If $N\left(\sigma_{3}\right)$ and $P\left(\phi_{2}\right)$ hold, then $|z| \geqslant\left|-\frac{13}{9} \sqrt{5}-i \frac{38}{27} \sqrt{6}\right|$ and $z \notin D_{T}^{\prime \prime}$. Hence, $N\left(\phi_{2}\right)$ holds. If $P\left(S_{2}\right)$ and $N\left(\phi_{2}\right)$ hold, then $|z|^{2} \geqslant 97$ and $z \notin D_{T}^{\prime \prime}$. Hence, $N\left(S_{2}\right)$ holds.

If $N\left(S_{2}\right)$ and $N\left(S \sigma_{0}^{\prime} S\right)$ hold, then $|z|^{2} \geqslant\left|-\frac{5}{4} \sqrt{5}-i \frac{41}{24} \sqrt{6}\right|^{2}$ and $z \notin D_{T}^{\prime \prime}$. Thus, $P\left(S \sigma_{0}^{\prime} S\right)$ holds and, by Lemma 3.2, $z=f_{2}=-\sqrt{5}-i \frac{3}{2} \sqrt{6}$.

We have proved the following.
Lemma 3.3. Let an extremal $z \in D_{T}^{\prime}$. Then $z=f=-\sqrt{5}-i \frac{2}{3} \sqrt{6}$, or $z=f_{1}=$ $-\sqrt{5}+i \sqrt{6}$, or $z=f_{2}=-\sqrt{5}-i \frac{3}{2} \sqrt{6}$, or $|z| \geqslant 11 / \sqrt{6}$.

Let $S=S(b, R)$ and let L be a geodesic in S of height h. Let $\rho(S)=S(0,1)$. Let f be the pole of the projection of $\rho(L)$ from ∞ into \mathbf{C} in H^{3}. Then

$$
\begin{equation*}
h=R \sqrt{1-|f|^{-2}} . \tag{3.1}
\end{equation*}
$$

Thus, by (3.1) and Lemma 3.3, the first three points of $\mathcal{M}\left(B_{30}\right)$ are $\sqrt{23} / 2$, $\sqrt{22} / 2$ and $\sqrt{37 / 7}$. We have proved the following.
Theorem 3.1. $\mathcal{M}\left(B_{30}\right) \cap(2.2936, \infty)=\{\sqrt{37 / 7}, \sqrt{22} / 2, \sqrt{23} / 2\}$.
Let L_{0}, L_{1} and L_{2} be the axes of $\rho \phi \rho^{-1}, \rho \phi_{1} \rho^{-1}$ and $\rho \phi_{2} \rho^{-1}$ respectively.
If $\nu(L)=\sqrt{23} / 2$ for a geodesic L in H^{3}, then $L=g\left(L_{0}\right)$ for some $g \in B_{30}$.
If $\nu(L)=\sqrt{22} / 2$ for a geodesic L in H^{3}, then $L=g\left(L_{1}\right)$ for some $g \in B_{30}$.
If $\nu(L)=\sqrt{37 / 7}$ for a geodesic L in H^{3}, then $L=g\left(L_{2}\right)$ for some $g \in B_{30}$.
As mentioned above, $\mathcal{M}\left(B_{30}\right)$ coincides with the Markov spectrum of the field $\mathbf{Q}(\sqrt{-30})$, which, as follows from Theorem 3.1, equals to \mathcal{L}_{30} in the interval $(2.2936, \infty)$ (see e.g. [31], p. 41).

4. Diophantine approximation in $\mathrm{Q}(\sqrt{-33})$

4.1. Reduction

Let $d=33$ and $\omega=\sqrt{-33}$. Then $\{1, \omega\}$ is the standard basis of the ring of integers \mathcal{O}_{33} of the field $\mathbf{Q}(\sqrt{-33})$. The group $G_{\infty}=\operatorname{Stab}\left(\infty, B_{33}\right)$ is generated by reflections in the vertical plains in H^{3} through the lines $\operatorname{Re} z=0, \operatorname{Re} z=1 / 2$, $\operatorname{Im} z=0$ and $\operatorname{Im} z=\sqrt{33} / 2$ in \mathbf{C}, which will be denoted by S_{7}, S_{8}, S_{9}, and S_{10} respectively. It is shown in [13] that the group B_{33} is reflective. But B_{33} itself is
not generated by reflections in the faces of their isometric fundamental domain \mathcal{D}. The floor of \mathcal{D} lies in six hemispheres

$$
\begin{array}{lll}
S_{1}=S(0,1), & S_{2}=S\left(\frac{1+\omega}{2}, \frac{1}{\sqrt{2}}\right), & S_{3}=S\left(\frac{\omega}{3}, \frac{1}{\sqrt{3}}\right) \\
S_{4}=S\left(\frac{3+\omega}{6}, \frac{1}{\sqrt{6}}\right), & S_{5}=S\left(\frac{1+\omega}{4}, \frac{1}{2 \sqrt{2}}\right), & S_{6}=S\left(\frac{2 \omega}{11}, \frac{1}{\sqrt{11}}\right) .
\end{array}
$$

The reflections in the hemispheres $S_{i}, i \neq 3$, belong to B_{33}, but the reflection in S_{3} does not. The axis of $\rho_{0}=\left(\begin{array}{cc}\omega & 12 \\ 3 & -\omega\end{array}\right)_{-3} \in B_{33}$ with endpoints $\omega / 3 \pm 1 / \sqrt{3}$ in C belongs to $S_{3}, \rho_{0}(\infty)=\omega / 3$ and $\rho_{0}\left(S_{3}\right)=S_{3}$.

We have $\Phi_{2}=(1,(1+\omega) / 2,8), \Phi_{5}=(1,(1+\omega) / 4,2)$, and $\rho_{0}^{*} \Phi_{2} \rho_{0}=\Phi_{5}$, where $\rho_{0}^{*}=\left(\overline{\rho_{0}}\right)^{T}$. Hence $\rho\left(S_{2}\right)=S_{5}$. Thus, B_{33} is generated by ρ and the reflections in the hemispheres $S_{i}, 1 \leqslant i \leqslant 10, i \neq 3$.

The hemisphere S_{6} is anisotropic, and the lowest face of \mathcal{D} lies in S_{6}. Since the diameter of S_{6} is $2 / \sqrt{11}$, the highest Hermitian point of $\mathcal{M}\left(B_{33}\right)$ is

$$
H_{33}=\sqrt{11} / 2
$$

(cf. [34], Example 5.3). Denote by $h_{i j}$ the height of the edge $L_{i j}=S_{i} \cap S_{j}$ of \mathcal{D}. Then

$$
\begin{array}{llll}
h_{18}=\frac{\sqrt{3}}{2}, & h_{27}=\frac{1}{2}, & h_{23}=\frac{1}{\sqrt{5}}, & h_{48}=\frac{1}{\sqrt{6}}, \\
h_{14}=\frac{1}{\sqrt{7}}, & h_{35}=h_{23}=\sqrt{\frac{5}{42}}, & h_{38}=h_{16}=\frac{1}{\sqrt{12}}, & h_{45}=\frac{1}{\sqrt{14}}, \\
h_{57}=h_{58}=\frac{1}{4}, & h_{46}=\frac{1}{\sqrt{17}}, & h_{56}=\frac{1}{\sqrt{19}} . &
\end{array}
$$

Since the height of any edge of $\mathcal{D} \geqslant 1 / \sqrt{19}$, there is no extremal geodesic L in H^{3}, whose height is less than $1 / \sqrt{19}$ (see [28], Theorem 1).

Denote by τ_{i} the reflection in the plane $S_{i}, i \neq 3$, in H^{3}.
The group $\Gamma_{S}=\operatorname{Stab}\left(S_{6}, B_{33}\right)=\left\langle\tau_{1}, \tau_{4}, \tau_{5}, \tau_{7}\right\rangle$. Since $\left(\tau_{1} \tau_{7}\right)^{2}=\left(\tau_{1} \tau_{4}\right)^{2}=$ $\left(\tau_{4} \tau_{5}\right)^{2}=\left(\tau_{5} \tau_{7}\right)^{4}=1$, the group Γ_{S} contains a group with signature $(0 ; 2,2,2,4)$ as a subgroup of index two. The quadrangular face D_{S} of \mathcal{D}, which lies in S_{6}, with vertices

$$
v_{1}=\left(\frac{1+\omega}{6}, \frac{1}{\sqrt{18}}\right), \quad v_{2}=\left(\frac{1+\omega}{5}, \frac{1}{5}\right), \quad v_{3}=\left(\frac{2 \omega}{9}, \frac{1}{\sqrt{27}}\right)
$$

and $v_{4}=(\omega / 6,1 / \sqrt{12})=S_{1} \cap S_{6} \cap S_{7}$ is a fundamental domain of Γ_{S}, and $S_{6} \cap K(\infty)=D_{S} \cup \tau_{7}\left(D_{S}\right)$ is the pentagon with vertices at v_{1}, v_{2}, v_{3}, $\tau_{7}\left(v_{1}\right)$ and $\tau_{7}\left(v_{2}\right)$. Thus, by Theorem 2.2 from [31], if a geodesic $L \subset S_{6}$ is extremal with respect to Γ_{S}, then L is extremal with respect to B_{33}, and therefore
$\mathcal{M}_{S} \subset \mathcal{M}\left(B_{33}\right)$. We have

$$
\begin{aligned}
& \operatorname{Stab}\left(v_{1}, B_{33}\right)=\left\{\tau_{1}, \tau_{4}, \tau_{5}:\left(\tau_{1} \tau_{4}\right)^{2}=\left(\tau_{4} \tau_{6}\right)^{2}=\left(\tau_{6} \tau_{1}\right)^{2}=1\right\}, \\
& \operatorname{Stab}\left(v_{2}, B_{33}\right)=\left\{\tau_{4}, \tau_{5}, \tau_{6}:\left(\tau_{4} \tau_{5}\right)^{2}=\left(\tau_{5} \tau_{6}\right)^{2}=\left(\tau_{6} \tau_{4}\right)^{2}=1\right\}, \\
& \operatorname{Stab}\left(v_{3}, B_{33}\right)=\left\{\tau_{5}, \tau_{6}, \tau_{7}:\left(\tau_{7} \tau_{6}\right)^{2}=\left(\tau_{6} \tau_{5}\right)^{2}=\left(\tau_{5} \tau_{7}\right)^{4}=1\right\} .
\end{aligned}
$$

The geodesic L_{56} is perpendicular to the planes S_{4} and $S_{5}^{\prime}=\tau_{7}\left(S_{5}\right)$. Denote $\tau_{5}^{\prime}=\tau_{7} \tau_{5} \tau_{7}$. Then $\Gamma_{56}=\operatorname{Stab}\left(L_{56}, B_{33}\right)=\left\langle\tau_{4}, \tau_{5}^{\prime}\right\rangle$. Let $t_{1}=L_{56} \cap S_{4}$ and $t_{2}=L_{56} \cap S_{5}^{\prime}$. Then the arc $\left[t_{1}, t_{2}\right]=L_{56} \cap K(\infty)$ is a fundamental domain of Γ_{56} on L_{56} and, by Corollary 24, [30], L_{56} is extremal. Since the height of L_{56} is $1 / \sqrt{19}$ and, as shown above, the height of any extremal geodesic is at least $1 / \sqrt{19}$, the Hurwitz constant of the field $\mathbf{Q}(\sqrt{-33})$ is

$$
C_{33}=\sqrt{19} / 2
$$

(cf. [35], Table 3).

4.2. The v-cells $N\left(v_{1}\right), N\left(v_{2}\right)$ and $N\left(v_{3}\right)$

The v-cells $N\left(v_{1}\right)$ and $N\left(v_{2}\right)$ are rectangular parallelepipeds and $N\left(v_{3}\right)$ is a square prism.

The vertices of $N\left(v_{1}\right)$ are the points $B=0, C=\omega / 6, D=2 \omega / 11, E=$ $6 /(1-\omega), F=(1+\omega) / 6, J=6 /(3-\omega), K=(3+\omega) / 6$ in \mathbf{C} and $A=\infty$. The projection of $N\left(v_{1}\right)$ from infinity into \mathbf{C} is the triangle with vertices at B, D and K. The Farey constant of the congruent faces $A B D C$ and $K E F J$ is $2 h_{16}=1 / \sqrt{3}$, the Farey constant of the congruent faces $A B J K$ and $C D E F$ is $2 h_{14}=2 / \sqrt{7}$ and the Farey constant of the congruent faces $A D E K$ and $B C F J$ is $2 h_{46}=2 / \sqrt{17}$.

The vertices of $N\left(v_{2}\right)$ are the points $D, E, K, L=(1+\omega) / 5, M=(1+$ $\omega) / 4, N=(2+4 \omega) / 19, P=(5+3 \omega) / 14$ in \mathbf{C} and $A=\infty$. The projection of $N\left(v_{2}\right)$ from infinity into \mathbf{C} is the triangle with vertices at M, D and K. The Farey constant of the congruent faces $A D N M$ and $K E L P$ is $2 h_{56}=2 / \sqrt{19}$, the Farey constant of the congruent faces $A K P M$ and $D E L N$ is $2 h_{45}=2 / \sqrt{14}$ and the Farey constant of the congruent faces $A D E K$ and $L N M P$ is $2 h_{46}=2 / \sqrt{17}$.

Since the v-cells $N\left(v_{k}\right)$ and $N\left(v_{k}^{\prime}\right), k=1,2$, are symmetrical with respect to the vertical plane in H^{3} through the line $\operatorname{Re} z=1 / 2$ in \mathbf{C}, if X is a vertex of $N\left(v_{k}\right)$, then $X^{\prime}=1-\bar{X}$ is the corresponding vertex of $N\left(v_{k}^{\prime}\right)$.

The vertices of $N\left(v_{3}\right)$ are the points $A_{1}=\omega / 4, D, D_{1}=2 \omega / 9, M, M^{\prime}=$ $(-1+\omega) / 4, N, N^{\prime}=(-2+4 \omega) / 19$ in \mathbf{C} and $A=\infty$. The projection of $N\left(v_{1}\right)$ from infinity into \mathbf{C} is the triangle with vertices at D, M and M^{\prime}. There are two congruent square faces $A M A_{1} M^{\prime}$ and $D N D_{1} N^{\prime}$, whose Farey constant is $2 h_{28}=1 / 2$, and four congruent rectangular faces $A D N M, A_{1} D_{1} N M, A D N^{\prime} M^{\prime}, A_{1} D_{1} N^{\prime} M^{\prime}$. (We call these faces squares and rectangles only because of their groups of symmetry). The axis of $\tau_{5} \tau_{7}$ is the axis of order four in $N\left(v_{3}\right)$.

Let $2 / \sqrt{19} \leqslant k<2 / \sqrt{14}$. If a geodesic L cuts a square face, which is congruent to $A M A_{1} M^{\prime}$, we can assume that L cuts $A M A_{1} M^{\prime}$. If L is extremal, then L cuts
the geodesic face ϕ in $A M A_{1} M^{\prime}$, which exists for $1 / 2<k<2 / \sqrt{14}$. For these values of $k, \phi \subset Q(\omega / 3, k)$, the horoball with equation $|z-\omega / 3|^{2}+(t-1 /(3 k))^{2}<$ $1 /(3 k)^{2}$ in H^{3}. Hence, there is no extremal geodesic, which cuts a square face of $N\left(v_{3}\right)$. Thus, an extremal geodesic can cut only the rectangular faces of $N\left(v_{i}\right)$. Assume that an extremal geodesic L cuts $N\left(v_{i}, k\right)$. Then L cuts the geodesic faces of $N\left(v_{i}, k\right)$, which lie in the rectangular faces of $N\left(v_{i}\right)$ congruent to $A D N M$ or $A D E K$, whose Farey constants are less than $2 / \sqrt{ } 14$. The centers of all such rectangular faces lie in S_{6}. Hence, if the height of an extremal geodesic L is less than $1 / \sqrt{14}$, then $g(L) \subset S_{6}$ for some translation $g \in B_{33}$. Indeed, an extremal geodesic L, which cuts $N\left(v_{i}, k\right)$, must enter through one of its geodesic faces and exit through another. Since the limit points of the sequence of v-cells cut by L are the endpoints of L and they lie in S_{6}, L itself lies in S_{6}.

The reflection τ_{11} with respect to the hemisphere

$$
S_{11}=S\left(\frac{1+\omega}{3}, \frac{1}{3}\right)
$$

belongs to B_{33} and $S_{11} \cap S_{8}=S_{3} \cap S_{8}$. Let $v_{4}=S_{11} \cap S_{8} \cap S_{5}$ and $v_{5}=S_{4} \cap S_{8} \cap S_{5}$. Then

$$
v_{4}=\left(\frac{1}{2}+\frac{19 \omega}{66}, \frac{1}{\sqrt{66}}\right), \quad v_{5}=\left(\frac{1}{2}+\frac{5 \omega}{22}, \frac{1}{\sqrt{22}}\right)
$$

and

$$
\begin{aligned}
& \operatorname{Stab}\left(v_{4}, B_{33}\right)=\left\{\tau_{5}, \tau_{8}, \tau_{11}:\left(\tau_{11} \tau_{5}\right)^{2}=\left(\tau_{5} \tau_{8}\right)^{4}=\left(\tau_{8} \tau_{11}\right)^{3}=1\right\}, \\
& \operatorname{Stab}\left(v_{5}, B_{33}\right)=\left\{\tau_{4}, \tau_{5}, \tau_{8}:\left(\tau_{4} \tau_{5}\right)^{2}=\left(\tau_{5} \tau_{8}\right)^{4}=\left(\tau_{8} \tau_{4}\right)^{2}=1\right\}
\end{aligned}
$$

4.3. The \boldsymbol{v}-cells $N\left(v_{4}\right)$ and $N\left(v_{5}\right)$

The geodesic $L_{58}=S_{8} \cap S_{5}$ is a common axis of order four of $N\left(v_{4}\right)$ and $N\left(v_{5}\right)$ both. $N\left(v_{4}\right)$ is the same v-cell, which appears in the case of $d=6$ (see [31], Sec. 5.1). It is a cube whose vertices and edges are replaced by triangular and rectangular faces respectively. $N\left(v_{5}\right)$ is a square prism.

We describe the v-cell $N\left(v_{4}\right)$. Denote

$$
\rho_{1}=\tau_{8} \tau_{11}=\left(\begin{array}{cc}
1+\omega & 10-\omega \\
3 & -2-\omega
\end{array}\right), \quad \tau=\tau_{11} \tau_{5}=\left(\begin{array}{cc}
-10 & 3+3 \omega \\
-1+\omega & 10
\end{array}\right)
$$

The group $S_{4}=\left\langle\tau, \rho_{1}\right\rangle$ is the subgroup of the orientation-preserving isomorphisms in $\operatorname{Stab}\left(v, B_{33}\right)$. One has $\tau^{2}=\rho_{1}^{3}=\left(\tau \rho_{1}\right)^{4}=i d$. The order of S_{4} is 24 . The vertical plane S_{8} in H^{3} is the plane of symmetry of the v-cell $N\left(v_{4}\right)$. Hence, if X is a vertex of $N(v)$ in \mathbf{C}, then $X^{\prime}=1-\bar{X}$ is also a vertex. Thus it is enough to enumerate the vertices of $N\left(v_{4}\right)$ on the line $\operatorname{Re} z=1 / 2$ and to the left of this line. At any vertex of $N\left(v_{4}\right)$, one triangular, one square, and two rectangular faces of $N\left(v_{4}\right)$ meet. The group S_{4} acts transitively on the vertices of $N\left(v_{4}\right)$.

Thus $N\left(v_{4}\right)$ has 24 vertices: $B=(1+\omega) / 4, C=(1+\omega) / 3, D=5(1+\omega) / 17$, $E=(13+9 \omega) / 29, F=(15+11 \omega) / 37, H=(27+17 \omega) / 58, K=(3+2 \omega) / 7$, $L=(27+16 \omega) / 57, M=(11+8 \omega) / 29, N=(17+10 \omega) / 37$ and their reflections across the line $\operatorname{Re} z=1 / 2$ in \mathbf{C}, the points $B_{1}=1 / 2+\omega / 4, G=1 / 2+3 \omega / 10$ and $J=1 / 2+19 \omega / 66$ on this line, and $A=\infty$. The projection of $N\left(v_{4}\right)$ from infinity into \mathbf{C} is the trapezoid with vertices at $B, C, C^{\prime}, B^{\prime}$.

The v-cell $N\left(v_{4}\right)$ has 6 congruent square faces: $A B B_{1} B^{\prime}, C D F E, C^{\prime} D^{\prime} F^{\prime} E^{\prime}$, $G H J H^{\prime}, K L N M, K^{\prime} L^{\prime} N^{\prime} M^{\prime}$, whose Farey constant equals $2 h_{58}=1 / 2 ; 12$ congruent rectangular faces: $A B D C, A B^{\prime} D^{\prime} C^{\prime}, B B_{1} N M, B^{\prime} B_{1} N^{\prime} M^{\prime}, D F K M$, $D^{\prime} F^{\prime} K^{\prime} M^{\prime}, J L K H, J L^{\prime} K^{\prime} H^{\prime}, E F H G, E^{\prime} F^{\prime} H^{\prime} G, L N N^{\prime} L^{\prime}$ and $C E E^{\prime} C^{\prime}$, whose Farey constant equal $2 h_{5,11}=2 / \sqrt{17}$; and 8 congruent triangular faces: $A C C^{\prime}$, $G E E^{\prime}, J L L^{\prime}, B_{1} N N^{\prime}, B D M, B^{\prime} D^{\prime} M^{\prime}, F H K$ and $F^{\prime} H^{\prime} K^{\prime}$, whose Farey constant equals $2 h_{38}=1 / \sqrt{3}$.

The vertices of $N\left(v_{5}\right)$ are the points $B, B_{1}, B^{\prime}=(3+\omega) / 4, P=1 / 2+\omega / 6, R=$ $(5+3 \omega) / 14, R^{\prime}=(9+3 \omega) / 14, T=1 / 2+5 \omega / 22$ in \mathbf{C} and $A=\infty$. The projection of $N\left(v_{5}\right)$ from infinity into \mathbf{C} is the triangle with vertices at B, B^{\prime} and P. There are two congruent square faces $A B B_{1} B^{\prime}$ and $P R T R^{\prime}$, whose Farey constant is $2 h_{58}=$ $1 / 2$, and four congruent rectangular faces $A B R P, B B_{1} T R, A B^{\prime} R^{\prime} P, B^{\prime} B_{1} T R^{\prime}$, whose Farey constant is $2 h_{45}=2 / \sqrt{14}$. The axis of $\tau_{8} \tau_{5}$ is the axis of order four in $N\left(v_{5}\right)$.

Let $2 / \sqrt{19} \leqslant k<2 / \sqrt{14}$. If a geodesic L cuts a rectangular face, which is congruent to $A B D C$, we can assume that L cuts $A B D C$. If L is extremal, then L cuts the geodesic face ϕ in $A B D C$, which exists for $2 / \sqrt{17}<k<2 / \sqrt{14}$. For these values of $k, \phi \subset Q(\omega / 3, k)$. Hence, there is no extremal geodesic, which cuts a triangular or rectangular face of $N\left(v_{4}\right)$. Thus, an extremal geodesic L, which cuts $N\left(v_{4}\right)$ or $N\left(v_{5}\right)$, can cut only the square faces of these v-cells. Up to a symmetry, L cuts either (1) the opposite or (2) adjacent square faces of $N\left(v_{4}\right)$. If L cuts only the opposite faces of cubes, then $L=L_{58}$, whose endpoints are $1 / 2+\omega / 4 \pm i / 4$. Since the arc $\left[v_{4}, v_{5}\right]=L \cap K(\infty)$ is a fundamental domain of $\operatorname{Stab}\left(L, B_{33}\right)$ on L, L is an extremal geodesic and $\nu(L)=1 /\left(2 h_{58}\right)=2$.

Let $T_{0}=\left((1+\omega) / 4+\sqrt{1 / 8-k^{2} / 4}, k / 2\right)$ and $T_{1}=\left((3+\omega) / 4-\sqrt{1 / 8-k^{2} / 4}, k / 2\right)$. The geodesic face ψ of $N\left(v_{4}, k\right)$ that lies in the common vertical square face $A B B_{1} B^{\prime}$ of $N\left(v_{4}\right)$ and $N\left(v_{5}\right)$ has one side $T_{0} T_{1}$, which lies on the line $t=k / 2$ or, more precisely, on $Q(A, k) \cap A B B_{1} B^{\prime}$. The opposite side $T_{2} T_{3}$ of ψ lies on the circle $Q\left(B_{1}, k\right) \cap A B B_{1} B^{\prime}$. The diagonals $T_{0} T_{3}$ and $T_{1} T_{2}$ of ψ lie on $S_{5} \cap A B B_{1} B^{\prime}$ and $S_{5}^{\prime} \cap A B B_{1} B^{\prime}$ respectively. Here $S_{5}^{\prime}=S((3+\omega) / 4,1 / \sqrt{8})$. The point of intersection of these diagonals is $C_{s}=(1 / 2+\omega / 4,1 / 4)$. It is the center of symmetry of both $A B B_{1} B^{\prime}$ and ψ. Notice that when $k=1 / \sqrt{2}$, all four vertices of ψ lie on the boundary of $A B B_{1} B^{\prime}$.

Assume that an extremal geodesic L cuts two adjacent square faces of $N\left(v_{5}\right)$. We can assume that L cuts ψ and $\rho(\psi)$, the geodesic face in $\rho\left(A B B_{1} B^{\prime}\right)=C D F E$. Then L also cuts $\tau_{4}(\psi)$, the geodesic face in the square face $\tau_{4}\left(A B B_{1} B^{\prime}\right)$ of $N\left(v_{4}\right)$ with center $(1 / 2+3 \omega / 14,1 / 154)$. But, any geodesic which cuts $\rho(\psi)$ and $\tau_{4}(\psi)$ does not meet ψ. Hence there is no extremal geodesic L, which cuts two adjacent square faces of $N\left(v_{5}\right)$.

Geodesic L_{45} is perpendicular to the hemisphere S_{6}. Since the arc $\left[v_{2}, v_{5}\right]=$ $L_{45} \cap K(\infty)$ is a fundamental domain of $\operatorname{Stab}\left(L_{45}, B_{33}\right)$ on L_{45}, L_{45} is an extremal geodesic and $\nu\left(L_{45}\right)=1 /\left(2 h_{45}\right)=2 / \sqrt{14}$.

We have proved the following.
Lemma 4.1. Let the height of a geodesic L in H^{3} be less than $1 / \sqrt{14}$. If L is extremal, then L is equivalent to L_{58} or $L \subset g S_{6}, g \in G_{\infty}$. Thus, $\mathcal{M}\left(B_{33}\right) \cap$ $(\sqrt{14} / 2, \sqrt{19} / 2]=\mathcal{M}_{S} \cap(\sqrt{14} / 2, \sqrt{19} / 2] \cup\{2\}$.

The geodesic L_{45} is extremal with respect to B_{33} and $\nu\left(L_{45}\right)=2 / \sqrt{14}$.

Remark. The hemisphere S_{4} is anisotropic and $r\left(\Phi_{4}\right)=22$. The group $\operatorname{Stab}\left(S_{4}, B_{33}\right)$ is generated by reflections in L_{48}, L_{14}, L_{45}, and L_{46} with heights $1 / \sqrt{6}, 1 / \sqrt{7}, 1 / \sqrt{14}$, and $1 / \sqrt{17}$ respectively. It contains a subgroup with signature $(0 ; 2,2,3,4)$ as a subgroup of index 2 .

4.4. A group with signature $(0 ; 2,2,2,4)$

Now let $\rho=\left(\begin{array}{ll}i \sqrt{3} & -6 \\ 0 & \omega\end{array}\right)$. Let C_{1} be the circle $|z-2 \omega / 11|=1 / \sqrt{11}$ in the complex plane \mathbf{C}. Then $G_{S}=\operatorname{Stab}\left(C_{1}, B_{33}\right)$ and $C_{1}=\rho(C)$, where C is the unit circle $|z|=1$. The group $\Gamma=\rho^{-1} \Gamma_{S} \rho$ is a discrete cocompact subgroup of the group of isometries G_{S} of D^{2}. It is generated by reflections

$$
\begin{aligned}
\sigma & =\left(\begin{array}{cc}
1 & 2 i \sqrt{3} \\
2 i \sqrt{3} & -1
\end{array}\right), & \sigma_{0} & =\left(\begin{array}{cc}
-4 & \sqrt{11}+3 i \sqrt{3} \\
-\sqrt{11}+3 i \sqrt{3} & 4
\end{array}\right), \\
\sigma_{1} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), & \sigma_{2} & =\left(\begin{array}{cc}
-2 i \sqrt{3} & 1+\omega \\
1-\omega & 2 i \sqrt{3}
\end{array}\right)
\end{aligned}
$$

across the sides of the quadrilateral with vertices $s_{0}=i(4 / 9) \sqrt{3}, v=-i \sqrt{3} / 6$, $s_{1}=(\sqrt{11}-i \sqrt{3}) / 6$, and $u=(\sqrt{11}+i \sqrt{3}) / 5$, which are the fixed points of

$$
A=\sigma_{0} \sigma_{1}, \quad V=\sigma_{1} \sigma, \quad S_{1}=\sigma \sigma_{2}, \quad U=\sigma_{2} \sigma_{0}
$$

respectively. One has $A^{4}=V^{2}=S_{1}^{2}=U^{2}=A B S_{1} U=$ id, and $\Gamma=<$ $\sigma, \sigma_{0}, \sigma_{1}, \sigma_{2}:\left(\sigma_{0} \sigma_{1}\right)^{4}=\left(\sigma_{1} \sigma\right)^{2}=\left(\sigma \sigma_{2}\right)^{2}=\left(\sigma_{2} \sigma_{0}\right)^{2}=1>$. Here $\sigma=\rho^{-1} \tau_{6} \tau_{1} \rho$, $\sigma_{0}=\rho^{-1} \tau_{6} \tau_{5} \rho, \sigma_{1}=\rho^{-1} \tau_{6} \tau_{7} \rho$ and $\sigma_{2}=\rho^{-1} \tau_{6} \tau_{4} \rho$.

For $g \in G_{S}$, denote $g^{\prime}=\sigma_{1} g \sigma_{1}$. If z is the fixed point of g, then the fixed points of g^{\prime} is $-\bar{z}$. Denote

$$
\begin{gathered}
S_{0}=A^{2}, \quad \varphi=U^{\prime} \sigma_{0}, \quad \psi=\sigma_{0} S_{1}, \\
F_{0}=U^{\prime} S_{0}=\varphi \sigma_{0}^{\prime}, \quad H_{0}=U S_{1}=\sigma_{2} \psi \\
H=\varphi \psi^{-1}=U^{\prime} S_{2}, \quad H^{\prime \prime}=\sigma_{0} H \sigma_{0}=\varphi^{-1} H^{-1} \varphi=\psi^{-1} H^{-1} \psi=\varphi^{-1} \psi
\end{gathered}
$$

Then

$$
\begin{aligned}
f_{0} & =-\frac{1}{4} \sqrt{11}+i \frac{3}{4} \sqrt{3}, & h_{0} & =\frac{1}{2} \sqrt{11}-i \frac{1}{6} \sqrt{3}, \\
h & =-\frac{1}{8} \sqrt{11}+i \frac{29}{24} \sqrt{3}, & h^{\prime \prime} & =\frac{5}{8} \sqrt{11}+i \frac{7}{24} \sqrt{3}
\end{aligned}
$$

and f_{0} is the common fixed point of $\sigma_{0}^{\prime}, \varphi$ and F_{0}, h_{0} is the common fixed points of σ_{2}, ψ and H_{0}. We have $F_{0}=U^{\prime} S_{0}=\sigma_{2}^{\prime} \sigma_{0}$ and $H_{0}=U S_{1}=\sigma_{0} \sigma$.

Lemma 4.2. For the fixed points of F_{0}, H_{0}, H and $H^{\prime \prime}$,

$$
\begin{aligned}
\left(f_{0}, \sigma_{0} w\right) & =\left(f_{0}, \sigma_{2}^{\prime} w\right)=-\left(f_{0}, \sigma_{0}^{\prime} w\right)=-\left(f_{0}, S_{0} w\right)=-\left(f_{0}, U^{\prime} w\right)=1, \\
\left(h_{0}, \sigma w\right) & =\left(h_{0}, \sigma_{0} w\right)=-\left(h_{0}, \sigma_{2} w\right)=-\left(h_{0}, S_{1} w\right)=-\left(h_{0}, U w\right)=1, \\
(h, \varphi w) & =(h, \psi w)=-\left(h, \sigma_{0} w\right)=-\left(h, S_{2} w\right)=-\left(h, U^{\prime} w\right)=1, \\
\left(h^{\prime \prime}, \varphi^{-1} w\right) & =\left(h^{\prime \prime}, \psi^{-1} w\right)=-\left(h^{\prime \prime}, \sigma_{0} w\right)=-\left(h^{\prime \prime}, S_{1} w\right)=1 .
\end{aligned}
$$

Proof. Since $h^{\prime \prime}=-\sigma_{0} h$, we have $\left(h, U^{\prime} w\right)=-\left(\sigma_{0} h^{\prime \prime}, U^{\prime} w\right)=-\left(h^{\prime \prime}, \sigma_{0} U^{\prime} w\right)=$ $-\left(h^{\prime \prime}, \varphi^{-1} w\right)=-1$ and $(h, \psi w)=(h, H \psi w)=(h, \varphi w)=1$. Similarly,

$$
\left(h^{\prime \prime}, S_{1} w\right)=-\left(\sigma_{0} h, S_{1} w\right)=-\left(h, \sigma_{0} S_{1} w\right)=-(h, \psi w)=-1
$$

and

$$
\left(h^{\prime \prime}, \varphi^{-1} w\right)=\left(h^{\prime \prime},\left(H^{\prime \prime}\right)^{-1} \varphi^{-1} w\right)=\left(h^{\prime \prime}, \psi^{-1} w\right)=1,
$$

since $H^{\prime \prime}=\psi^{-1} H^{-1} \psi=\psi^{-1} \psi \varphi^{-1} \psi=\varphi^{-1} \psi$.

4.5. Uniqueness

Denote by D_{T} the disc $|z|^{2}<14 / 3$ and $D_{T}^{\prime}=\left\{z \in D_{T}: \operatorname{Re} z \leqslant 0\right\}$. Since $\Gamma_{w}=\left\langle\sigma_{1}\right\rangle$, we can assume that $z \in D_{T}^{\prime}$.

If $N(\sigma)$ holds, then $|z|^{2} \geqslant|-i 2 \sqrt{3}|^{2}=12$. Thus, for an extremal $z \in D_{T}^{\prime}$, $P(\sigma)$ holds. If $P\left(\sigma_{0}\right)$ and $P\left(\sigma_{2}\right)$ hold, then $z \in \mathcal{D}_{\Gamma}$, a fundamental domain of Γ.

If $N\left(\sigma_{2}\right)$ and $P\left(\sigma_{0}\right)$ hold, then $z=h_{0}=\sqrt{11} / 2-i \sqrt{3} / 6,\left|h_{0}\right|^{2}=17 / 6=2.8333$ (see Lemma 4.2).

Let us assume that $P\left(\sigma_{2}\right)$ and $N\left(\sigma_{0}\right)$ hold. If $P\left(\sigma_{0}^{\prime}\right)$ holds, then $z=f_{0}^{\prime}$ $=(\sqrt{11}+i 3 \sqrt{3}) / 4,\left|f_{0}\right|^{2}=19 / 8=2.375$ (see Lemma 4.2).

If $P(U)$ holds, then $z \in \mathcal{D}_{\Gamma}$. Hence we can assume that $N(U)$ holds. If $N\left(\sigma_{0}^{\prime}\right)$ holds, then $|z|^{2} \geqslant\left|h^{\prime}\right|^{2}=|\sqrt{11} / 8+i 29 \sqrt{3} / 24|^{2}=427 / 96=4.55208333$.

If $N\left(\sigma_{2}\right)$ and $N\left(\sigma_{0}\right)$ hold, then $N\left(S_{1}\right)$ and $N\left(\sigma_{0}\right)$ hold, in which case $|z|^{2} \geqslant$ $\left|h^{\prime \prime}\right|^{2}=|5 \sqrt{11} / 8+i 7 \sqrt{3} / 24|^{2}=427 / 96=4.55208333$.

We have proved the following.

Lemma 4.3. Let an extremal indefinite $z \in D_{T}^{\prime}$. Then $z=f_{0}^{\prime}$ or $z=h_{0}$ or

1) $N\left(\sigma_{0}^{\prime}\right)$ and $N(U)$ hold, or
2) $N\left(S_{1}\right)$ and $N\left(\sigma_{0}\right)$ hold.
3) Assume that $N\left(\sigma_{0}\right)$ and $N\left(U^{\prime}\right)$ hold. If $P(\varphi)$ and $P(\psi)$ hold, then $z=$ $h=-\sqrt{11} / 8+i 29 \sqrt{3} / 24$ (see Lemma 4.2). If $N(\varphi)$ and $N\left(\sigma_{0}\right)$ hold, then $|z|^{2}>$ 5.27348. If $N(\psi)$ and $N\left(U^{\prime}\right)$ hold, then $|z|^{2}>6.24218$. If $N(\varphi)$ and $N(\psi)$ hold, then $|z|^{2}>8.3383$. Thus, if $N\left(\sigma_{0}\right)$ and $N\left(U^{\prime}\right)$ hold, then either $z=h$ or $|z|^{2}>$ 5.27348 .
4) Let $N\left(\sigma_{0}\right)$ and $N\left(S_{1}\right)$ hold. If $P\left(\varphi^{-1}\right)$ and $P\left(\psi^{-1}\right)$ hold, then $z=h^{\prime \prime}=$ $5 \sqrt{11} / 8+i 7 \sqrt{3} / 24$ (see Lemma 4.2). If $N\left(\varphi^{-1}\right)$ and $N\left(S_{1}\right)$ hold, then $|z|^{2}>5.2324$. If $N\left(\varphi^{-1}\right)$ and $N\left(\psi^{-1}\right)$ hold, then $|z|^{2}>8.3383$. If $N\left(\psi^{-1}\right)$ and $N\left(\sigma_{0}\right)$ hold, then $|z|^{2}>5.9738$. Thus, if $N\left(\sigma_{0}\right)$ and $N\left(S_{1}\right)$ hold, then either $z=h^{\prime \prime}$ or $|z|^{2}>5.2324$.

We have proved the following.

Lemma 4.4. Let an extremal indefinite $z \in D_{T}^{\prime}$. Then $z=f_{0}^{\prime}$ or $z=h_{0}$ or $z=h$ or $z=h^{\prime \prime}$.

By (3.1), Lemmas 4.1 and 4.4 imply the following.
Theorem 4.1. $\mathcal{M}\left(B_{33}\right) \cap[\sqrt{14} / 2, \infty)=\{\sqrt{14} / 2, \sqrt{437 / 124}, 2, \sqrt{17} / 2, \sqrt{19} / 2\}$.
Let L_{0}, L_{1} and L_{2} be the axes of $\rho F_{0} \rho^{-1}, \rho H_{0} \rho^{-1}$ and $\rho H \rho^{-1}$ respectively.
If $\nu(L)=\sqrt{19} / 2$ for a geodesic L in H^{3}, then $L=g\left(L_{0}\right)$ for some $g \in B_{33}$.
If $\nu(L)=\sqrt{17} / 2$ for a geodesic L in H^{3}, then $L=g\left(L_{1}\right)$ for some $g \in B_{33}$.
If $\nu(L)=2$ for a geodesic L in H^{3}, then $L=g\left(L_{58}\right)$ for some $g \in B_{33}$.
If $\nu(L)=\sqrt{437 / 124}$ for a geodesic L in H^{3}, then $L=g\left(L_{2}\right)$ for some $g \in B_{33}$.
The geodesic L_{45} is extremal with respect to B_{33} and $\nu\left(L_{45}\right)=2 / \sqrt{14}$.
As mentioned above, $\mathcal{M}\left(B_{33}\right)$ coincides with the Markov spectrum of the field $\mathbf{Q}(\sqrt{-33})$, which, as follows from Theorem 4.1, equals to \mathcal{L}_{33} in the interval $[\sqrt{14} / 2, \infty)$ (see e.g. [31], p. 41).

5. Diophantine approximation in $\mathrm{Q}(\sqrt{-57})$

5.1. Reduction

Let $d=57$ and $\omega=i \sqrt{57}$. The group $G_{\infty}=\operatorname{Stab}\left(\infty, B_{57}\right)$ is generated by reflections in the vertical plains in H^{3} through the lines $\operatorname{Re} z=0, \operatorname{Re} z=1 / 2$, $\operatorname{Im} z=0$ and $\operatorname{Im} z=\sqrt{57} / 2$ in \mathbf{C}, which will be denoted by S_{15}, S_{16}, S_{17}, and S_{18}
respectively. The floor of the isometric fundamental domain \mathcal{D} lies in hemispheres

$$
\begin{array}{lll}
S_{1}=S(0,1), & S_{2}=S\left(\frac{1+\omega}{2}, \frac{1}{\sqrt{2}}\right), & S_{3}=S\left(\frac{\omega}{3}, \frac{1}{\sqrt{3}}\right) \\
S_{4}=S\left(\frac{3+\omega}{6}, \frac{1}{\sqrt{6}}\right), & S_{5}=S\left(\frac{1+\omega}{4}, \frac{1}{\sqrt{8}}\right), & S_{6}=S\left(\frac{\omega}{6}, \frac{1}{\sqrt{12}}\right) \\
S_{7}=S\left(\frac{-24}{\omega}, \frac{1}{\sqrt{19}}\right), & S_{8}=S\left(\frac{-12}{\omega}, \frac{1}{\sqrt{19}}\right), & S_{9}=S\left(\frac{24+\omega}{3-\omega}, \frac{1}{\sqrt{22}}\right) \\
S_{10}=S\left(\frac{9+\omega}{9-\omega}, \frac{1}{\sqrt{23}}\right), & S_{11}=S\left(\frac{-18+4 \omega}{9+\omega}, \frac{1}{\sqrt{23}}\right), \\
S_{12}=S\left(\frac{2(1+\omega)}{5}, \frac{1}{5}\right), & S_{13}=S\left(\frac{1+\omega}{5}, \frac{1}{5}\right), & S_{14}=S\left(\frac{-33+\omega}{2 \omega}, \frac{1}{\sqrt{38}}\right) .
\end{array}
$$

The forms $\Phi_{5}=(2,(1+\omega) / 2,7)$ and $\Phi_{6}=(2, \omega / 3,3)$ are reflection forms since $\Delta\left(\Phi_{5}\right)=1 / 2, \Delta\left(\Phi_{6}\right)=1 / 3$ and $6 \mid D$ (see [26], Lemma 4). Reflections in hemispheres $S_{i}, i=1,2,3,5,6,14,15,16,17,18$, belong to B_{57}. Hemispheres S_{3}, S_{5} and S_{14} are mutually perpendicular. Also, S_{14} is a boundary hemisphere with $r\left(\Phi_{14}\right)=6$. Denote by τ_{i} reflection in the hemisphere S_{i} and

$$
\begin{gathered}
H_{1}=\left[\begin{array}{ll}
-24 & 5 \omega \\
\omega & 12
\end{array}\right]_{-3}, \quad \tau=\left[\begin{array}{ll}
24+\omega & 18-10 \omega \\
3-\omega & -24-\omega
\end{array}\right]_{-3}, \\
\tau^{\prime}=\left[\begin{array}{ll}
3+\omega & 9-\omega \\
6 & -3-\omega
\end{array}\right]_{-6}
\end{gathered}
$$

$H_{2}=\tau H_{1}$ and $H_{3}=\tau^{\prime}\left(\overline{H_{2}}\right)^{-1}$. The axis of H_{1} lies in the plane $\operatorname{Re} z=0$, the axis of τ^{\prime} is perpendicular to the plane $\operatorname{Re} z=1 / 2$ and the axis of τ is perpendicular to the hemispheres S_{2} and S_{3}.

Since the isometric fundamental domain of $\left\langle H_{1}\right\rangle$ is the exterior of the hemispheres S_{7} and S_{8} in H^{3}, the isometric fundamental domain of $\left\langle H_{2}\right\rangle$ is the exterior of the hemispheres S_{12} and $\tau_{15}\left(S_{13}\right)$ in H^{3}, the isometric fundamental domain of $\left\langle H_{3}\right\rangle$ is the exterior of the hemispheres S_{10} and $\tau_{15}\left(S_{11}\right)$ in $H^{3}, \tau\left(S_{9}\right)=S_{9}$ and $\tau^{\prime}\left(S_{4}\right)=S_{4}$, we have proved the following.

Theorem 5.1. The extended Bianchi group B_{57} is generated by $\tau, \tau^{\prime}, H_{1}$ and by reflections in $S_{i}, i=1,2,3,5,6,14,15,16,17,18$.

The hemisphere S_{14} is anisotropic, and the lowest face of \mathcal{D} lies in S_{14}. Since the diameter of S_{14} is $2 / \sqrt{38}$, the highest Hermitian point of $\mathcal{M}\left(B_{57}\right)$ is

$$
H_{57}=\sqrt{38} / 2
$$

(cf. [34], Example 5.1). Denote by $h_{i j}$ the height of the geodesic $L_{i j}=S_{i} \cap S_{j}$.

Then

$$
\begin{gathered}
h_{2,15}=\frac{1}{2}, \quad h_{35}=\frac{1}{\sqrt{11}}, \quad h_{3,16}=\frac{1}{\sqrt{12}}, \quad h_{5,15}=h_{5,16}=\frac{1}{4}, \\
h_{46}=\frac{1}{\sqrt{18}}, \quad h_{14,7}=h_{14,8}=\frac{1}{\sqrt{19}}, \quad h_{10,1}=h_{11,16}=\frac{\sqrt{91}}{46} \\
h_{58}=h_{27}=\sqrt{\frac{37}{874}}, \quad h_{29}=\frac{1}{\sqrt{24}}, \quad h_{39}=\frac{1}{5} \\
h_{10,4}=h_{4,13}=h_{12,11}=\frac{1}{5} \sqrt{\frac{67}{69}}, \quad h_{37}=h_{68}=\frac{1}{10} \sqrt{\frac{73}{19}}, \\
h_{13,8}=h_{9,12}=h_{97}=\frac{1}{5} \sqrt{\frac{177}{209}}, \quad h_{5,13}=h_{2,12}=\frac{1}{\sqrt{29}} \sqrt{\frac{49}{50}}, \\
h_{10,6}=h_{11,3}=\frac{1}{2} \sqrt{\frac{89}{667}}, \quad h_{6,13}=h_{3,12}=\frac{1}{\sqrt{31}} \sqrt{\frac{97}{100}}, \\
h_{45}=h_{1,4}=\frac{1}{\sqrt{33}}, \quad h_{3,14}=\frac{1}{\sqrt{41}}, \quad h_{5,14}=\frac{1}{\sqrt{46}} .
\end{gathered}
$$

If the center of S_{i} is located in $S_{15}\left(\right.$ or $\left.S_{16}\right)$ then $h_{i, 15}=R_{i}\left(\right.$ or $\left.h_{i, 16}=R_{i}\right)$.
The hemispheres S_{1}, S_{6}, S_{10} and S_{15} meet at a vertex of \mathcal{D}, and the hemispheres S_{2}, S_{11}, S_{12} and S_{16} meet at another vertex of \mathcal{D}.

The group $G_{S}=\operatorname{Stab}\left(S_{14}, B_{57}\right)=\left\langle\gamma, \gamma_{0}, \gamma_{1}\right\rangle$, where $\gamma=\tau_{5} \tau_{14}, \gamma_{0}=\tau_{3} \tau_{14}$, $\gamma_{1}=\tau_{16} \tau_{14}$.

The heights of all the edges in the floor of \mathcal{D}, which do not lie in S_{14}, are greater than $1 / \sqrt{38}$. Thus, the reduction for $d=57$ is similar to that for $d=30$.

Let $S=\gamma \gamma_{0}, A=\gamma_{1} \gamma_{0}, B=\gamma_{1} \gamma$. Then $S^{2}=A^{6}=B^{4}=i d$. Thus the group G_{S} contains the ($2,4,6$)-triangle group as a subgroup of index two. The triangular face D_{S} of \mathcal{D}, which lies in S_{14}, with vertices at

$$
v_{1}=\left(\frac{9+5 \omega}{18}, \frac{1}{\sqrt{54}}\right), v_{2}=\left(\frac{5+3 \omega}{10}, \frac{1}{\sqrt{50}}\right), v_{3}=\left(\frac{3+2 \omega}{7}, \frac{1}{7}\right)
$$

is a fundamental domain of $G_{S}, S_{14} \cap K(\infty)$ consists of two copies of D_{S}. and

$$
\begin{aligned}
& \operatorname{Stab}\left(v_{1}, B_{57}\right)=\left\{\tau_{5}, \tau_{14}, \tau_{16}:\left(\tau_{5} \tau_{14}\right)^{2}=\left(\tau_{14} \tau_{16}\right)^{2}=\left(\tau_{16} \tau_{5}\right)^{4}=1\right\}, \\
& \operatorname{Stab}\left(v_{2}, B_{57}\right)=\left\{\tau_{3}, \tau_{14}, \tau_{16}:\left(\tau_{3} \tau_{14}\right)^{2}=\left(\tau_{14} \tau_{16}\right)^{2}=\left(\tau_{16} \tau_{3}\right)^{6}=1\right\}, \\
& \operatorname{Stab}\left(v_{3}, B_{57}\right)=\left\{\tau_{3}, \tau_{5}, \tau_{14}:\left(\tau_{3} \tau_{5}\right)^{2}=\left(\tau_{5} \tau_{14}\right)^{2}=\left(\tau_{14} \tau_{3}\right)^{2}=1\right\} .
\end{aligned}
$$

The geodesic $L_{5,14}$ is perpendicular to S_{3} and to the axis $L_{5,16}$ of $\tau_{16} \tau_{5}$. Denote $U=\left(\tau_{16} \tau_{5}\right)^{2}$. Then $\Gamma_{5,14}=\operatorname{Stab}\left(L_{5,14}, B_{57}\right)=\left\langle\tau_{3}, U\right\rangle$. Let $t_{1}=L_{5,14} \cap S_{3}$ and $t_{2}=L_{5,14} \cap L_{5,16}$. Then the arc $\left[t_{1}, t_{2}\right]=L_{5,14} \cap K(\infty)$ is a fundamental domain of $\Gamma_{5,14}$ on $L_{5,14}$ and, by Corollary 24, [30], $L_{5,14}$ is extremal. Since the height of
$L_{5,14}$ is $1 / \sqrt{46}$ and, as shown above, the height of any extremal geodesic is at least $1 / \sqrt{46}$, the Hurwitz constant of the field $\mathbf{Q}(\sqrt{-57})$ is

$$
C_{57}=\sqrt{46} / 2 .
$$

(cf. [35], Table 1).
The hemisphere S_{14} contains four vertices of $\mathcal{D}, v_{1}, v_{2}, v_{3}$ and $v_{3}^{\prime}=\tau_{16}\left(v_{3}\right)$.
The v-cells $N\left(v_{1}\right), N\left(v_{2}\right)$, and $N\left(v_{3}\right)$ are of the same type as in the case of $d=30$ (see Section 3). The v-cell $N\left(v_{3}\right)$ is a rectangular parallelepiped. The v cells $N\left(v_{1}\right)$ and $N\left(v_{2}\right)$ are square and hexagonal prisms respectively. The geodesic $L_{5,16}$ is the axis of symmetry of order 4 in $N\left(v_{1}\right)$ and $L_{3,16}$ is the axis of symmetry of order 6 in $N\left(v_{2}\right)$.

The common rectangular face ϕ_{23} of $N\left(v_{3}\right)$ and $N\left(v_{2}\right)$ has vertices at $\omega / 3,(19+$ $12 \omega) / 41,(-33+\omega) /(2 \omega)$ and ∞. Its Farey constant is $2 h_{3,14}=2 / \sqrt{41}$. All the rectangular faces of $N\left(v_{2}\right)$ are congruent to this face.

The common rectangular face ϕ_{13} of $N\left(v_{3}\right)$ and $N\left(v_{1}\right)$ has vertices at $(1+$ $\omega) / 4,(21+13 \omega) / 46,(-33+\omega) /(2 \omega)$ and ∞. Its Farey constant is $2 h_{5,14}=2 / \sqrt{46}$. All the rectangular faces of $N\left(v_{1}\right)$ are congruent to this face.

Let $2 / \sqrt{46} \leqslant k<2 / \sqrt{38}$. Then $N\left(v_{i}, k\right)$ has a geodesic face ϕ if and only if ϕ lies in a rectangular face of $N\left(v_{i}\right)$, which is congruent to ϕ_{23} or ϕ_{13}, since only for such a face the Farey constant is less than $2 / \sqrt{38}$. But, the centers of all such faces lie in S_{14}. Hence, if the height of an extremal geodesic L is less than $1 / \sqrt{38}$, then $g(L) \subset S_{14}$ for some translation $g \in B_{57}$. Indeed, an extremal geodesic L, which cuts $N(v, k)$, must enter through one of its geodesic faces and exit through another. Since the limit points of the sequence of v-cells cut by L are the endpoints of L and they lie in S_{14}, L itself lies in S_{14}.

Lemma 5.1. If the height of an extremal geodesic L in H^{3} is less than $1 / \sqrt{38}$, then $L \subset g S, g \in G_{\infty}$. Thus,

$$
\mathcal{M}\left(B_{57}\right) \cap[\sqrt{38} / 2, \sqrt{46} / 2]=\mathcal{M}_{S} \cap[\sqrt{38} / 2, \sqrt{46} / 2] .
$$

5.2. A group with signature $(0 ; 2,4,6)$

Let $S_{14}=S\left(b_{14}, R_{14}\right)$ and $\rho=\left(\begin{array}{cc}R_{14} & b_{14} \\ 0 & 1\end{array}\right)$. Let C_{1} be the circle $\left|z-b_{14}\right|=$ $1 / \sqrt{38}$ in the complex plane \mathbf{C}. Then $G_{S}=\operatorname{Stab}\left(C_{1}, B_{57}\right)$ and $C_{1}=\rho(C)$, where C is the unit circle $|z|=1$. The group $\Gamma=\rho^{-1} G_{S} \rho$ is a discrete cocompact subgroup of the group of isometries G_{C} of D^{2}. It is generated by reflections

$$
\sigma=\left[\begin{array}{cc}
i \sqrt{6} & 5+\omega \\
5-\omega & -i \sqrt{6}
\end{array}\right], \quad \sigma_{0}=\left[\begin{array}{cc}
-2 i \sqrt{6} & 9-\omega \\
9+\omega & 2 i \sqrt{6}
\end{array}\right], \quad \sigma_{1}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

across the sides of the triangle with vertices $a=i \sqrt{6} / 5, b=-2 i \sqrt{6} / 9$, and $s=$ $-(\sqrt{38}+i \sqrt{6}) / 14$, which are the fixed points of $A=\sigma_{1} \sigma_{0}, B=\sigma_{1} \sigma$ and $S=\sigma \sigma_{0}$ respectively. One has $S^{2}=A^{6}=B^{4}=\mathrm{id}$. Denote $\sigma_{k}=\sigma_{0} A^{k}, k=1, \ldots, 5$. For $g \in \Gamma$, denote $g^{\prime}=\sigma_{1} g \sigma_{1}$. Let $\phi=\sigma_{3} S$ and $\phi_{1}=\sigma^{\prime} S$.

Lemma 5.2. For the fixed points f, f_{1} of ϕ, and ϕ_{1} respectively, we have

$$
\begin{aligned}
(f, \sigma w) & =\left(f, \sigma_{3} w\right)=-\left(f, \sigma_{0} w\right)=-(f, S w)=-(f, U w)=1, \\
\left(f_{1}, \sigma^{\prime} w\right) & =\left(f_{1}, \sigma_{0} w\right)=-\left(f_{1}, \sigma w\right)=-\left(f_{1}, S w\right)=-\left(f_{1}, B^{2} w\right)=1 .
\end{aligned}
$$

5.3. Uniqueness

Denote by D_{T} the disc $|z|<4.2$ and $D_{T}^{\prime}=\left\{z \in D_{T}: \operatorname{Re} z \leqslant 0\right\}$. Since $\Gamma_{w}=\left\langle\sigma_{1}\right\rangle$, we can assume that $z \in D_{T}^{\prime}$.

If $P(\sigma)$ and $P\left(\sigma_{0}\right)$ hold, then $z \in \mathcal{D}_{\Gamma}$, a fundamental domain of Γ. If $N(\sigma)$ and $N\left(\sigma_{0}\right)$ hold, then $|z| \geqslant|-57 \sqrt{38}+13 i \sqrt{6}| / 84>4.2$.

If $N\left(S^{\prime}\right)$ holds, then $|z| \geqslant|i 7 \sqrt{6} / 3|=5.7$. Hence $P\left(S^{\prime}\right)$ holds. If $N\left(\sigma^{\prime}\right)$ holds, then $|z| \geqslant|-15 \sqrt{38}-139 i \sqrt{6}| / 84>4.2$. Hence $P\left(\sigma^{\prime}\right)$ holds. If $N(\sigma)$ and $P\left(\sigma_{0}\right)$ hold, then $z=f_{1}=-(\sqrt{38}+3 i \sqrt{6}) / 4$.

Assume that $N\left(\sigma_{0}\right)$ holds. If $P(S)$ holds, then $|z| \geqslant|-27 \sqrt{38}+127 i \sqrt{6}| / 84>$ 4.2. Hence $N(S)$ holds. If $N\left(\sigma_{3}\right)$ hold, then $z \notin D_{T}^{\prime}$. Hence $P\left(\sigma_{3}\right)$ holds. If $P(\sigma)$ hold, then $z=f=-\sqrt{38} / 2+i 5 / \sqrt{6}$.

Lemma 5.3. Let $z \in D_{T}^{\prime}$. Then $z=f=-\sqrt{38} / 2+i 5 / \sqrt{6}$, or $z=f_{1}=-(\sqrt{38}+$ $3 i \sqrt{6}) / 4$, or $|z| \geqslant 4.2$.

Thus, by (3.1) and Lemma 5.3, the first two points of $\mathcal{M}\left(B_{57}\right)$ are $\nu(f)=$ $\sqrt{46} / 2$ and $\nu\left(f_{1}\right)=\sqrt{41} / 2$. We have proved the following.
Theorem 5.2. $\mathcal{M}\left(B_{57}\right) \cap(3.1735, \infty)=\{\sqrt{41} / 2, \sqrt{46} / 2\}$.
If $\nu(L)=\sqrt{46} / 2$ for a geodesic L in H^{3}, then $L=g\left(L_{5,14}\right)$ for some $g \in B_{57}$.
If $\nu(L)=\sqrt{41} / 2$ for a geodesic L in H^{3}, then $L=g\left(L_{3,14}\right)$ for some $g \in B_{57}$.
As mentioned above, $\mathcal{M}\left(B_{57}\right)$ coincides with the Markov spectrum of the field $\mathbf{Q}(\sqrt{-57})$, which, as follows from Theorem 5.2, equals to \mathcal{L}_{57} in the interval $(3.1735, \infty)$ (see e.g. [31], p. 41).

References

[1] B.N. Apanasov, Discrete Groups in Space and Uniformization Problems, Kluwer Academic Publishers, Dordrecht/Boston/London 1991.
[2] A.F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, New York, 1983.
[3] L.R. Ford, A geometric proof of a theorem of Hurwitz, Proc. Edinburgh Math. Soc. 35 (1917), 59-65.
[4] L.R. Ford, On the closeness of approach of complex rational fraction to a complex irrational number,Trans. Amer. Math. Soc. 27 (1925), 146-154.
[5] H. Hasse, Vorlesungen über Zahlentheorie, Berlin, Springer-Verlag, 1950.
[6] N. Hofreiter, Diophantische Approximationen in imaginär quadratischen Zahlkörpern, Monatsh. Math. Phis. 45 (1937), 175-190.
[7] A. Hurwitz, Über die angenaherte Darstellungen der Irrationalzahlen durch rationale Brüche, Math. Ann. 39 (1891), 279-284.
[8] D.G. James, C. Maclachlan, Fuchsian subgroups of Bianchi groups, Trans. Amer. Math. Soc. 348 (1996), 1989-2002.
[9] O. Perron, Über die Approximation einer komplexen Zahl durch Zahlen des Körper $K(i)$, Math Ann. 103 (1930), 533-544; 105 (1931), 160-164.
[10] O. Perron, Über einen Approximationssats von Hurwitz und über die Approximation einer komplexen Zahl durch Zahlendes Körpers der dritten Einheitswurzeln, Bayer. Akad. Wiss. Math.-Natur. Abt. S. B. (1931), 129-154.
[11] O. Perron, DiophantischeApproximationeninimaginärquadratischenZahlkörperninsbesondereimKörper $R(i \sqrt{2})$, Math. Z. 37 (1933), 749-767.
[12] G. Poitou, Sur l'approximation des nombers complexes par les nombres des corps imaginaires quaratiques, ets., Ann.Sci. École Norm. Sup. Paris (3) 70 (1953), 199-265.
[13] R. Scharlau, C. Walhorn, Tables of hyperbolic reflection groups, Bielefeild University, 1992.
[14] Asmus L. Schmidt, Farey triangles and Farey quadrangles in the complex plane, Math. Scand. 21 (1967), 241-295.
[15] Asmus L. Schmidt, Diophantine approximation of complex numbers, Acta Math. 134 (1975), 1-85.
[16] Asmus L. Schmidt, Diophantine approximation in the field $\mathbf{Q}\left(i 11^{1 / 2}\right)$, J. Number Theory 10 (1978), 151-176.
[17] Asmus L. Schmidt, Diophantine approximation in the Eisensteinian field, J. Number Theory 16 (1983), 169-204.
[18] R.G. Swan, Generators and Relations for certain Special Linear Groups, Adv. Math. 6 (1971), 1-77.
[19] William P. Thurston, Three-dimensional geometry and topology, Princeton University Press, 1997.
[20] L.Ya. Vulakh, The Markov spectrum of imaginary quadratic field $\mathbf{Q}(i \sqrt{D})$, where $D \not \equiv 3(\bmod 4)($ Russian $)$, Vestnik Moskov. Univ. Ser. 1 Math. Meh. 26 (1971), no. 6, 32-41.
[21] L.Ya. Vulakh, The Markov spectrum of the Gaussian field (Russian), Izv. Vysš. Učebn. Zaved. Matematika, 129 (1973), no. 2, 26-40.
[22] L.Ya. Vulakh, The accumulation point of the Markov spectrum of the field $\mathbf{Q}(i \sqrt{D})$ (Russian), Vestnik Moskov. Univ. Ser. 1 Math. Meh. 30 (1975), no.1, 9-11; 31(1976), no.5, 125.
[23] L.Ya. Vulakh, On Hurwitz constants(Russian), Izv. Vysš. Učebn. Zaved. Matematika 177 (1977), no.2, 21-32; English transl., Soviet Math. (Iz.VUZ) 21(1977), no.2, 16-17.
[24] L.Ya. Vulakh, Classification of maximal Fuchsian subgroups of some Bianchi groups, Canad. Math. Bull. 34 (1991), 417-422.
[25] L.Ya. Vulakh, Maximal Fuchsian Subgroups of Extended Bianchi Groups, in Number Theory with an Emphasis on the Markoff Spectrum, edited by A.D Pollington and W. Moran, Marcel Dekker, Inc., New York/Basel/ Hong Kong, 1993.
[26] L.Ya. Vulakh, Reflections in extended Bianchi groups, Math. Proc. Camb. Phil. Soc. 115 (1994), 13-25.
[27] L.Ya. Vulakh, Diophantine approximation on Bianchi groups, J. Number Theory, 54 (1995), 73-80.
[28] L.Ya. Vulakh, Diophantine approximation in \mathbf{R}^{n}, Trans. Amer. Math. Soc. 347 (1995), 573-585.
[29] L.Ya. Vulakh, On Hurwitz constants for Fuchsian groups, Canad. J. Math. 49 (1997), 405-416.
[30] L.Ya. Vulakh, Farey polytopes and continued fractions associated with discrete hyperbolic groups, Trans.Amer. Math. Soc, 351 (1999), 2295-2323.
[31] L.Ya. Vulakh,Diophantine approximations in $\mathbf{Q}(\sqrt{-5})$ and $\mathbf{Q}(\sqrt{-6})$, Int. J. Number Theory, 2 (2006), 25-47.
[32] L.Ya. Vulakh, The Markov spectra for cocompact Fuchsian groups, Int. J. Number Theory, 5 (2009), 679-718.
[33] L. Ya. Vulakh,Minima of binary indefinite Hermitian forms, Int. J. Number Theory, 6 (2010), 411-435.
[34] L. Ya. Vulakh, Hermitian points in Markov spectra, Int. J. Number Theory, 6 (2010), 713-730.
[35] L. Ya. Vulakh, Diophantine approximation in imaginary quadratic fields, Int. J. Number Theory, 6 (2010), 731-766.
[36] P.J. Weinberger, Exponents of the class groups of complex quadratic fields, Acta Arith. 22 (1973), 117-124.

Addresses: L. Ya. Vulakh: Department of Mathematics, The Cooper Union, 41 Cooper Square, New York, NY, 10003, USA.

E-mail: vulakh@cooper.edu
Received: 7 September 2011; revised: 14 September 2011

