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Abstract: Let f(x) = ax2l·3m + b ∈ Z[x] be a polynomial with l > 1, l+m > 2, ab ̸= 0 and such
that f(k) ̸= 0 for any k > 1. We prove, under ABC conjecture, that the product

∏n
k=1 f(k) is

not a 2l · 3m-th power for n large enough.
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1. Introduction

In [1], J. Cilleruelo proved that the product
∏n
k=1 (k

2 + 1) is not a square when
n > 3. Using similar arguments, Erhan Gürel, Ali Ulaş Özgür Kişisel [2] proved
that

∏n
k=1 (k

3 + 1) is not a square for any positive integer n. For any irreducible
quadratic polynomial f(x) ∈ Z[x], Zhang and Yuan[4] proved that the product∏n
k=1 f(k) is not a square when n > C(f). Their proof also tells us how to

calculate the constant C(f). For higher degree polynomials, it is not easy to
obtain a similar result.

For the special family of polynomials f(x) = ax2
l·3m + b ∈ Z[x], we obtain

a result of this type under the ABC conjecture.

Theorem 1.1. Let l,m be non-negative integers, l > 1, l+m > 2, and let f(x) =
ax2

l·3m + b ∈ Z[x] be a polynomial such that ab ̸= 0 and f(k) ̸= 0 for k > 1. Then
under ABC conjecture, the product Tn =

∏n
k=1 f(k) is not a 2l · 3m power for

sufficiently large n.

2. Proof of Theorem 1.1

First, we introduce the ABC conjecture.
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ABC Conjecture. Let ϵ > 0, then there is a constant Cϵ, depending only on ϵ,
such that for all triples A,B,C ∈ Z, with A + B + C = 0 and gcd(A,B,C) = 1,
the following inequality holds:

max{|A|, |B|, |C|} < Cϵ
∏

p|ABC

p1+ϵ.

The following lemma is obtained by Nagell[3] .

Lemma 2.1. Let f(x) be any polynomial with integer coefficients which is not
the product of linear factors with integral coefficients. Denote by Pn, the greatest
prime factor of

∏n
k=1 f(k). Then

Pn > C1n log n,

where the positive constant C1 depends on f(x).

Proof of Theorem 1.1. We give two propositions, and then Theorem 1.1 fol-
lows. �

Proposition 2.2. Let l > 2 be an integer, f(x) = ax2
l

+ b ∈ Z[x], ab ̸= 0,
f(k) ̸= 0, k > 1. Then, under ABC conjecture, there is a positive constant Cf ,
depending only on f(x), such that the product

∏n
k=1 f(k) is not a 2l-th power when

n > Cf .

Proof. Let Tn =
∏n
k=1 f(k) be a 2l-th power, n > max {|a|, |b|}, and p any prime

which divides Tn. First, we prove that there exists a constant C1 = C1(f), such
that p < C1n. We distinguish three cases which cover all the situations and assume
p > n in the following discussion.

Case 1: p3|f(k) for some 1 6 k 6 n.
Let ak2

l

+ b = p3e, then d = gcd
(
ak2

l

, b, p3e
)

= gcd
(
ak2

l

, b, e
)

because
p > n > |b|. We have now to consider the equality

ak2
l

d
+
b

d
= p3

e

d
.

There is a constant C2 = C2(f), such that

|a|k |b|
d
p
|e|
d

=
|ab|kp
d2

|ak2l + b|
p3

=
|ab|
d2

|ak2l+1 + bk|
p2

< C2k
2l−1

since p > n > k. Take ϵ = 2−(l+1) in the ABC conjecture, we have

|a|k2
l

< Cϵ(C2k
2l−1)1+2−(l+1)

,

which yields k < C3 = C3(f), and then we obtain p < C4 = C4(f). Therefore, we
have p < C5n = C5(f)n in Case 1.

Case 2: p2|f(rj) for some 1 6 r1 < r2 < ... < r2l−1 6 n.
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In this case, one has p2|a
(
r2
l

j − r2
l

i

)
= a

(
r2
l−1

j − r2
l−1

i

)(
r2
l−1

j + r2
l−1

i

)
for

any 1 6 i < j 6 2l−1. Since

r2
l−1

j + r2
l−1

i = r2
l−1

j − r2
l−1

i + 2r2
l−1

i ,

and p > n, we get gcd
(
p, r2

l−1

j − r2
l−1

i , r2
l−1

j + r2
l−1

i

)
= 1.

Define Sl = 2l−2+1 for l > 2, then Sl+1 = 2Sl−1. We will prove, by induction
on l, that if p2|a

(
t2
l

j − t2
l

1

)
, 2 6 j 6 Sl for some 1 6 t1 < t2 < ... < tSl 6 n, then

p < 2n.
When l = 2, we have p < 2n from p2|a(t42 − t41) = a(t22 − t21)(t

2
2 + t21) and

p > n > |a|.
If the statements holds for l − 1 , we prove that it is also true for l.
Since p2|f(rj), we have p2|f(rj)− f(r1), that is

p2|a
(
t2
l

j − t2
l

1

)
= a

(
t2
l−1

j − t2
l−1

1

)(
t2
l−1

j + t2
l−1

1

)
, 2 6 j 6 Sl = 2Sl−1 − 1.

Together with gcd
(
p, r2

l−1

j − r2
l−1

i , r2
l−1

j + r2
l−1

i

)
= 1, p > n > |a| and pigeon-

hole principle, we have

(i) p2|t2l−1

ji
− t2

l−1

1 for some 2 6 j1 < ... < jSl−1−1 6 Sl,

or
(ii) p2|t2l−1

ji
+ t2

l−1

1 for some 2 6 j1 < ... < jSl−1
6 Sl.

Case (i) is just the situation of l − 1, by induction, we obtained p < 2n. Case
(ii) leads to p2|t2l−1

ji
− t2

l−1

j1
, 2 6 i 6 Sl−1, and is also the situation of l − 1, thus

we get p < 2n by induction. Since Sl = 2l−2+1 6 2l−1, we have p < 2n in Case 2.
Case 3: p|f(rj) for some 1 6 r1 < r2 < ... < r2l−1+1 6 n.
In this case, one has

p|a
(
r2
l

j − r2
l

i

)
= a

(
r2
l−1

j − r2
l−1

i

)(
r2
l−1

j + r2
l−1

i

)
, 1 6 i < j 6 2l−1 + 1.

Similar to Case 2, we can get p < 2n by induction. Actually, since 2l−1+1 = Sl+1,
we replace p2 by p in the induction of Case 2, and the same argument leads to
p < 2n if it is true for l = 2. Thus we only need to check the case l = 2.

When l = 2, we have p|a
(
r4j − r41

)
= a

(
r2j − r21

) (
r2j + r21

)
, 2 6 j 6 3. If

p|r22−r21 or r23−r21, then p < 2n. Otherwise p|r2j +r21, 2 6 j 6 3 since p > n > |a|,
that is, p|

(
r23 + r21

)
−
(
r22 + r21

)
= r23 − r22, which yields p < 2n.

From the discussion of Cases 1, 2, 3 we know that there exists a constant
C1 = C1(f), such that p < C1n. It is obvious that f(x) can not decompose into
linear factors with integral coefficients, so by Lemma 2.1 we get n < Cf . �

Proposition 2.3. Let l > 1, m > 1 be integers, f(x) = ax2
l·3m+b ∈ Z[x], ab ̸= 0,

f(k) ̸= 0, k > 1. Then, under ABC conjecture, there is a positive constant Cf ,
depending only on f(x), such that the product

∏n
k=1 f(k) is not a 2l · 3m-th power

when n > Cf .
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Proof. Let Tn =
∏n
k=1 f(k) be an 2l · 3m-th power, n > max {|a|, |b|}, p is any

prime which divides Tn. Similar to Proposition 2.2, we prove that there exists
a constant C1 = C1(f), such that p < C1n. Since 2l · 3m−1 +2l+1 · 3m−1 = 2l · 3m,
we distinguish three cases which cover all the situations and assume p > max{n, 3}
in the following discussion.

Case 1: p3|f(k) for some 1 6 k 6 n.
Similar to the proof of Proposition 2, Case 1, we have p < C2n = C2(f)n under

ABC conjecture.
Case 2: p2|f(rj) for some 1 6 r1 < r2 < ... < r2l·3m−1+1 6 n.
Case 2.1: We will prove p < 2n by induction in the following situation: There

exist 3m−1 + 1 different integers 1 6 ti 6 n, which for any 2 6 i 6 3m−1 + 1, one
has p2|a(t3mi − t3

m

1 ).
Define Qm = 3m−1+1 for m > 1, then Qm+1 = 3Qm−2. We proceed to prove

the statement by induction on m.
When m = 1, since Q1 = 31−1 + 1 = 2, we have

p2|a
(
t32 − t31

)
= a (t2 − t1)

(
t22 + t2t1 + t21

)
,

together with p - a(t2 − t1) implied by p > n > |a| leads to p < 2n.
Assume we get p < 2n for m− 1, we will prove p < 2n for m. Since

p2|a
(
t3
m

i − t3
m

1

)
= a

(
t3
m−1

i − t3
m−1

1

)(
t2·3

m−1

i + t3
m−1

i t3
m−1

1 + t2·3
m−1

1

)
, 2 6 i 6 Qm,

and

t2·3
m−1

i + t3
m−1

i t3
m−1

1 + t2·3
m−1

1

=
(
t3
m−1

i − t3
m−1

1

)2
+ 3t3

m−1

i t3
m−1

1 , p > max{n, 3}

implies

gcd
(
p, t3

m−1

i − t3
m−1

1 , t2·3
m−1

i + t3
m−1

i t3
m−1

1 + t2·3
m−1

1

)
= 1,

one has three cases which contain all the possibilities.

(i) p2|t3m−1

is
− t3

m−1

1 for some 2 6 i1 < i2 < ... < iQm−1−1 6 Qm, then we get
p < 2n by induction.

(ii) p2 - t3m−1

i − t3
m−1

1 for some 2 6 i 6 Qm. Without loss of generality, we
assume p2 - t3m−1

2 − t3
m−1

1 . If p2|t3m−1

js
− t3

m−1

2 for some 3 6 j1 < j2 < ... <
jQm−1−1 6 Qm, then we also get p < 2n by induction.

(iii) Assume p2 - t3m−1

2 − t3
m−1

1 , and recall that Qm = 3Qm−1 − 2, then since
3Qm−1 − 2− (Qm−1 − 2 +Qm−1 − 2 + 2) = Qm−1, the left case is that

p2 - t3
m−1

js − t3
m−1

1 , p2 - t3
m−1

js − t3
m−1

2



Powers in
n∏

k=1

(
ak2

l·3m + b
)

11

for some 3 6 j1 < j2 < ... < jQm−1 6 Qm. Therefore one has

p2|
(
t2·3

m−1

js + t3
m−1

js t3
m−1

1 + t2·3
m−1

1

)
−
(
t2·3

m−1

2 + t3
m−1

2 t3
m−1

1 + t2·3
m−1

1

)
=
(
t3
m−1

js − t3
m−1

2

)(
t3
m−1

js + t3
m−1

2 + t3
m−1

1

)
and then

p2|
(
t3
m−1

js + t3
m−1

2 + t3
m−1

1

)
−
(
t3
m−1

j1 + t3
m−1

2 + t3
m−1

1

)
= t3

m−1

js − t3
m−1

j1 , 2 6 s 6 Qm−1,

which yields p < 2n by induction.

Case 2.2: Now we use Case 2.1, together with induction on l to show p < 2n
in Case 2.

When l = 1, one has

p2|a
(
r2·3

m

i − r2·3
m

1

)
= a

(
r3
m

i − r3
m

1

)(
r3
m

i + r3
m

1

)
,

combined with

gcd
(
p, r3

m

i − r3
m

1 , r3
m

i + r3
m

1

)
= 1, 2 6 i 6 2 · 3m−1 + 1

implied by p > n, we obtain

(i) p2|r3mis − r3
m

1 for some 2 6 i1 < i2 < ... < i3m−1 6 2 · 3m−1 + 1, or
(ii) p2|r3mjs + r3

m

1 for some 2 6 j1 < j2 < ... < j3m−1+1 6 2 · 3m−1 + 1.

Because (ii) implies (i), by Case 2.1, each case leads to p < 2n.
Assume we get p < 2n for l − 1, we will prove p < 2n for l. Since

p2|a
(
r2
l·3m
i − r2

l·3m
1

)
= a

(
r2
l−1·3m
i − r2

l−1·3m
1

)(
r2
l−1·3m
i + r2

l−1·3m
1

)
, 2 6 i 6 2l · 3m−1 + 1

and
gcd

(
p, r2

l−1·3m
i − r2

l−1·3m
1 , r2

l−1·3m
i + r2

l−1·3m
1

)
= 1

implied by p > n, one has

(i) p2|r2l−1·3m
is

−r2l−1·3m
1 for some 2 6 i1 < i2 < ... < i2l−1·3m−1 6 2l ·3m−1+1,

or

(ii) p2|r2l−1·3m
jr

+ r2
l−1·3m

1 for some 2 6 j1 < j2 < ... < j2l−1·3m−1+1 6 2l ×
3m−1 + 1.
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From the fact that (ii) implies (i), each case leads to p < 2n by induction.
Case 3: p|f(rj) for some 1 6 r1 < r2 < ... < r2l+1·3m−1 6 n.
Case 3.1: We now prove p < 3n by induction in the following two situations.
Case 3.1.1: There exists 2 · 3m−1 + 1 different integers 1 6 ti 6 n, which for

any 2 6 i 6 2 · 3m−1 + 1, one has p|t3mi − t3
m

1 .
Case 3.1.2: There exists 2 · 3m−1 + 1 different integers 1 6 ti 6 n, which for

any 2 6 i 6 2 · 3m−1 + 1, one has p|t3mi + t3
m

1 .
Define Lm = 2 · 3m−1 + 1 for m > 1, then Lm+1 = 3Lm − 2.
In the situation Case 3.1.1, when m = 1, then

p|t32 − t31 = (t2 − t1)
(
t22 + t2t1 + t21

)
, p|t33 − t31 = (t3 − t1)

(
t23 + t3t1 + t21

)
.

Since p > n, we have p - t2 − t1, p - t3 − t1, then

p|
(
t23 + t3t1 + t21

)
−
(
t22 + t2t1 + t21

)
= (t3 + t2 + t1) (t3 − t2) ,

which yields p < 3n. Since Lm+1 = 3Lm−2, induction on m, the same arguments
as the proof of Case 2.1, we get p < 3n in this situation.

We continue to prove p < 3n in situation Case 3.1.2 by induction on m.
When m = 1, similar to the situation Case 3.1.1, we can get p < 3n.
For m > 2, from

p|t3
m

i + t3
m

1 =
(
t3
m−1

i + t3
m−1

1

)(
t2·3

m−1

i − t3
m−1

i t3
m−1

1 + t2·3
m−1

1

)
, 2 6 i 6 Lm,

one has two cases.
(i) p|t3m−1

is
+ t3

m−1

1 for some 2 6 i1 < i2 < ... < iLm−1−1 6 Lm, by induction
we have p < 3n.

(ii) p|t2·3m−1

js
− t3

m−1

js
t3
m−1

1 + t2·3
m−1

1 for some 2 6 j1 < j2 < ... < j2Lm−1−1 6
Lm, that is

p |
(
t2·3

m−1

js − t3
m−1

js t3
m−1

1 + t2·3
m−1

1

)
−
(
t2·3

m−1

j1 − t3
m−1

j1 t3
m−1

1 + t2·3
m−1

1

)
=
(
t3
m−1

js − t3
m−1

j1

)(
t3
m−1

js + t3
m−1

j1 − t3
m−1

1

)
, 2 6 s 6 2Lm−1 − 1.

If the number of s satisfy p|t3m−1

js
− t3

m−1

j1
is at least Lm−1 − 1, then p <

3n by the conclusion of Case 3.1.1. Otherwise the number of s satisfy
p|t3m−1

js
+ t3

m−1

j1
− t3

m−1

1 is not less than Lm−1, subtract by pairs and using
the conclusion of Case 3.1.1, we also get p < 3n.

Case 3.2: Similar to Case 2.2, together with Case 3.1 and induction on l, we
get p < 3n in Case 3.

From the discussion of Cases 1, 2, 3, we obtained p < C1n for some positive
constant C1 = C1(f). It is easy to see that f(x) can not decompose into linear
factors with integral coefficients, so by Lemma 2.1 we obtain n < Cf . �
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