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ZHONGFENG ZHANG

Abstract: Let f(z) = az? 3™ +be Z|z] be a polynomial with ! > 1,14+ m > 2,ab # 0 and such
that f(k) # 0 for any k > 1. We prove, under ABC' conjecture, that the product [;_; f(k) is
not a 2! - 3™-th power for n large enough.
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1. Introduction

In [1], J. Cilleruelo proved that the product []j_, (k¥* + 1) is not a square when
n > 3. Using similar arguments, Erhan Giirel, Ali Ulag Ozgiir Kisisel [2] proved
that [T, _, (k3 4+ 1) is not a square for any positive integer n. For any irreducible
quadratic polynomial f(z) € Z[z], Zhang and Yuan|4] proved that the product
[1i_; f(k) is not a square when n > C(f). Their proof also tells us how to
calculate the constant C(f). For higher degree polynomials, it is not easy to
obtain a similar result.

For the special family of polynomials f(z) = az? 3" 4+ b€ Z[z], we obtain
a result of this type under the ABC' conjecture.

Theorem 1.1. Let l,m be non-negative integers, l = 1,l+m > 2, and let f(x) =

az?3" +be Z[z] be a polynomial such that ab # 0 and f(k) # 0 for k > 1. Then
under ABC' conjecture, the product T,, = [];_, f(k) is not a 2" - 3™ power for
sufficiently large n.

2. Proof of Theorem 1.1

First, we introduce the ABC' conjecture.
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ABC Conjecture. Let € > 0, then there is a constant C¢, depending only on e,
such that for all triples A, B,C € Z, with A+ B+ C =0 and ged(4, B,C) =1,
the following inequality holds:

max{|A|,|B|,|C|} < C. H pite.
p|ABC

The following lemma is obtained by Nagell[3] .

Lemma 2.1. Let f(x) be any polynomial with integer coefficients which is not
the product of linear factors with integral coefficients. Denote by P,, the greatest
prime factor of [[,_, f(k). Then

P, > Cinlogn,
where the positive constant C1 depends on f(x).

Proof of Theorem 1.1. We give two propositions, and then Theorem 1.1 fol-
lows. |

Proposition 2.2. Let | > 2 be an integer, f(z) = az® +b € Z[z], ab # 0,
f(k) #0, k > 1. Then, under ABC conjecture, there is a positive constant Cf,
depending only on f(z), such that the product [[,_, f(k) is not a 2'-th power when
n > Cf.

Proof. Let T;, = [[;_, f(k) be a 2!-th power, n > max {|a|, |b|}, and p any prime
which divides T;,. First, we prove that there exists a constant C; = C1(f), such
that p < Cin. We distinguish three cases which cover all the situations and assume
p > n in the following discussion.

Case 1: p3|f(k) for some 1 < k < n.

Let ak® + b = ple, then d = ged (akzl,b,p%) = gecd (ak‘Ql,b, e) because
p > n > |bl. We have now to consider the equality
l
ak* b 3

4 TaT?

There is a constant Cy = Cy(f), such that

€
o

l l
[b] el _ lablkp |ak?® + b] _ MMRQ 1+ bk < O

k2 plel :
lal ala J2 3 2 D2

since p > n > k. Take e = 270+ in the ABC conjecture, we have
_ —(+1)
lalk? < Co(Cok® —1y1+2 Y

which yields k < C3 = C5(f), and then we obtain p < Cy = C4(f). Therefore, we
have p < Csn = C5(f)n in Case 1.
Case 2: p*|f(r;) for some 1 <7 <712 < ... <71 < M.
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In this case, one has p?|a (7’]2-1 *722,) =a (7” - 2’ 1) ( 21_1) for
any 1 7 < ] 2l 1 Since

2l71 2l71 o 2171 2l—1 2l—1
ri o T o=r; —ri +2r)

-1 21 1

and p > n, we get ged (p7 rjz -7
Define S; = 272 +1 for [ >
on [, that if p?|a (t?l - t%1> ,2
p < 2n.
When | = 2, we have p < 2n from p?la(t; — t]) = a(t3 — t3)(t3 + t3) and
p>n>|al
If the statements holds for [ — 1 , we prove that it is also true for [.
Since p?|f(r;), we have p?|f(r;) — f(r1), that is

P?la (t?’ - t%l) —a (t?l’l - t%l’l) (t?H + tf“l) . 2<j< S =251

-1

’T?l—l +’l"i2l71) -1
, then S;11 = 25, —1. We will prove, by induction

2
<j <S5 for some 1 <t <t <...<tg <n, then

Together with ged ( ,7"]2
hole principle, we have

-1 -1 -1 .
—r7 ,7‘]2' +r? ) =1, p>n > |a|] and pigeon-

(i) p |t2l ' " for some 2 < ji < ... < Jsi -1 < S,
or

(ii) p2|t?571 + 27" for some 2 < jy < ... < js,_, < Si.

Case (i) is just the situation of [ — 1, by induction, we obtained p < 2n. Case
(i) leads to }92|t2l71 t2lil, 2 < i< S)_1, and is also the situation of [ — 1, thus
we get p < 2n by induction. Since S; = 27241 < 2!=1, we have p < 2n in Case 2.

Case 8: p|f(rj) forsome 1 <7 <73 < ...<7Tg-14] <M.
In this case, one has

1 l -1 -1 -1 -1
p|a(rj2- —r?)—u(r? —7r? )(TJQ +7? ), 1<i<j<27h 41

Similar to Case 2, we can get p < 2n by induction. Actually, since 2/=1+1 = S;;,
we replace p? by p in the induction of Case 2, and the same argument leads to
p < 2n if it is true for [ = 2. Thus we only need to check the case [ = 2.

When | = 2, we have pla (7“ -rf) = a(r?——r%) (T?—FT’%), 2<j<s8 It
plrs —rf or r3 —r7, then p < 2n. Otherwise p|r? +r7, 2 < j < 3sincep >n > |al,
that is, p| (r3 +7}) — (r3 +r1) = r§ — r3, which yields p < 2n.

From the discussion of Cases 1, 2, 3 we know that there exists a constant
Cy1 = C1(f), such that p < Cin. It is obvious that f(z) can not decompose into
linear factors with integral coefficients, so by Lemma 2.1 we get n < CY. |

Proposition 2.3. Letl > 1, m > 1 be integers, f(x) = az? 3" +be Z[z], ab # 0,
f(k) #0, k > 1. Then, under ABC conjecture, there is a positive constant Cj,
depending only on f(x), such that the product [],_, f(k) is not a 2' - 3™-th power
when n > Cj.
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Proof. Let T, = [[,_, f(k) be an 2! - 3™-th power, n > max{|al,[b|}, p is any
prime which divides T,,. Similar to Proposition 2.2, we prove that there exists
a constant C; = C(f), such that p < Cyn. Since 2!-3m~1 4 2l+1.3m—1 — gl.3m,
we distinguish three cases which cover all the situations and assume p > max{n, 3}
in the following discussion.

Case 1: p?|f(k) for some 1 < k < n.

Similar to the proof of Proposition 2, Case 1, we have p < Con = Ca(f)n under
ABC conjecture.

Case 2: p?|f(r;) for some 1 <7y <79 < ... < Torzm-14; < N

Case 2.1: We will prove p < 2n by induction in the following situation: There
exist 3™~ + 1 different integers 1 < ¢; < n, which for any 2 <4 < 3™ ! + 1, one
has p?la(t3” —37).

Define Q,,, = 3™ 1 +1 for m > 1, then Q,,+1 = 3Q,, —2. We proceed to prove
the statement by induction on m.

When m = 1, since Q; = 3'~! + 1 = 2, we have

Pla(t3 —8]) =a(ta —t1) (65 + tat1 + 13)

together with p t a(ty — t1) implied by p > n > |a| leads to p < 2n.
Assume we get p < 2n for m — 1, we will prove p < 2n for m. Since

Pla (" -4")
—a (tf’"“1 _ ti”"’l) (t?'Sm*l T t%‘?’m*l) . 2<i< O,
and
23T

m— m— 2 m— m—
= (tf fo t3 1) + 3t2 1t? Y p > max{n, 3}
implies

ged (p 6" = @ T ) <

3

one has three cases which contain all the possibilities.

(i) p2|t§’:’_l — 3" for some 2 < iy < iy < ... <ig, -1 < Qm, then we get
p<2n 13)1/ inducEilon.

(i) p2 t 8" — 3" for some 2 < i < Q,,. Without loss of generality, we

9 gm—1 gm—1 91,3m—1 gm—1 . .

assume p {15 —t7 I pift;  —13 for some 3 < ji < jo < ... <
JQm_1—1 < Qm, then we also get p < 2n by induction.

(iii) Assume p? { t%mfl - t‘rl‘mfl, and recall that Q,, = 3Qn—1 — 2, then since
3Qm-1—2—(Qm-1—24 Qm-1—2+42) = Qm_1, the left case is that

p2 Tt?:kl _ t'-i)mfl’ p2 *t?:zfl B t§m71



n L gm
Powers in [] (ak2 ST 4 b) 11
k=1

for some 3 < j1 < j2 < ... < Jg,,_; < Qm. Therefore one has

m—1 m—1 m—1 m—1 m—1 m—1 m—1 m—1
p2|(ti'3 +5 ] 7 )—(t§'3 R A A o )

m—1 m—1 m—1 m—1 m—1
o AR A N (AT St

and then

m—1 m—1 m—1 m—1
P (ti 837 3 ) - (t?l TN A )
m—1 m—1
=t} - t?l ) < s < Qm-1,

which yields p < 2n by induction.

Case 2.2: Now we use Case 2.1, together with induction on [ to show p < 2n
in Case 2.

When [ = 1, one has

2 3’771 23m 3’771 3"” 3m 3m
o (rt =) =a (7 A7) (7 417)

combined with

gcd (p7 TZ‘37YL _ Ti)er?r?m + van) _ 17 2 < Z < 2 . 3m—1 + 1
implied by p > n, we obtain

(i) pQ|r3m — 3" for some 2

<o <ig < ... <ligm-1 <2 3m—1 + 1, or
(i) p |r + 75" for some 2 <

71 < Jo < ... < Jgm— 141 < S3ml,
Because (ii) implies (i), by Case 2.1, each case leads to p < 2n.
Assume we get p < 2n for [ — 1, we will prove p < 2n for [. Since

2t.3m 2t.3m
p |a ( - )

1—1 qm =1 qm l—1 qm l—1 om . _
:a(r? S )(7“12 R ), 2<i<2 3" 41

and

2l 1 .3m 2171.3'm 2[*1'3771, 2[*1'37n .
ged (p, T; -7 5 +r] =1

r
implied by p > n, one has

I1—1 qm 1—1 qm . . .
(i) p?r2 3" —rf 3" forsome 2 < iy <y < ... <dgi-1gm-1 < 28-3M71 41,

or
.. 2 2[*1 .3™m
(i) p |ro

+7“%l71'37 for some 2 < j1 < j2 < ..
3l

. < j2l—1,3m—1+1 < 2l X
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From the fact that (ii) implies (i), each case leads to p < 2n by induction.

Case 3: p|f(r;) for some 1 <r; <7y < ... < Toiri.3m-1 < N

Case 3.1: We now prove p < 3n by induction in the following two situations.

Case 8.1.1: There exists 2 - 3™~ + 1 different integers 1 < t; < n, which for
any 2 <4 <2-3""1 41, one has p|t3" — 3",

Case 8.1.2: There exists 2 - 3™~ + 1 different integers 1 < t; < n, which for
any 2 <i<2-3™"! 41, one has p|t§’m + t‘;’m.

Define L,, =2-3™"1 +1 for m > 1, then L,, ;1 = 3L, — 2.

In the situation Case 3.1.1, when m = 1, then

pits —t8 = (ta—t1) (3 +tat1 +83),  plt3 — 3 = (t3 —t1) (85 + tats +t1).
Since p > n, we have p{ty — t1, ptits —t1, then
pl (85 +tsts +67) — (65 + tats + 1) = (ts + ta + t1) (t3 — t2),

which yields p < 3n. Since L,,+1 = 3L,, — 2, induction on m, the same arguments
as the proof of Case 2.1, we get p < 3n in this situation.
We continue to prove p < 3n in situation Case 3.1.2 by induction on m.
When m = 1, similar to the situation Case 3.1.1, we can get p < 3n.
For m > 2, from

m am m—1 am—1 m—1 m—1 am—1 am—1 .
plt2" + 3 :(t? 43 )(tf'?’ B A ) 2< i< Lo,

one has two cases.
(i) p|t§’$n71 + 4377 for some 2 < iy < iy < ... < if
we have p < 3n.
() |t2_3m,—1 _ t3m—1
1) pitj, Js
L,,, that is

9.3m—1 gm—1 gm-1 9.3m—1 9.3m—1 gm—1 gm-—1 9.3m—1
p\(tjs A A

m—1 m—1 m—1 m—1 qm—1
= (@ ) (B ) 2<s <2 -

1 < L, by induction

m—1""

3m—1

m—1 . . .
7 + 133 for some 2 < j1 < jo < ... < jar, ;-1 <

If the number of s satisfy p\t?j'_l - t?:n_l is at least L,,_1 — 1, then p <
3n by the conclusion of Case 3.1.1. Otherwise the number of s satisfy
p|1f3:171 + t?lmfl — 13" is not less than L,,_1, subtract by pairs and using
the conclusion of Case 3.1.1, we also get p < 3n.

Case 3.2: Similar to Case 2.2, together with Case 3.1 and induction on [, we
get p < 3n in Case 3.

From the discussion of Cases 1, 2, 3, we obtained p < Cin for some positive
constant C; = C1(f). It is easy to see that f(x) can not decompose into linear
factors with integral coefficients, so by Lemma 2.1 we obtain n < Cj. |
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