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AN EXTENSION THEOREM FOR GENERATING
NEW FAMILIES OF NON-CONGRUENT NUMBERS

Lindsey Reinholz, Blair K. Spearman, Qiduan Yang

Abstract: A technique for generating new families of non-congruent numbers by appending
a tail of primes to extend known families of non-congruent numbers is presented. These new
non-congruent numbers are comprised of arbitrarily many prime factors belonging to two or
three odd congruence classes modulo 8.
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1. Introduction

A positive integer n is called a congruent number if it is equal to the area of a right
triangle with rational side lengths. Otherwise n is said to be a non-congruent
number. Equivalently, n is non-congruent if and only if the rank of the elliptic
curve

y2 = x(x2 − n2) (1.1)

is equal to zero [15].
Both congruent and non-congruent numbers have been widely studied for cen-

turies. Though a complete solution to the congruent number problem continues
to elude mathematicians, success has been made in finding particular families of
these numbers. A thorough overview of this problem and the progress that has
been made towards its solution can be found in [15]. The classification of num-
bers into families often requires imposing conditions on the prime factors of the
numbers and the associated values of the Legendre symbols relating these primes.
Lagrange [7] presented numerous different families of non-congruent numbers con-
taining a maximum of four distinct prime factors. Over two decades after the pub-
lication of Lagrange’s work, Iskra [6] described the first family of non-congruent
numbers with arbitrarily many distinct prime factors; these numbers are a prod-
uct of primes of the form 8k+3 satisfying a specific pattern of Legendre symbols.
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Since then many others, including Feng [1], Feng and Xiong [2], Feng and Xue [3],
Goto [4], Li and Tian [8], Ouyang and Zhang [10, 11], and Reinholz et al. [13, 14],
have produced new, more complex families of non-congruent numbers that contain
an unlimited number of prime factors. Nevertheless, there exist numerous families
of non-congruent numbers awaiting discovery.

In this paper, we present a novel technique for generating families of non-
congruent numbers. The idea is, given a non-congruent number with 2-Selmer
rank equal to zero and prime factors of a specified form, we can produce new
non-congruent numbers by appending a tail of primes of the form 8k + 1 to the
original non-congruent number. This enables us to generalize known families of
non-congruent numbers and construct many new families of non-congruent num-
bers. Our extension technique for generating new families of non-congruent num-
bers is summarized in our main theorem, which we state next.

Theorem 1. Let p1, p2, ..., pt, q1, q2, ..., qu be distinct primes with pi ≡ 5 (mod 8)
and qj ≡ 3 (mod 8) for all i ∈ [1, t] and j ∈ [1, u]. Set

b =

(
t∏

i=1

pi

)ep
 u∏

j=1

qj

eq

,

where ep, eq ∈ {0, 1} and (ep + eq) > 0, and suppose that the elliptic curve

y2 = x(x2 − b2)

has 2-Selmer rank of zero, so s(b) = 0 (as given by Equation (2.1)). Define the
positive integer n by

n = br1r2 · · · rv,

where r1, r2, ..., rv are distinct primes satisfying rk ≡ 1(mod 8) for all k ∈ [1, v].
If for each k with 1 ≤ k ≤ v the set Sk defined by

Sk =

{(
rk
pi

)
,

(
rk
qj

)
,

(
rk
rh

)
with 1 ≤ i ≤ t, 1 ≤ j ≤ u, and 1 ≤ h < k ≤ v

}
has exactly one Legendre symbol equal to −1, then n is a non-congruent number.

In Section 3, we present the proof of Theorem 1 and in Section 4, we provide
examples that illustrate how this extension theorem can be applied to construct
new families of non-congruent numbers. We now direct our attention to Section
2, where we discuss the theory and preliminary information that is necessary for
the proof of the main theorem.

2. The 2-Selmer rank and a condition for non-congruence

The proof of Theorem 1 requires the use of linear algebra carried out over F2 in
conjunction with Monsky’s formula for the 2-Selmer rank. This formula computes
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the 2-Selmer rank, s(n), of the elliptic curve given by Equation (1.1), which pro-
vides an upper bound for the curve’s Mordell-Weil rank, r(n). In this section we
provide a brief overview of Monsky’s formula, but for more details regarding the
intricate theory behind the formula, we direct the reader to Monsky’s appendix in
Heath-Brown’s paper [5].

Let n be a squarefree positive integer with odd prime factors P1, P2, . . . , Pm.
We define diagonal m × m matrices Dl = [di] for l ∈ {−2, 2}, and the m × m
matrix A = [aij ] by

di =

0, if
(

l
Pi

)
= 1,

1, if
(

l
Pi

)
= −1,

aij =

0, if
(

Pj

Pi

)
= 1, j 6= i,

1, if
(

Pj

Pi

)
= −1, j 6= i,

aii =
∑
j:j 6=i

aij .

Then
s(n) = 2m− rankF2

(M), (2.1)

where M is the 2m× 2m matrix given by

M =

[
A+D2 D2

D2 A+D−2

]
. (2.2)

The rank, r(n), of the elliptic curve given by Equation (1.1) satisfies the inequality

r(n) ≤ s(n).

Consequently if M has nonzero determinant, then r(n) = 0.
In order to compute the determinant of M, we require the following property

of block determinants; a proof of this result can be found in Meyer [9, p. 475].

Proposition 1. If A and D are square matrices, then

det

([
A B

C D

])
=

{
det (A) det

(
D−CA−1B

)
, when A−1 exists,

det (D) det
(
A−BD−1C

)
, when D−1 exists.

3. Proof of Theorem 1

We now give the proof of Theorem 1.

Proof. Begin by forming the (t+ u)× (t+ u) A matrix, as defined in Section 2,
for b = p1p2 · · · ptq1q2 · · · qu. We denote this matrix by Ab and the corresponding
(t+ u)× (t+ u) diagonal matrices for b by

Db
2 =


1 0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 1

 = It+u
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and

Db
−2 =



1 0 · · · · · · · · · · · · 0

0 1
...

...
. . .

...
... 1

...
... 0

...
...

. . .
...

0 · · · · · · · · · · · · · · · · · · 0


.

Note that the first t diagonal entries in Db
−2 are equal to one. The Monsky matrix

corresponding to b is

Mb =

[
Ab +Db

2 It+u

It+u Ab +Db
−2

]
. (3.1)

Similarly the (2t + 2u + 2v) × (2t + 2u + 2v) Monsky matrix associated with
n = br1r2 · · · rv is given by

Mn =

[
An +Dn

2 Dn
2

Dn
2 An +Dn

−2

]
,

where

Dn
2 =



1 0 · · · · · · · · · · · · 0

0 1
...

...
. . .

...
... 1

...
... 0

...
...

. . .
...

0 · · · · · · · · · · · · · · · · · · 0


and

Dn
−2 =



1 0 · · · · · · · · · · · · 0

0 1
...

...
. . .

...
... 1

...
... 0

...
...

. . .
...

0 · · · · · · · · · · · · · · · · · · 0
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are the (t+u+ v)× (t+u+ v) diagonal matrices for n and An is the (t+u+ v)×
(t+ u+ v) A matrix corresponding to n. The first (t+ u) diagonal entries in Dn

2

are equal to one, whereas the first t diagonal entries in Dn
−2 are equal to one.

Guided by the conditions imposed on the Legendre symbols in the statement
of our theorem, we use elementary row and column operations to reduce Mn until
the value of its determinant can be computed. Since we are working over F2, the
operations that we make use of yield a matrix with the same determinant. Let mij

denote the entry in the ith row and jth column ofMn. Apply the following sequence
of steps to Mn. Consider those entries with mij = 1 where 1 ≤ i ≤ (t + u + v),
(t + u) < j ≤ (t + u + v) and i < j. Begin with j = (t + u + v), and determine
the corresponding value of i for which mij = 1. Subtract column j from column
i and then subtract row j from row i. Following this, decrease the value of j by
one and repeat the previously described column and row subtraction operations.
Continue this process for each j = (t + u + v − 1), (t + u + v − 2), ..., (t + u + 1).
Upon completing the v column subtractions and v row subtractions, we find that
the upper left block of Mn is reduced to[

Ab +Db
2 0

0 Iv

]
.

Now repeat the aforementioned procedure, but with the rows i and the columns
j satisfying (t+u+ v+1) ≤ i ≤ (2t+2u+2v), (2t+2u+ v) < j ≤ (2t+2u+2v),
and i < j. Begin with j = (2t + 2u + 2v) and complete the necessary v column
subtractions and v row subtractions, thus reducing the lower right block of Mn to[

Ab +Db
−2 0

0 Iv

]
.

By carrying out these operations, we have transformed Mn into

M∗n =


Ab +Db

2 0 It+u 0

0 Iv 0 0

It+u 0 Ab +Db
−2 0

0 0 0 Iv

.

We now add rows (2t + 2u + v + 1) through (2t + 2u + 2v) to rows (t + u + 1)
through (t+ u+ v) respectively to get

M∗∗n =


Ab +Db

2 0

0 Iv
It+u+v

Dn
2

Ab +Db
−2 0

0 Iv

.
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Following this, we perform (t+u+v) row interchanges to M∗∗n to obtain the matrix

M∗∗∗n =


Dn

2

Ab +Db
−2 0

0 Iv

Ab +Db
2 0

0 Iv
It+u+v

.
Note that since we are working over F2

det(Mn) = det(M∗n) = det(M∗∗n ) = det(M∗∗∗n ). (3.2)

Applying Proposition 1 to M∗∗∗n yields

det(M∗∗∗n )

= det(It+u+v) det

(
Dn

2 −

[
Ab +Db

−2 0

0 Iv

]
I−1t+u+v

[
Ab +Db

2 0

0 Iv

])

= det

([
It+u 0

0 0

]
−

[
(Ab +Db

−2)(Ab +Db
2) 0

0 Iv

])
= det

(
It+u −

(
Ab +Db

−2
) (

Ab +Db
2

))
det (Iv)

= det
(
It+u −

(
Ab +Db

−2
) (

Ab +Db
2

))
. (3.3)

In order to compute this determinant, we need to consider the matrix Mb

described by Equation (3.1). By assumption s(b) = 0, so Equation (2.1) implies
that Mb has full rank and hence

det(Mb) 6= 0. (3.4)

In addition, if we perform (t+ u) row interchanges to Mb to obtain

M∗b =

[
It+u Ab +Db

−2

Ab +Db
2 It+u

]

and apply Proposition 1 to M∗b, then it follows that

det (Mb) = det (M∗b) = det (It+u) det
(
It+u −

(
Ab +Db

−2
)
I−1t+u

(
Ab +Db

2

))
= det

(
It+u −

(
Ab +Db

−2
) (

Ab +Db
2

))
. (3.5)

Combining Equations (3.2), (3.3), (3.4), and (3.5) enables us to conclude that

det(Mn) 6= 0.

Thus r(n) = 0, so n is a non-congruent number.
�
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4. Applying Theorem 1 to generate new families of non-congruent
numbers

In this section we provide some examples to show how our extension theorem
can be used to generate new non-congruent numbers from known families of non-
congruent numbers. The numbers that we generate clearly belong to new families
of non-congruent numbers because their prime factorizations differ from those of
other existing families of non-congruent numbers [1, 2, 3, 4, 6, 8, 10, 11, 13, 14].

The first family we extend is Iskra’s [6].

Theorem 2 (Iskra). Let t be a positive integer and suppose that p1, p2, . . . , pt

are distinct primes satisfying pi ≡ 3 (mod 8) and
(

pj

pi

)
= −1 for j < i. Then

b = p1p2 · · · pt is a non-congruent number.

In Section 4.2 of Reinholz’s master’s thesis [12], the non-congruent numbers
described by Iskra’s theorem are shown to have 2-Selmer rank of zero. As a result,
new non-congruent numbers can be produced by utilizing Theorem 1 to append
a tail of primes of the form 8k + 1 to Iskra’s non-congruent numbers. Some
numerical examples are given in Table ?? on the next page.

Furthermore, Theorem 1 can be applied to the following result by Reinholz
et al. [13].

Theorem 3 (Reinholz et al.). Let m be a fixed nonnegative even integer and let
t be any positive integer satisfying t ≥ m. Let Nm denote the set of positive integers
with prime factorization p1p2 · · · pt, where p1, p2, · · · , pt are distinct primes of the
form 8k + 3 such that(

pj
pi

)
=

{
−1 if 1 ≤ j < i and (j, i) 6= (1,m),
+1 if 1 ≤ j < i and (j, i) = (1,m).

If b ∈ Nm, then n is non-congruent.

In the proof of this theorem in [13], the non-congruent numbers are shown to
have 2-Selmer rank equal to zero. Therefore, Theorem 1 can be directly applied
to Theorem 3 to generate infinitely many new non-congruent numbers, including
the two listed in Table ??.

Finally, Theorem 1 can be used to extend an important result by Ouyang and
Zhang [11].

Theorem 4 (Ouyang and Zhang). Let[x
h

]
=
(
1−

(x
h

))
/2

and suppose that b = p1 · · · pk ≡ 1, 3 (mod 8) and pi ≡ ±3 (mod 8). Define B

to be the k × k matrix with (i, j)-entries
[
pj

pi

]
for i 6= j and with (i, i)-entries[

m/pi

pi

]
, and C = diag

{[
−1
p1

]
, . . . ,

[
−1
pk

]}
. If B2 +CB+C is invertible, then b is

a non-congruent number.
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With a little effort one can prove that for the integer b in Theorem 4, the
condition that B2 + CB + C is invertible is equivalent to the Monsky matrix,
given by Equation (2.2), having full rank. Thus, the matrix B2 + CB + C is
invertible if and only if s(b) = 0. As a result, Theorem 1 can be used to extend
Ouyang and Zhang’s work and generate new non-congruent numbers containing
arbitrarily many prime factors belonging to two or three odd congruence classes
modulo 8. Table ?? lists a couple numerical examples.

Table 1. Theorem 1 Numerical Examples

b n = br1r2· · ·rk Theorem that
b satisfies

19 · 11 · 163 · 419 19 · 11 · 163 · 419 · 97 · 313 · 617 · 1697 · 1721 · 6521 · 15361 · 16889 Theorem 2

347 · 83 · 11 · 3 · 499 · 1123 · 2803 347 · 83 · 11 · 3 · 499 · 1123 · 2803 · 673 · 2953 · 3617 · 7417 · 8713 Theorem 2

11 · 59 · 163 · 307 · 947 11 · 59 · 163 · 307 · 947 · 41 · 1361 · 2017 · 4057 · 4673 · 8969 Theorem 3

3 · 11 · 67 · 163 · 691 · 1483 · 3019 · 2179 · 16987 3 · 11 · 67 · 163 · 691 · 1483 · 3019 · 2179 · 16987 · 2137 · 4273 · 13553 · 36793 Theorem 3

3 · 11 · 19 · 43 · 59 · 5 · 13 · 29 · 37 3 · 11 · 19 · 43 · 59 · 5 · 13 · 29 · 37 · 27481 · 31321 · 52561 · 78049 Theorem 4

3 · 19 · 67 · 83 · 13 · 61 · 101 · 149 3 · 19 · 67 · 83 · 13 · 61 · 101 · 149 · 4177 · 9649 · 9721 · 17449 · 26953 · 49297 Theorem 4
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