AN EXTENSION THEOREM FOR GENERATING NEW FAMILIES OF NON-CONGRUENT NUMBERS

Lindsey Reinholz, Blair K. Spearman, Qiduan Yang

Abstract

A technique for generating new families of non-congruent numbers by appending a tail of primes to extend known families of non-congruent numbers is presented. These new non-congruent numbers are comprised of arbitrarily many prime factors belonging to two or three odd congruence classes modulo 8.

Keywords: elliptic curve, congruent number, non-congruent number, rank.

1. Introduction

A positive integer n is called a congruent number if it is equal to the area of a right triangle with rational side lengths. Otherwise n is said to be a non-congruent number. Equivalently, n is non-congruent if and only if the rank of the elliptic curve

$$
\begin{equation*}
y^{2}=x\left(x^{2}-n^{2}\right) \tag{1.1}
\end{equation*}
$$

is equal to zero [15].
Both congruent and non-congruent numbers have been widely studied for centuries. Though a complete solution to the congruent number problem continues to elude mathematicians, success has been made in finding particular families of these numbers. A thorough overview of this problem and the progress that has been made towards its solution can be found in [15]. The classification of numbers into families often requires imposing conditions on the prime factors of the numbers and the associated values of the Legendre symbols relating these primes. Lagrange [7] presented numerous different families of non-congruent numbers containing a maximum of four distinct prime factors. Over two decades after the publication of Lagrange's work, Iskra [6] described the first family of non-congruent numbers with arbitrarily many distinct prime factors; these numbers are a product of primes of the form $8 k+3$ satisfying a specific pattern of Legendre symbols.

Since then many others, including Feng [1], Feng and Xiong [2], Feng and Xue [3], Goto [4], Li and Tian [8], Ouyang and Zhang [10, 11], and Reinholz et al. [13, 14], have produced new, more complex families of non-congruent numbers that contain an unlimited number of prime factors. Nevertheless, there exist numerous families of non-congruent numbers awaiting discovery.

In this paper, we present a novel technique for generating families of noncongruent numbers. The idea is, given a non-congruent number with 2-Selmer rank equal to zero and prime factors of a specified form, we can produce new non-congruent numbers by appending a tail of primes of the form $8 k+1$ to the original non-congruent number. This enables us to generalize known families of non-congruent numbers and construct many new families of non-congruent numbers. Our extension technique for generating new families of non-congruent numbers is summarized in our main theorem, which we state next.

Theorem 1. Let $p_{1}, p_{2}, \ldots, p_{t}, q_{1}, q_{2}, \ldots, q_{u}$ be distinct primes with $p_{i} \equiv 5(\bmod 8)$ and $q_{j} \equiv 3(\bmod 8)$ for all $i \in[1, t]$ and $j \in[1, u]$. Set

$$
b=\left(\prod_{i=1}^{t} p_{i}\right)^{e_{p}}\left(\prod_{j=1}^{u} q_{j}\right)^{e_{q}}
$$

where $e_{p}, e_{q} \in\{0,1\}$ and $\left(e_{p}+e_{q}\right)>0$, and suppose that the elliptic curve

$$
y^{2}=x\left(x^{2}-b^{2}\right)
$$

has 2-Selmer rank of zero, so $s(b)=0$ (as given by Equation (2.1)). Define the positive integer n by

$$
n=b r_{1} r_{2} \cdots r_{v}
$$

where $r_{1}, r_{2}, \ldots, r_{v}$ are distinct primes satisfying $r_{k} \equiv 1(\bmod 8)$ for all $k \in[1, v]$. If for each k with $1 \leq k \leq v$ the set S_{k} defined by

$$
S_{k}=\left\{\left(\frac{r_{k}}{p_{i}}\right),\left(\frac{r_{k}}{q_{j}}\right),\left(\frac{r_{k}}{r_{h}}\right) \text { with } 1 \leq i \leq t, 1 \leq j \leq u, \text { and } 1 \leq h<k \leq v\right\}
$$

has exactly one Legendre symbol equal to -1 , then n is a non-congruent number.
In Section 3, we present the proof of Theorem 1 and in Section 4, we provide examples that illustrate how this extension theorem can be applied to construct new families of non-congruent numbers. We now direct our attention to Section 2, where we discuss the theory and preliminary information that is necessary for the proof of the main theorem.

2. The 2-Selmer rank and a condition for non-congruence

The proof of Theorem 1 requires the use of linear algebra carried out over \mathbb{F}_{2} in conjunction with Monsky's formula for the 2-Selmer rank. This formula computes
the 2-Selmer rank, $s(n)$, of the elliptic curve given by Equation (1.1), which provides an upper bound for the curve's Mordell-Weil rank, $r(n)$. In this section we provide a brief overview of Monsky's formula, but for more details regarding the intricate theory behind the formula, we direct the reader to Monsky's appendix in Heath-Brown's paper [5].

Let n be a squarefree positive integer with odd prime factors $P_{1}, P_{2}, \ldots, P_{m}$. We define diagonal $m \times m$ matrices $\mathbf{D}_{l}=\left[d_{i}\right]$ for $l \in\{-2,2\}$, and the $m \times m$ $\operatorname{matrix} \mathbf{A}=\left[a_{i j}\right]$ by
$d_{i}=\left\{\begin{array}{ll}0, & \text { if }\left(\frac{l}{P_{i}}\right)=1, \\ 1, & \text { if }\left(\frac{l}{P_{i}}\right)=-1,\end{array} \quad a_{i j}=\left\{\begin{array}{ll}0, & \text { if }\left(\frac{P_{j}}{P_{i}}\right)=1, j \neq i, \\ 1, & \text { if }\left(\frac{P_{j}}{P_{i}}\right)=-1, j \neq i,\end{array} \quad a_{i i}=\sum_{j: j \neq i} a_{i j}\right.\right.$.
Then

$$
\begin{equation*}
s(n)=2 m-\operatorname{rank}_{\mathbb{F}_{2}}(\mathbf{M}) \tag{2.1}
\end{equation*}
$$

where \mathbf{M} is the $2 m \times 2 m$ matrix given by

$$
\mathbf{M}=\left[\begin{array}{c|c}
\mathbf{A}+\mathbf{D}_{2} & \mathbf{D}_{2} \tag{2.2}\\
\hline \mathbf{D}_{2} & \mathbf{A}+\mathbf{D}_{-2}
\end{array}\right]
$$

The rank, $r(n)$, of the elliptic curve given by Equation (1.1) satisfies the inequality

$$
r(n) \leq s(n)
$$

Consequently if \mathbf{M} has nonzero determinant, then $r(n)=0$.
In order to compute the determinant of \mathbf{M}, we require the following property of block determinants; a proof of this result can be found in Meyer [9, p. 475].

Proposition 1. If \mathbf{A} and \mathbf{D} are square matrices, then

$$
\operatorname{det}\left(\left[\begin{array}{l|l}
\mathbf{A} & \mathbf{B} \\
\hline \mathbf{C} & \mathbf{D}
\end{array}\right]\right)= \begin{cases}\operatorname{det}(\mathbf{A}) \operatorname{det}\left(\mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}\right), & \text { when } \mathbf{A}^{-1} \text { exists, } \\
\operatorname{det}(\mathbf{D}) \operatorname{det}\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right), & \text { when } \mathbf{D}^{-1} \text { exists }\end{cases}
$$

3. Proof of Theorem 1

We now give the proof of Theorem 1.
Proof. Begin by forming the $(t+u) \times(t+u)$ A matrix, as defined in Section 2, for $b=p_{1} p_{2} \cdots p_{t} q_{1} q_{2} \cdots q_{u}$. We denote this matrix by $\mathbf{A}_{\mathbf{b}}$ and the corresponding $(t+u) \times(t+u)$ diagonal matrices for b by

$$
\mathbf{D}_{2}^{\mathbf{b}}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & 1
\end{array}\right]=\mathbf{I}_{\mathbf{t}+\mathbf{u}}
$$

and

$$
\mathbf{D}_{-2}^{\mathbf{b}}=\left[\begin{array}{ccccccc}
1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
0 & 1 & & & & & \vdots \\
\vdots & & \ddots & & & & \vdots \\
\vdots & & & 1 & & & \vdots \\
\vdots & & & & 0 & & \vdots \\
\vdots & & & & & \ddots & \vdots \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right] .
$$

Note that the first t diagonal entries in $\mathbf{D}_{-2}^{\mathbf{b}}$ are equal to one. The Monsky matrix corresponding to b is

$$
\mathbf{M}_{\mathbf{b}}=\left[\begin{array}{c|c}
\mathbf{A}_{\mathbf{b}}+\mathbf{D}_{2}^{\mathbf{b}} & \mathbf{I}_{\mathbf{t}+\mathbf{u}} \tag{3.1}\\
\hline \mathbf{I}_{\mathbf{t}+\mathbf{u}} & \mathbf{A}_{\mathbf{b}}+\mathbf{D}_{-2}^{\mathbf{b}}
\end{array}\right] .
$$

Similarly the $(2 t+2 u+2 v) \times(2 t+2 u+2 v)$ Monsky matrix associated with $n=b r_{1} r_{2} \cdots r_{v}$ is given by

$$
\mathbf{M}_{\mathrm{n}}=\left[\begin{array}{c|c}
\mathbf{A}_{\mathrm{n}}+\mathbf{D}_{2}^{\mathrm{n}} & \mathbf{D}_{2}^{\mathrm{n}} \\
\hline \mathbf{D}_{2}^{\mathrm{n}} & \mathbf{A}_{\mathrm{n}}+\mathbf{D}_{-2}^{\mathrm{n}}
\end{array}\right]
$$

where

$$
\mathbf{D}_{2}^{\mathbf{n}}=\left[\begin{array}{ccccccc}
1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
0 & 1 & & & & & \vdots \\
\vdots & & \ddots & & & & \vdots \\
\vdots & & & 1 & & & \vdots \\
\vdots & & & & 0 & & \vdots \\
\vdots & & & & & \ddots & \vdots \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

and

$$
\mathbf{D}_{-\mathbf{2}}^{\mathbf{n}}=\left[\begin{array}{ccccccc}
1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
0 & 1 & & & & & \vdots \\
\vdots & & \ddots & & & & \vdots \\
\vdots & & & 1 & & & \vdots \\
\vdots & & & & 0 & & \vdots \\
\vdots & & & & & \ddots & \vdots \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

are the $(t+u+v) \times(t+u+v)$ diagonal matrices for n and $\mathbf{A}_{\mathbf{n}}$ is the $(t+u+v) \times$ $(t+u+v)$ A matrix corresponding to n. The first $(t+u)$ diagonal entries in $\mathbf{D}_{2}^{\mathbf{n}}$ are equal to one, whereas the first t diagonal entries in \mathbf{D}_{-2}^{n} are equal to one.

Guided by the conditions imposed on the Legendre symbols in the statement of our theorem, we use elementary row and column operations to reduce $\mathbf{M}_{\mathbf{n}}$ until the value of its determinant can be computed. Since we are working over \mathbb{F}_{2}, the operations that we make use of yield a matrix with the same determinant. Let $m_{i j}$ denote the entry in the $i^{t h}$ row and $j^{t h}$ column of $\mathbf{M}_{\mathbf{n}}$. Apply the following sequence of steps to $\mathbf{M}_{\mathbf{n}}$. Consider those entries with $m_{i j}=1$ where $1 \leq i \leq(t+u+v)$, $(t+u)<j \leq(t+u+v)$ and $i<j$. Begin with $j=(t+u+v)$, and determine the corresponding value of i for which $m_{i j}=1$. Subtract column j from column i and then subtract row j from row i. Following this, decrease the value of j by one and repeat the previously described column and row subtraction operations. Continue this process for each $j=(t+u+v-1),(t+u+v-2), \ldots,(t+u+1)$. Upon completing the v column subtractions and v row subtractions, we find that the upper left block of $\mathbf{M}_{\mathbf{n}}$ is reduced to

$$
\left[\begin{array}{c|c}
\mathbf{A}_{\mathbf{b}}+\mathbf{D}_{2}^{\mathbf{b}} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{I}_{\mathbf{v}}
\end{array}\right]
$$

Now repeat the aforementioned procedure, but with the rows i and the columns j satisfying $(t+u+v+1) \leq i \leq(2 t+2 u+2 v),(2 t+2 u+v)<j \leq(2 t+2 u+2 v)$, and $i<j$. Begin with $j=(2 t+2 u+2 v)$ and complete the necessary v column subtractions and v row subtractions, thus reducing the lower right block of $\mathbf{M}_{\mathbf{n}}$ to

$$
\left[\begin{array}{c|c}
\mathbf{A}_{\mathbf{b}}+\mathbf{D}_{-2}^{\mathrm{b}} & 0 \\
\hline 0 & \mathbf{I}_{\mathbf{v}}
\end{array}\right]
$$

By carrying out these operations, we have transformed $\mathbf{M}_{\mathbf{n}}$ into

We now add rows $(2 t+2 u+v+1)$ through $(2 t+2 u+2 v)$ to rows $(t+u+1)$ through $(t+u+v)$ respectively to get

$$
\mathbf{M}_{\mathbf{n}}^{* *}=\left[\right] .
$$

Following this, we perform $(t+u+v)$ row interchanges to $\mathbf{M}_{\mathbf{n}}^{* *}$ to obtain the matrix

$$
\mathbf{M}_{\mathbf{n}}^{* * *}=\left[\right]
$$

Note that since we are working over \mathbb{F}_{2}

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{M}_{\mathbf{n}}\right)=\operatorname{det}\left(\mathbf{M}_{\mathbf{n}}^{*}\right)=\operatorname{det}\left(\mathbf{M}_{\mathbf{n}}^{* *}\right)=\operatorname{det}\left(\mathbf{M}_{\mathbf{n}}^{* * *}\right) \tag{3.2}
\end{equation*}
$$

Applying Proposition 1 to $\mathbf{M}_{\mathbf{n}}^{* * *}$ yields

$$
\begin{align*}
& \operatorname{det}\left(\mathbf{M}_{\mathbf{n}}^{* * *}\right) \\
& =\operatorname{det}\left(\mathbf{I}_{\mathbf{t}+\mathbf{u}+\mathbf{v}}\right) \operatorname{det}\left(\mathbf{D}_{\mathbf{2}}^{\mathbf{n}}-\left[\begin{array}{c|c}
\mathbf{A}_{\mathbf{b}}+\mathbf{D}_{-\mathbf{2}}^{\mathbf{b}} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{I}_{\mathbf{v}}
\end{array}\right] \mathbf{I}_{\mathbf{t}+\mathbf{u}+\mathbf{v}}^{-\mathbf{1}}\left[\begin{array}{c|c}
\mathbf{A}_{\mathbf{b}}+\mathbf{D}_{2}^{\mathbf{b}} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{I}_{\mathbf{v}}
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{c|c}
\mathbf{I}_{\mathbf{t}+\mathbf{u}} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{0}
\end{array}\right]-\left[\begin{array}{c|c}
\left(\mathbf{A}_{\mathbf{b}}+\mathbf{D}_{-\mathbf{2}}^{\mathbf{b}}\right)\left(\mathbf{A}_{\mathbf{b}}+\mathbf{D}_{\mathbf{2}}^{\mathbf{b}}\right) & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{I}_{\mathbf{v}}
\end{array}\right]\right) \\
& =\operatorname{det}\left(\mathbf{I}_{\mathbf{t}+\mathbf{u}}-\left(\mathbf{A}_{\mathbf{b}}+\mathbf{D}_{-\mathbf{2}}^{\mathbf{b}}\right)\left(\mathbf{A}_{\mathbf{b}}+\mathbf{D}_{\mathbf{2}}^{\mathbf{b}}\right)\right) \operatorname{det}\left(\mathbf{I}_{\mathbf{v}}\right) \\
& =\operatorname{det}\left(\mathbf{I}_{\mathbf{t}+\mathbf{u}}-\left(\mathbf{A}_{\mathbf{b}}+\mathbf{D}_{-\mathbf{2}}^{\mathbf{b}}\right)\left(\mathbf{A}_{\mathbf{b}}+\mathbf{D}_{\mathbf{2}}^{\mathbf{b}}\right)\right) . \tag{3.3}
\end{align*}
$$

In order to compute this determinant, we need to consider the matrix $\mathbf{M}_{\mathbf{b}}$ described by Equation (3.1). By assumption $s(b)=0$, so Equation (2.1) implies that $\mathbf{M}_{\mathbf{b}}$ has full rank and hence

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{M}_{\mathbf{b}}\right) \neq 0 \tag{3.4}
\end{equation*}
$$

In addition, if we perform $(t+u)$ row interchanges to $\mathbf{M}_{\mathbf{b}}$ to obtain

$$
\mathbf{M}_{\mathbf{b}}^{*}=\left[\begin{array}{c|c}
\mathbf{I}_{\mathbf{t}+\mathbf{u}} & \mathbf{A}_{\mathbf{b}}+\mathbf{D}_{-2}^{\mathbf{b}} \\
\hline \mathbf{A}_{\mathbf{b}}+\mathbf{D}_{2}^{\mathbf{b}} & \mathbf{I}_{\mathbf{t}+\mathbf{u}}
\end{array}\right]
$$

and apply Proposition 1 to $\mathbf{M}_{\mathbf{b}}^{*}$, then it follows that

$$
\begin{align*}
\operatorname{det}\left(\mathbf{M}_{\mathbf{b}}\right)=\operatorname{det}\left(\mathbf{M}_{\mathbf{b}}^{*}\right) & =\operatorname{det}\left(\mathbf{I}_{\mathbf{t}+\mathbf{u}}\right) \operatorname{det}\left(\mathbf{I}_{\mathbf{t}+\mathbf{u}}-\left(\mathbf{A}_{\mathbf{b}}+\mathbf{D}_{-\mathbf{2}}^{\mathbf{b}}\right) \mathbf{I}_{\mathbf{t}+\mathbf{u}}^{-\mathbf{1}}\left(\mathbf{A}_{\mathbf{b}}+\mathbf{D}_{\mathbf{2}}^{\mathbf{b}}\right)\right) \\
& =\operatorname{det}\left(\mathbf{I}_{\mathbf{t}+\mathbf{u}}-\left(\mathbf{A}_{\mathbf{b}}+\mathbf{D}_{-\mathbf{2}}^{\mathbf{b}}\right)\left(\mathbf{A}_{\mathbf{b}}+\mathbf{D}_{\mathbf{2}}^{\mathbf{b}}\right)\right) \tag{3.5}
\end{align*}
$$

Combining Equations (3.2), (3.3), (3.4), and (3.5) enables us to conclude that

$$
\operatorname{det}\left(\mathbf{M}_{\mathbf{n}}\right) \neq 0
$$

Thus $r(n)=0$, so n is a non-congruent number.

4. Applying Theorem 1 to generate new families of non-congruent numbers

In this section we provide some examples to show how our extension theorem can be used to generate new non-congruent numbers from known families of noncongruent numbers. The numbers that we generate clearly belong to new families of non-congruent numbers because their prime factorizations differ from those of other existing families of non-congruent numbers $[1,2,3,4,6,8,10,11,13,14]$.

The first family we extend is Iskra's [6].
Theorem 2 (Iskra). Let t be a positive integer and suppose that $p_{1}, p_{2}, \ldots, p_{t}$ are distinct primes satisfying $p_{i} \equiv 3(\bmod 8)$ and $\left(\frac{p_{j}}{p_{i}}\right)=-1$ for $j<i$. Then $b=p_{1} p_{2} \cdots p_{t}$ is a non-congruent number.

In Section 4.2 of Reinholz's master's thesis [12], the non-congruent numbers described by Iskra's theorem are shown to have 2-Selmer rank of zero. As a result, new non-congruent numbers can be produced by utilizing Theorem 1 to append a tail of primes of the form $8 k+1$ to Iskra's non-congruent numbers. Some numerical examples are given in Table ?? on the next page.

Furthermore, Theorem 1 can be applied to the following result by Reinholz et al. [13].

Theorem 3 (Reinholz et al.). Let m be a fixed nonnegative even integer and let t be any positive integer satisfying $t \geq m$. Let N_{m} denote the set of positive integers with prime factorization $p_{1} p_{2} \cdots p_{t}$, where $p_{1}, p_{2}, \cdots, p_{t}$ are distinct primes of the form $8 k+3$ such that

$$
\left(\frac{p_{j}}{p_{i}}\right)= \begin{cases}-1 & \text { if } 1 \leq j<i \text { and }(j, i) \neq(1, m), \\ +1 & \text { if } 1 \leq j<i \text { and }(j, i)=(1, m)\end{cases}
$$

If $b \in N_{m}$, then n is non-congruent.
In the proof of this theorem in [13], the non-congruent numbers are shown to have 2 -Selmer rank equal to zero. Therefore, Theorem 1 can be directly applied to Theorem 3 to generate infinitely many new non-congruent numbers, including the two listed in Table ??.

Finally, Theorem 1 can be used to extend an important result by Ouyang and Zhang [11].

Theorem 4 (Ouyang and Zhang). Let

$$
\left[\frac{x}{h}\right]=\left(1-\left(\frac{x}{h}\right)\right) / 2
$$

and suppose that $b=p_{1} \cdots p_{k} \equiv 1,3(\bmod 8)$ and $p_{i} \equiv \pm 3(\bmod 8)$. Define \mathbf{B} to be the $k \times k$ matrix with (i, j)-entries $\left[\frac{p_{j}}{p_{i}}\right]$ for $i \neq j$ and with (i, i)-entries $\left[\frac{m / p_{i}}{p_{i}}\right]$, and $\mathbf{C}=\operatorname{diag}\left\{\left[\frac{-1}{p_{1}}\right], \ldots,\left[\frac{-1}{p_{k}}\right]\right\}$. If $\mathbf{B}^{2}+\mathbf{C B}+\mathbf{C}$ is invertible, then b is a non-congruent number.

With a little effort one can prove that for the integer b in Theorem 4, the condition that $\mathbf{B}^{2}+\mathbf{C B}+\mathbf{C}$ is invertible is equivalent to the Monsky matrix, given by Equation (2.2), having full rank. Thus, the matrix $\mathbf{B}^{2}+\mathbf{C B}+\mathbf{C}$ is invertible if and only if $s(b)=0$. As a result, Theorem 1 can be used to extend Ouyang and Zhang's work and generate new non-congruent numbers containing arbitrarily many prime factors belonging to two or three odd congruence classes modulo 8. Table ?? lists a couple numerical examples.

Table 1. Theorem 1 Numerical Examples

\boldsymbol{b}	$\boldsymbol{n}=\boldsymbol{b r}_{\mathbf{1}} \boldsymbol{r}_{\mathbf{2}} \cdots \boldsymbol{r}_{\boldsymbol{k}}$	Theorem that \boldsymbol{b} satisfies
$19 \cdot 11 \cdot 163 \cdot 419$	$19 \cdot 11 \cdot 163 \cdot 419 \cdot 97 \cdot 313 \cdot 617 \cdot 1697 \cdot 1721 \cdot 6521 \cdot 15361 \cdot 16889$	Theorem 2
$347 \cdot 83 \cdot 11 \cdot 3 \cdot 499 \cdot 1123 \cdot 2803$	$347 \cdot 83 \cdot 11 \cdot 3 \cdot 499 \cdot 1123 \cdot 2803 \cdot 673 \cdot 2953 \cdot 3617 \cdot 7417 \cdot 8713$	Theorem 2
$11 \cdot 59 \cdot 163 \cdot 307 \cdot 947$	$11 \cdot 59 \cdot 163 \cdot 307 \cdot 947 \cdot 41 \cdot 1361 \cdot 2017 \cdot 4057 \cdot 4673 \cdot 8969$	Theorem 3
$3 \cdot 11 \cdot 67 \cdot 163 \cdot 691 \cdot 1483 \cdot 3019 \cdot 2179 \cdot 16987$	$3 \cdot 11 \cdot 67 \cdot 163 \cdot 691 \cdot 1483 \cdot 3019 \cdot 2179 \cdot 16987 \cdot 2137 \cdot 4273 \cdot 13553 \cdot 36793$	Theorem 3
$3 \cdot 11 \cdot 19 \cdot 43 \cdot 59 \cdot 5 \cdot 13 \cdot 29 \cdot 37$	$3 \cdot 11 \cdot 19 \cdot 43 \cdot 59 \cdot 5 \cdot 13 \cdot 29 \cdot 37 \cdot 27481 \cdot 31321 \cdot 52561 \cdot 78049$	Theorem 4
$3 \cdot 19 \cdot 67 \cdot 83 \cdot 13 \cdot 61 \cdot 101 \cdot 149$	$3 \cdot 19 \cdot 67 \cdot 83 \cdot 13 \cdot 61 \cdot 101 \cdot 149 \cdot 4177 \cdot 9649 \cdot 9721 \cdot 17449 \cdot 26953 \cdot 49297$	Theorem 4

References

[1] K. Feng, Non-congruent numbers, odd graphs and the Birch-Swinnerton-Dyer conjecture, Acta Arith. 75(1) (1996), 71-83.
[2] K. Feng and M. Xiong, On elliptic curves $y^{2}=x^{3}-n^{2} x$ with rank zero, J. Number Theory 109(1) (2004), 1-26.
[3] K. Feng and Y. Xue, New series of odd non-congruent numbers, Sci. China Ser. A 49(11) (2006), 1642-1654.
[4] T. Goto, A note on the Selmer group of the elliptic curve $y^{2}=x^{3}+D x$, Proc. Japan Acad. Ser. A Math. Sci. $77(7)$ (2001), 122-125.
[5] D.R. Heath-Brown, The size of Selmer groups for the congruent number problem, II, Invent. Math. 118(2) (1994), 331-370.
[6] B. Iskra, Non-congruent numbers with arbitrarily many prime factors congruent to 3 modulo 8, Proc. Japan Acad. Ser. A Math. Sci. 72(7) (1996), 168-169.
[7] J. Lagrange, Nombres congruents et courbes elliptiques, Séminaire Delange-Pisot-Poitou, Théorie des nombres 16e année (16) (1974-1975).
[8] D. Li and Y. Tian, On the Birch-Swinnerton-Dyer conjecture of elliptic curves $E_{D}: y^{2}=x^{3}-D^{2} x$, Acta Math. Sin. (Engl. Ser.) 16(2) (2000), 229-236.
[9] C.D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.
[10] Y. Ouyang and S. Zhang, On non-congruent numbers with 1 modulo 4 prime factors, Sci. China Math. 57(3) (2014), 649-658.
[11] Y. Ouyang and S. Zhang, On second 2-descent and non-congruent numbers, Acta Arith. 170(4) (2015), 343-360.
[12] L. Reinholz, Families of Congruent and Non-Congruent Numbers, Master's Thesis, The University of British Columbia, 2013.
[13] L. Reinholz, B.K. Spearman and Q. Yang, Families of non-congruent numbers with arbitrarily many prime factors, J. Number Theory 133(1) (2013), 318327.
[14] L. Reinholz, B.K. Spearman and Q. Yang, On the prime factors of noncongruent numbers, Colloq. Math. 138(2) (2015), 271-282.
[15] J. Top and N. Yui, Congruent number problems and their variants, Algorithmic number theory: lattices, number fields, curves and cryptography, Math. Sci. Res. Inst. Publ. 44 (2008), 613-639.

Address: Lindsey Reinholz, Blair K. Spearman, and Qiduan Yang: Department of Computer Science, Mathematics, Physics and Statistics, University of British Columbia Okanagan, Kelowna, BC, Canada, V1V 1V7.
E-mail: reinholz@interchange.ubc.ca, blair.spearman@ubc.ca, qiduan.yang@ubc.ca
Received: 12 October 2016; revised: 15 December 2016

