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ON THE DIOPHANTINE EQUATION yp = f(x1, x2, ..., xr)

Raghavendran Srikanth, Sivanarayanapandian Subburam

Abstract: In this paper, we study the Diophantine equation

yp = f(x1, x2, ..., xr),

where f(x1, x2, ..., xr) is a real polynomial in variables x1, x2, ..., xr in R, a group of real numbers
under the usual addition +, having the least element property.
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1. Introduction

In 1999, Poulakis [1] produced an algorithm to solve the Diophantine equation
y2 = x4+a1x

3+a2x
2+a3x+a4. In 2000, Szalay [7] gave an upper bound for the so-

lutions of y2 = f(x), where f(x) = a0x
n+a1x

n−1+· · ·+an is an integer polynomial
and n is even. In 2002, Szalay [8] generalized the work by the equation yp = f(x),
where deg f(x) is multiple of p. In 2008, Sankaranarayanan and Saradha [2] pro-
vided an upper bound for the integral solutions of f(x) = g(y), where f(x) and g(y)
are integer polynomials in variables x and y with gcd(deg(f(x)),deg(g(y))) > 1.
In 2012, Srikanth and Subburam [3] improved the method of Szalay [8]. In 2013,
Szalay [9] delt with the general equation z2 = f(x, y). In 2014-15, Subburam
and Thangadurai [5] and [6] gave upper bounds for the solutions of the equa-
tion ax3 + by + c = xyz. In 2015, Subburam [4] studied the integral solutions of
(y − q1)(y − q2) · · · (y − qn) = f(x).

Our aim in this paper is to prove the following theorems. Here, we use the
notations: R is the set of all real numbers, R ⊂ R having the least element
property a group under the usual addition +, δ the least positive element of R,
for any element x ∈ R, |x|R the largest element of R with |x|R 6 x, p a prime,
f(x1, ..., xt) a polynomial such that

f(x1, ..., xt) = B(x1, ..., xt)
p + C(x1, ..., xt)
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for some polynomials B(x1, ..., xt) and C(x1, ..., xt) in variables x1, x2, ..., xt with
coefficients in R, S the set of all positive integers s 6 t such that f(x1, ..., xt) is
a monic polynomial in variable xs of degree degxs

(f(x1, ..., xt)). For any elements
ψ, x1, x2, ..., xt ∈ R, Kψ = {xψ−1 : x ∈ R},

Pi(x1, ..., xt) = −(|ψB(x1, ..., xt)|R − αi)p + (ψB(x1, ..., xt))
p + ψpC(x1, ..., xt)

and

Qi(x1, ..., xt) = (|ψB(x1, ..., xt)|R + αi)
p − (ψB(x1, ..., xt))

p − ψpC(x1, ..., xt)

where ψ−1 is the inverse of ψ in R r {0} under usual multiplication, αi = iδ and
i = 0, 1, ...

In 2013, Szalay [7] proved that if (x, y, z) is an integral solution of the equa-
tion z2 = f(x, y), where f(x, y) is an integer polynomial, then P1(x, y) > 0 and
Q1(x, y) > 0 implies that C(x, y) = 0. This result is generalized in the following
theorem:

Theorem 1. Let r be a positive integer. If Pi(x1, ..., xt) = 0 and Qi(x1, ..., xt) = 0
have no solution in Rt for the integers i with 1 6 i 6 r − 1 and if (x1, ..., xt, y) ∈
Rt ×Kψ is a solution of the equation

yp = f(x1, ..., xt),

then each of

(1) Pr(x1, ..., xt) > 0 and Qr(x1, ..., xt) > 0

(2) Pr(x1, ..., xt) < 0 and Qr(x1, ..., xt) < 0

implies that
ψpf(x1, ..., xt)− |ψB(x1, ..., xt)|pR = 0.

Theorem 2. Let r be a positive integer. If s ∈ S, degxs
C(x1, ..., xt) <

degxs
B(x1, ..., xt)

p−1, ψB(R, ..., R) ⊂ R, and if

Pi(x1, ..., xt) = −(ψB(x1, ..., xt)− αi)p + (ψB(x1, ..., xt))
p + ψpC(x1, ..., xt) = 0

and

Qi(x1, ..., xt) = (ψB(x1, ..., xt) + αi)
p − (ψB(x1, ..., xt))

p − ψpC(x1, ..., xt) = 0

have no solution in Rt for all integers i with 0 6 i 6 r − 1, then all solutions
(x1, ..., xt, y) ∈ Rt ×Kψ of the equation

yp = f(x1, ..., xt)

satisfy
minϑ(s) 6 xs 6 maxϑ(s),

where

ϑ(s) = {xs ∈ R : Pr or Qr or C = 0 for some x1, ..., xs−1, xs+1, ... ∈ R} .
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We have the following corollary, which generalize the works of Szalay [8] and
Srikanth-Subburam [3], from Theorem 1.

Corollary 1. Let r be a positive integer. If ψB(R)⊂R, deg(C(x))<deg(B(x)p−1)
and if Pi(x) = 0 and Qi(x) = 0 have no solutions in Rt for the integer i with
1 6 i 6 r − 1, then all solutions (x, y) ∈ R×Kψ of the equation

yp = f(x)

satisfy
minϑ 6 x 6 maxϑ,

where ϑ = {α ∈ R : C(α) = 0 or Pr(α) = 0 or Qr(α) = 0}.

2. Proof of Theorem 1

Let (x1, ..., xt, y) ∈ Rt ×Kψ be a solution of the equation

yp = f(x1, ..., xt).

Assume that Pr(x1, ..., xt) > 0 and Qr(x1, ..., xt) > 0. Then

(|ψB(x1, ..., xt)|R − αr)p < (ψB(x1, ..., xt))
p + ψpC(x1, ..., xt)

and
(ψB(x1, ..., xt))

p + ψpC(x1, ..., xt) < (|ψB(x1, ..., xt)|R + αr)
p.

This implies that

(|ψB(x1, ..., xt)|R − αr)p < (ψy)p < (|ψB(x1, ..., xt)|R + αr)
p.

Therefore, we have

(|ψB(x1, ..., xt)|R − αr) < ±ψy < (|ψB(x1, ..., xt)|R + αr).

Since y ∈ Kψ, ±ψy ∈ R. Also, it is clear that |ψB(x1, ..., xt)|R − αr and
|ψB(x1, ..., xt)|R +αr are in R, since |ψB(x1, ..., xt)|R and αr are in R. Therefore

±ψy = |ψB(x1, ..., xt)|R − αi

or
±ψy = |ψB(x1, ..., xt)|R + αi

or
±ψy = |ψB(x1, ..., xt)|R

for some i = 1, 2, ..., r − 1. From this, we can write that

Pi(x1, ..., xt) = ψpf(x1, ..., xt)− (|ψB(x1, ..., xt)|R − αi)p = 0
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or
Qi(x1, ..., xt) = −ψpf(x1, ..., xt) + (|ψB(x1, ..., xt)|R + αi)

p = 0

or
ψpf(x1, ..., xt)− |ψB(x1, ..., xt)|pR = 0.

Since Pi(X1, ..., Xt) = 0 and Qi(X1, ..., Xt) = 0 have no solution in R for the
positive integers i with 1 6 i 6 r − 1, we have

ψpf(x1, ..., xt)− |ψB(x1, ..., xt)|pR = 0.

Assume that Pr(x1, ..., xt) < 0 and Qr(x1, ..., xt) < 0. Then

(|ψB(x1, ..., xt)|R − αr)p > (ψB(x1, ..., xt))
p + ψpC(x1, ..., xt)

and
(ψB(x1, ..., xt))

p + ψpC(x1, ..., xt) > (|ψB(x1, ..., xt)|R + αr)
p.

This implies that

(|ψB(x1, ..., xt)|R + αr)
p < (ψy)p < (|ψB(x1, ..., xt)|R − αr)p.

If p is odd, then

(|ψB(x1, ..., xt)|R + αr)
p < (|ψB(x1, ..., xt)|R − αr)p.

implies that

(|ψB(x1, ..., xt)|R + αr) < (|ψB(x1, ..., xt)|R − αr),

which is a contradiction. If p is even, then

(|ψB(x1, ..., xt)|R + αr)
2 < (|ψB(x1, ..., xt)|R − αr)2.

implies that |ψB(x1, ..., xt)|R < 0. Therefore

(−|ψB(x1, ..., xt)|R − αr)2 < (δψy)2 < (−|ψB(x1, ..., xt)|R + αr)
2,

where δ = ±1 with δψy > 0. Since −|ψB(x1, ..., xt)|R + αr > 0, we get

−|ψB(x1, ..., xt)|R − αr < δψy < −|ψB(x1, ..., xt)|R + αr.

That is, we have (1). Therefore we get

ψpf(x1, ..., xt)− |ψB(x1, ..., xt)|pR = 0.

This proves the result.



On the Diophantine equation yp = f(x1, x2, ..., xr) 41

3. Proof of Theorem 2

Let s ∈ S. Suppose that there is a solution (x1, ..., xt, y) ∈ Rt×Kψ of the equation

yp = f(x1, ..., xt)

such that
minϑ(s) > xs and xs > maxϑ(s),

where

ϑ(s) = {xs ∈ R : Pr or Qr or C = 0 for some x1, ..., xs−1, xs+1, ... ∈ R} .

Then one of the following four cases is true:

(1) Pr(x1, ..., xt) > 0 and Qr(x1, ..., xt) > 0
(2) Pr(x1, ..., xt) > 0 and Qr(x1, ..., xt) < 0
(3) Pr(x1, ..., xt) < 0 and Qr(x1, ..., xt) > 0
(4) Pr(x1, ..., xt) < 0 and Qr(x1, ..., xt) < 0.

Since we have degXs
C(X1, ..., Xt) < degXs

B(X1, ..., Xt)
p−1, we conclude that

degXs
(Pr(X1, ..., Xt)) = degXs

(Qr(X1, ..., Xt)) and the leading coefficients of
the polynomials Pr(X1, ..., Xt) and Qr(X1, ..., Xt) in variable Xs are the same.
Therefore the cases (2) and (3) are impossible. So we have (1) and (4). Since
ψB(R, ..., R) ⊂ R and, Pi(X1, ..., Xt) = 0 and Qi(X1, ..., Xt) = 0 have no solu-
tions in R for all i with 1 6 i 6 r−1, by Theorem 1, we get that C(x1, ..., xt) = 0.
This is a contradiction.This proves the theorem.
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