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SOME REMARKS ON THE DIFFERENCES BETWEEN
ORDINATES OF CONSECUTIVE ZETA ZEROS

Aleksandar Ivić

Abstract: If 0 < γ1 6 γ2 6 γ3 6 . . . denote ordinates of complex zeros of the Riemann
zeta-function ζ(s), then several results involving the maximal order of γn+1 − γn and the sum∑

0<γn6T

(γn+1 − γn)
k (k > 0)

are proved.
Keywords: Riemann zeta-function, consecutive zeta-zeros, large differences, Riemann hypoth-
esis.

1. Introduction

Let 0 < γ1 6 γ2 6 γ3 6 . . . denote ordinates of complex zeros of the Riemann
zeta-function

ζ(s) =

∞∑
n=1

n−s (<s > 1).

For <s 6 1 one defines ζ(s) by analytic continuation (see the monographs of
A. Ivić [11] and E.C. Titchmarsh [20] for the properties of ζ(s)). Here the Riemann
Hypothesis (RH), that all complex zeros of ζ(s) satisfy <s = 1

2 , is not assumed.
Thus if equality among the γn’s occurs for some n, it does not necessarily mean
that the zero ρn = βn + iγn is not simple, i.e., ζ(ρn) = 0 and ζ ′(ρn) = 0. Namely
one could have γn = γn+1, ρn = βn + iγn, ρn+1 = βn+1 + iγn+1 with βn 6= βn+1,
and both ρn and ρn+1 simple. Although all numerical evidence points to the
simplicity of all zeta zeros, proving this is an open and difficult question. In fact,
it seems that the simplicity of zeta-zeros and the RH are independent statements
in the sense that, as far as it is known, both statements could be true or false, or
one true and the other one false.

Problems involving γn+1 − γn, the difference between consecutive ordinates of
the zeros (if the zeros are arranged according to the size of their imaginary parts)
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are of great interest. Since ζ(βn − iγn) = 0 if ζ(βn + iγn) = 0, one may consider
without loss of generality that γn > 0 for all n. One of the natural problems is to
investigate the sum

Sk(T ) :=
∑

0<γn6T

(γn+1 − γn)k, (1.1)

where k is a fixed positive number. A. Fujii [5], [6] proved in 1975 that, for a fixed
k ∈ N,

C1
N(T )

(log T )k
6 Sk(T ) 6 C2

N(T )

(log T )k
. (1.2)

In (1.2) we have 0 < C1 = C1(k) < C2 = C2(k), T > T0 = T0(k), and N(T )
denotes the number of γn’s not exceeding T , counted with multiplicities. Recall
that by the classical Riemann–von Mangoldt formula (see e.g., [11] or [20]) we
have

N(T ) =
T

2π
log

(
T

2π

)
− T

2π
+

7

8
+ S(T ) +O

(
1

T

)
, S(T ) =

1

π
arg ζ( 12 + iT ).

(1.3)
Here arg ζ( 12 + iT ) is obtained by continuous variation along the segments joining
the points 2, 2+ iT, 12 + iT , starting with the value 0. If T is the ordinate of a zero
lying on the critical line, then S(T ) = S(T + 0). One has (see [20]) the bounds

S(T )� log T, S(T ) = o(log T ) (LH), S(T )� log T

log log T
(RH), (1.4)

where LH denotes the (hitherto unproved) Lindelöf hypothesis that

ζ( 12 + it) �ε |t|ε.

The LH is a consequence of the RH (see [11] or [20]), but it is not known whether
the converse is true. Here f(x)�ε g(x) (same as f(x) = Oε(g(x))) means that the
implied� (or O) constant depends only on ε. The bounds in (1.2) are explicit, but
they are stated to hold only if k ∈ N. The last restriction can be easily removed.
Indeed, we shall show in Section 3 that (1.2) holds for any fixed k > 1.

Note that from (1.3) and the first bound in (1.4) we have unconditionally

γn+1 − γn � 1. (1.5)

From Theorem 9.12 of [20] it follows that (1.5) can be improved to

γn+1 − γn 6
A

log log log γn
(A > 0, n > n0). (1.6)

R.R. Hall and W.K. Hayman [10] showed that any constant A > π/2 is permissible
in (1.6). Also from (1.3) and (1.4), on the RH, the bound (1.6) can be improved
to

γn+1 − γn �
1

log log γn
. (1.7)

The purpose of this article is to investigate Sk(T ), as well as some problems
involving the order of γn+1 − γn and the frequency of values of n for which this
difference is large. Our results are primarily explicit.
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2. The maximal order of γn+1 − γn

Although improving the upper bounds (1.6) and (1.7) seems difficult, one can
derive explicit bounds, namely replace the �-constant in (1.7) by an explicit
value. This is contained in

Theorem 1. Under the Riemann hypothesis one has

γn+1 − γn 6
(π
2
+ o(1)

) 1

log log γn
(n→∞). (2.1)

Proof. To prove (2.1), we shall use the bound, valid under the RH,

|S(T )| 6
(
1

4
+ o(1)

)
log T

log log T
(T →∞). (2.2)

This is Theorem 2 of E. Carneiro, V. Chandee and M. Milinovich [3]. It improves
the previous bound of K. Ramachandra and A. Sankaranarayanan [17], and of
D.A. Goldston and S.M. Gonek [8], who had the constant 1

2 + o(1) in (2.2), which
yields (2.1) (see their Corollary 1) with the constant π + o(1). Actually, in [3]
Carneiro et al. have shown that

|S(T )| 6
(
1

4
+O

( log log log T
log log T

)) log T

log log T
.

We use (1.3) with T = γn, H > 0, and (2.2) to obtain

N(T +H)−N(T ) =
1

2π

∫ T+H

T

log

(
t

2π

)
dt+ S(T +H)− S(T ) +O

(
1

T

)
>
H

2π
log

(
T

2π

)
−
(
1

2
+ o(1)

)
log T

log log T
> 0

for
H =

(π
2
+ o(1)

) 1

log log T
(T →∞).

Thus

γn+1 ∈
[
γn, γn +

1
2π + o(1)

log log γn

]
,

which implies then (2.1). Clearly the term o(1) in (2.1) can be replaced by the
more explicit

O

(
log log log γn
log log γn

)
. �
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We remark that, although the unconditional bound (1.5) is weaker than (1.6),
one can obtain relatively simply an explicit bound for γn+1− γn. Namely we take
advantage of the recent bound of T. Trudgian [21]

|S(T )| 6 0.112 log T + 0.278 log log T + 2.510 (T > e). (2.3)

If we take T = γn in (1.3) and use (2.3) we obtain, for H > 0, T > T0 and some
number θ for which |θ| 6 1,

N(T +H)−N(T ) =
1

2π

∫ T+H

T

log

(
t

2π

)
dt+ S(T +H)− S(T ) +O

(
1

T

)
>
H

2π
log

(
T

2π

)
+ θ0.225 log T > 0

for H = 1.414 and T > T0. This gives then unconditionally

γn+1 − γn 6 1.414 (n > n0), (2.4)

and with some effort one could determine n0 in (2.4) explicitly.
Determining the maximal order of γn+1 − γn is a difficult problem. Note that

from (1.5) one has unconditionally∑
0<γn6T

(γn+1 − γn) =
∑

0<γn6T,γn+1 6=γn

(γn+1 − γn) = T +O(1). (2.5)

Hence
T +O(1) =

∑
0<γn6T

(γn+1 − γn) 6 N(T ) max
0<γn6T

(γn+1 − γn),

and from (1.3) one obtains

max
0<γn6T

(γn+1 − γn) >
2π
(
1 + o(1)

)
log(T/2π)

(T →∞). (2.6)

The lower bound in (2.6) is quite explicit, but it is weak and probably far from
the true order of the quantity on the left-hand side. In his paper [16], A.M. Odlyzko
states that under the GUE (Gaussian Unitary Ensemble hypothesis, see [16] and
[12]) it is plausible that

max
0<γn6T

(γn+1 − γn) ∼
8√

2 log T
(T →∞). (2.7)

On the other hand, D. Joyner in [14] brings forth that under the so-called Dyson–
Montgomery hypothesis, explained in [14], one has

max
0<γn6T

(γn+1 − γn) �
1√

log T log log T
. (2.8)

Note that (2.7) and (2.8) cannot both be true, since they contradict one another.
The very slow variation of

√
log log T makes a numerical comparison of (2.7) and

(2.8) difficult.
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3. Some remarks on the moments of γn+1 − γn

In this section we shall show that (1.2) holds for any fixed k > 1, not necessarily
an integer. We assume that k > 1 is fixed and start from (2.5). Then, by Hölder’s
inequality,

T +O(1) 6

 ∑
0<γn6T

(γn+1 − γn)k


1/k {
N(T )

}1−1/k
.

Since T ∼ 2πN(T )/ log T by (1.3), the above inequality yields immediately

∑
0<γn6T

(γn+1 − γn)k >
(
2π + o(1)

)k
(log T )k

N(T ) (T →∞). (3.1)

Note that (3.1) is the lower bound inequality in (1.2), with the explicit value

C1 = C1(k) =
(
2π + ε

)k
for any given ε > 0.

To obtain the upper bound inequality, recall that the upper bound in (1.2)
holds for k ∈ N and suppose that α satisfies k < α < k + 1 for some k ∈ N. Then
write ∑

0<γn6T

(γn+1 − γn)α = F1(T ) + F2(T ), (3.2)

say. We have, on using the upper bound in (1.2),

F1(T ) :=
∑

0<γn6T,γn+1−γn61/ log T

(γn+1 − γn)α

6 (log T )k−α
∑

0<γn6T

(γn+1 − γn)k 6 C2(k)
N(T )

(log T )α
.

Similarly, using (1.2) with k + 1 in place of k, we have

F2(T ) :=
∑

0<γn6T,γn+1−γn>1/ log T

(γn+1 − γn)α

6 (log T )k+1−α
∑

0<γn6T

(γn+1 − γn)k+1 6 C2(k + 1)
N(T )

(log T )α
.

Inserting the bounds for F1(T ) and F2(T ) in (3.2) we obtain the desired upper
bound for Sα(T ).
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An asymptotic formula for Sk(T ), when k 6= 0, 1, is hard to obtain. One can
obtain such a formula if one assumes the RH and the Gaussian Unitary Ensemble
(GUE) conjecture (see A.M. Odlyzko [16] for a detailed account). This says that,
for

0 6 α < β <∞, δn =
1

2π
(γn+1 − γn) log(

γn
2π

),

we have

∑
γn6T,δn∈[α,β]

1 =

(∫ β

α

p(0, u) du+ o(1)

)
T

2π
log(

T

2π
) (T →∞).

Then one has, as shown by the author in [12],

∑
γn6T

(γn+1 − γn)k =
(
c1(k) + o(1)

)( 2π

log( T2π )− 1

)k−1
T (T →∞) (3.3)

for fixed k > 0, thus not necessarily an integer. Here c1(0) = c1(1) = 1, and in
general

c1(k) :=

∫ ∞
0

p(0, u)uk du,

where p(0, u) is the function appearing in the GUE conjecture. We have

1−
(
sinπu

πu

)2

=

∞∑
k=0

p(k, u),

p(0, u) =
1

3
π3u2 − 2

15
π4u4 +

1

315
π6u6 + · · · (u→ 0+),

log p(0, u) = −π
2

8
+ o(1) (u→∞).

From (1.3) one infers that the average distance γn+1 − γn is 2π/ log(γn/(2π)).
Thus a natural question is to investigate the quantities

µ := lim inf
n→∞

γn+1 − γn
2π/ log(γn/(2π))

, λ := lim sup
n→∞

γn+1 − γn
2π/ log(γn/(2π))

. (3.4)

A. Selberg [19] in 1946 indicated (without proof) that µ < 1 and λ > 1 holds
unconditionally, but no particular values of µ and λ have been found yet. On the
RH, several authors worked on this problem over the years and produced explicit
values of µ and λ. For example, Feng and Wu [4] obtained the values µ 6 0.514 and
λ > 2.7327. J. Bredberg [1] proved that for sufficiently large T there is a subinterval
of [T, 2T ] of length at least 2.766 × 2π

log(T/2π) in which ζ( 12 + it) does not vanish.
Thus, on the RH, one has λ > 2.766.
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A stronger variant of (3.4) is that there exist constants µ < 1 and λ > 1 such
that

γn+1 − γn
2π/ log(γn/(2π))

6 µ,
γn+1 − γn

2π/ log(γn/(2π))
> λ (3.5)

for a positive proportion of n’s. This was stated by A. Fujii in [6], and a detailed
proof of (3.5) may be found on pp. 246-249 of E.C. Titchmarsh’s monograph [20].

It is interesting to investigate what is the number of γn’s not exceeding T for
which the distance γn+1 − γn is larger or smaller than the average distance. This
problem, and some related questions, will be discussed in the next section.

4. Lower bounds for sums of large differences of γn+1 − γn

We begin our discussion on the frequency of occurrences of γn+1 − γn. First note
that, for a given positive constant C,∑
0<γn6T

(γn+1 − γn)2 =
∑

0<γn6T ;γn+1−γn6C/ log(T/2π)

(γn+1 − γn)2

+
∑

0<γn6T ;γn+1−γn>C/ log(T/2π)

(γn+1 − γn)2

6 (C2 + o(1))
N(T )

log2 T

+

 ∑
0<γn6T ;γn+1−γn> C

log(T/2π)

1


1
2 ∑

γn6T

(γn+1 − γn)4
 1

2

.

Thus it follows, on using (1.2), that

(C1(2)− C2 + o(1))
N(T )

log2 T
6

 ∑
0<γn6T ;γn+1−γn> C

log(T/2π)

1


1/2(

C2(4)N(T )

log4 T

)1/2

,

which yields unconditionally∑
0<γn6T ;γn+1−γn>C/ log(T/2π)

1 >
(C1(2)− C2 + o(1))2

C2(4)
N(T ) (T →∞),

(4.1)
and the bound (4.1) is non-trivial if 0 < C <

√
C1(2).

If one assumes the RH, then the γn’s are exactly the zeros of Hardy’s function
(see the author’s monograph [13] for an extensive account)

Z(t) := ζ( 12 + it)
(
χ( 12 + it)

)−1/2
, ζ(s) = χ(s)ζ(1− s),

which is real-valued and satisfies |Z(t)| = |ζ( 12 + it)|. Hardy’s function is thus an
invaluable tool for the investigation of zeros of ζ(s) on the critical line <s = 1

2 .
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If one also assumes that almost all the γn’s are simple, then (4.1) can be used
for obtaining an alternative proof of Theorem 2 in the paper of Gonek–Ivić [9].
Following Fujii’s arguments one can find numerical values of the constants in (4.1),
but they will certainly produce poor values of the constant in Theorem 2 in [9].
However, the proof of this result assumes both the RH and the Pair Correlation
conjecture, and both of these are strong assumptions.

The quantity log(T/2π) appearing in (4.1) is natural, because of (1.3) we al-
ready noted that the average spacing between the γn’s is 2π/ log(γn/2π). More-
over, with increasing C the sum in (4.1) decreases, so one has to have an expression
such as C1(2)− C2 on the right-hand side of (4.1).

In view of (1.3) one can rewrite (3.3) as

∑
γn6T

(γn+1 − γn)k =
(
c1(k) + o(1)

)( 2π

log( T2π )− 1

)k
N(T ) (T →∞). (4.2)

With this notation (4.1) becomes then

∑
0<γn6T ;γn+1−γn>C/ log(T/2π)

1 >

{
(2π)2c1(2)− C2 + o(1)

}2

(2π)2c1(4)
N(T ), (4.3)

and one has then only to calculate explicitly the values of c1(2) and c1(4) and
insert them in (4.3). This will produce an explicit bound in the range

0 < C < 2π
√
c1(2).

A variant of the approach leading to (4.3) is as follows. Recall that we have
(2.4), namely ∑

0<γn6T

(γn+1 − γn) = T +O(1). (4.4)

Write, for a given C > 0,∑
γn6T

(γn+1 − γn) =
∑

γn6T ;γn+1−γn6C/ log(T/2π)

(γn+1 − γn)

+
∑

γn6T ;γn+1−γn>C/ log(T/2π)

(γn+1 − γn)

= S1(T ;C) + S2(T ;C), (4.5)

say. One has trivially

S1(T ;C) 6
C

log(T/2π)

∑
γn6T

1 =
C

log(T/2π)
N(T ). (4.6)
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On the other hand, by the Cauchy-Schwarz inequality, we obtain

S2(T ;C) 6


∑

γn6T ;γn+1−γn> C
log(T/2π)

1
∑

γn6T ;γn+1−γn> C
log(T/2π)

(γn+1 − γn)2


1
2

.

(4.7)
We have trivially ∑

γn6T ;γn+1−γn> C
log(T/2π)

(γn+1 − γn)2 6
∑
γn6T

(γn+1 − γn)2,

and one can estimate the last sum by (1.2). However, if one assumes the Riemann
hypothesis, then A. Fujii [7] showed that one has

∑
γn6T

(γn+1 − γn)2 6 9 · 2πT

log(T/2π)
(T > T0). (4.8)

Consequently from (4.4)–(4.8), on the RH, we have

∑
0<γn6T ;γn+1−γn>C/ log(T/2π)

1 >
T log(T/2π)

18π

(
1− C

2π

)2

+O(T ). (4.9)

Note that (4.9) is an explicit inequality, and it is non-trivial for 0 < C < 2π,
that is, for the difference between consecutive ordinates which is smaller than the
average difference.

In the above two approaches we have exploited the sum in (1.1) with k = 1
and k = 2. One can work with general k in (1.2), but it is unclear which k will
yield the best lower bound for the sum in (4.9).

We summarize the preceding discussion in

Theorem 2. With the notation introduced above we have unconditionally, if
0 < C <

√
C1(2),

∑
0<γn6T ;γn+1−γn>C/ log(T/2π)

1 >
(C1(2)− C2 + o(1))2

C2(4)
N(T ) (T →∞).

Moreover, if the RH is assumed, then for for 0 < C < 2π, T > T0 > 0 we have

∑
0<γn6T ;γn+1−γn>C/ log(T/2π)

1 >
T log(T/2π)

18π

(
1− C

2π

)2

+O(T ).
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5. Upper bounds for sums of large differences of γn+1 − γn

A natural problem is to consider upper bounds the sum in Theorem 2. An explicit
upper bound for this sum is easily obtained. Namely, by using (2.5), we have∑

0<γn6T ;γn+1−γn>C/ log(T/2π)

1 6
1

C
log(T/2π)

∑
0<γn6T

(γn+1 − γn)

=
1

C
log(T/2π)

(
T +O(1)

)
=

2πT

2πC
log(T/2π) +O(log T )

=
2π

C
N(T ) +O

(T
C

)
.

This gives, unconditionally and uniformly for any C > 0,∑
0<γn6T ;γn+1−γn>C/ log(T/2π)

1 6
2π

C
N(T ) +O

(T
C

)
. (5.1)

Using the upper bound in (1.2) with general k one obtains similarly∑
0<γn6T ;γn+1−γn>C/ log(T/2π)

1 6
C2(k)

Ck

(
1 + o(1)

)
N(T ) (T →∞), (5.2)

but it is unclear for what range of C and the value of k this bound is optimal.
Note that (5.1) and (5.2) are superseded, for C large enough, by the bound∑

0<γn6T ;γn+1−γn>C/ log(T/2π)

1� N(T ) exp(−AC) (A > 0, C > C0). (5.3)

The bound (5.3) is Corollary 2 on p. 35 of A. Fujii [5]. By (2.3) and C =
λ log(T/2π) with λ > 0 sufficiently large, the sum in (5.3) is empty. In that case

N(T ) exp(−AC) = N(T ) exp
(
−Aλ log(T/2π)

)
= N(T )(T/2π)−Aλ < 1

if λ > 1/A, T > T0 > 0. This shows that the bound in (5.3) is quite strong.

6. Sums of reciprocals of γn+1 − γn

The sum Sk(T ) in (1.1) clearly makes sense not only for k > 0, but for k < 0 as
well (for k = 0 the sum is just N(T ), so it need not be considered). When k < 0
one has obviously to assume the condition γn+1 6= γn, or equivalently γn+1 > γn,
to avoid zeros in the denominator. Such a condition is also natural when k > 0,
since

(γn+1 − γn)k ≡ 0 (k > 0, γn+1 = γn).
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There seem to be no results concerning Sk(T ) in the literature when k < 0. Even
the sum S−1(T ) seems elusive.

We shall consider here the somewhat less difficult sum

H(T ) :=
∑

0<tn6T,tn+1 6=tn

(tn+1 − tn)−1,

where 0 < t1 6 t2 6 t3 6 . . . are the ordinates of zeta zeros on the critical line
<s = 1

2 , or equivalently, the zeros of Hardy’s function Z(t). Further let

R(T ) :=
∑

0<tn6T,tn+1 6=tn

1.

If ρn = 1
2 + itn is a simple zero of ζ(s), then we cannot have tn+1 = tn. Thus

R(T ) counts all simple zeros on the critical line, and the number of those for which
0 < tn 6 T is� T log T . In fact, H.M. Bui, B. Conrey and M.P. Young [2] showed
that more than 40% of the zeros counted by N(T ) are simple and on the critical
line. More recently N. Robles, A. Roy and A. Zaharescu [18] proved that at least
41.0725% of the zeros of ζ(s) are on the critical line and at least 40.5824% of the
zeros of ζ(s) are both on the critical line and simple.

Thus for some D satisfying D > 2/5 we have

R(T ) >
DT

2π
log

T

2π
(T > T0 > 0). (6.1)

On the other hand, by using the Cauchy-Schwarz inequality, we obtain

R(T ) =
∑

0<tn6T,tn+1 6=tn

1√
tn+1 − tn

·
√
tn+1 − tn

6

H(T )
∑

0<tn6T,tn+1 6=tn

(tn+1 − tn)


1/2

. (6.2)

Since tn+1 − tn � t
1/6
n (see Chapter 9 of [11]), it follows that∑

0<tn6T,tn+1 6=tn

(tn+1 − tn) = T + o(T ) (T →∞). (6.3)

From (6.1)–(6.3) we obtain that

DT

2π
log

T

2π
6
√
H(T )(T + o(T )),

which gives

Theorem 3. We have

H(T ) =
∑

0<tn6T,tn+1 6=tn

(tn+1 − tn)−1 >
T

(5π)2

(
log

T

2π

)2

(T > T1 > 0). (6.4)

An upper bound for H(T ) seems difficult to obtain.
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We have

H(T ) 6 max
0<tn6T,tn+1 6=tn

(tn+1 − tn)−1N(T )

6 max
0<tn6T,tn+1 6=tn

(tn+1 − tn)−1
(
T

2π
log

T

2π
+O(T )

)
,

and from (6.4) it follows that we obtain

max
0<tn6T,tn+1 6=tn

(tn+1 − tn)−1 >
2

25π
log

T

2π
(T > T1 > 0). (6.5)

or equivalently

min
0<tn6T,tn+1 6=tn

(tn+1 − tn) 6
25π

2 log T
2π

(T > T1 > 0). (6.6)

If one considers the analogous problem with the sequence {tn} replaced by the
sequence {γn}, then only the analogue of (6.1) is not obvious, namely∑

0<γn6T,γn+1 6=γn

1 � T log T. (6.7)

However, the sum in (6.7) certainly counts simple zeros (with γn 6 T ) on the
critical line, and as already mentioned, there are � T log T of these. Thus (6.7)
holds, and the rest of the preceding argument easily carries through. Alternatively,
since the sum in (6.7) certainly also counts distinct zeros of ζ(s), and there are
at least 70% of distinct zeta-zeros (see H. Ki and Y. Lee [15]), we can obtain an
even better bound for the sum in (6.7). Therefore we can obtain the analogues of
(6.4)–(6.6) for the sequence {γn}, with different explicit constants, of course.
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