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ON SOME COMPLEX EXPLICIT FORMULAE CONNECTED 
WITH THE EULER'S cp FUNCTION. I 

MALGORZATA Rl;)KOS 

Abstract: Following 14} and [l} we describe the analytic character of some function J(z) con­
nected with the Euler's <p function being for Im z > 0 a series over all non - trivial zeros of the 
Riemann zeta - function. 
Keywords: Euler's <p function, Riemann zeta - function. 

1. In this note we describe basic analytic properties of a function f(z) defined 
for Im z > 0 as follows 

f(z) = lim t' 
n-.oo L.., 

e 
O<Im e<Tn. 

(1.1) 

The summation is over non - trivial zeros the Riemann zeta - function with a 
positive imaginary part. For simplicity we assume here that the zeros are simple. 
Throuought the paper, however, we treat the general cruse, where the corresponding 
term in (1.1) is replaced by an appropriate residue. Tn denotes a sequence of real 
numbers yields appropriate grouping of the zeros. 

First we show that f ( z) is a holomorphic function for Im z > 0 . Next 
we continue analytically the function f ( z) to a meromorphic function on the 
whole complex plane, which satisfies a certain functional equation. The functional 
equation for f ( z) connects the values of the function f at the points z and z. 
Finally we describe all singularities of f ( z) . 
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2. Lemma 1. There exists a positive constant c such that for all n E N exists 
Tn, where n $ Tn $ n + 1 for which 

I 
((u - 1 + iTn) I Tc 

((u + iTn) « n ' 
for 

1 5 
--<u<-4- -2 (2.1) 

Proof. By theorem 9.7 in [5] there is a constant c1 such that each interval (n, n+l) 

contains a value of Tn for which I ((u ~ iTn) I $ T;,1
• Hence the lemma follows 

trom a well - known estimates for the Riemann zeta - function on the vertical 
~~- • 

3. Let l denote a smooth curve T: [O, 1] --. C such that T(O) = -¼, T(l) 
and O < Im T < 1 for t E (0, 1). 

Moreover, let L denote the contour consisting of line segments 

[ s 5 ·r. l [ s . 1 .,.,, l [ 1 . 11 2, 2 + Z n, 2 + zTn,- 4 + Z.1n, - 4 + zTn, - 4 , 

5 
2 

and l, where Tn have the same meaning as before. We consider the following 
contour integral round L: 

{ ((s - 1) szd 
JL ((s) e s. (3.1) 

The integral along the upper side of contour tends to O as n tends to oo, 
because for y > 0 

By Cauchy's theorem of residues we have 

1-¼ ((s -1) szd J 
((s) e s + 

-¼+ioo !(-¼,!) 

J+ioo 

((s - 1) eszds+ 
((s) 

+ j ((s - l) e82 ds = 21rif(z) 
((s) 

where for Im z > 0 

5 
2 

f(z) = lim """"' n-+oo L...t 

(3.2) 

(3.3) 
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and k 12 denotes the order of multiplicity of the complex zero {! of the zeta -
function. Observe that if there are no multiple zeros of the zeta function (3.3) 
reduces to (1.1) 

f(z) = lim ~ 
n->OO ~ 

(! 

O<Im e<T,. 

The analytic character of /-function is described by the following theorems: 

Theorem 1. The function f ( z) is holomorphic on the upper half - plane H and 
for z EH we have 

00 ( ) • s ~ cpn 
2rrzf(z) = fi(z) + fi(z) - e2 z ~ --=-5 ---

n=I n2(z -logn) 
(3.4) 

where the last term on the right is the meromorphic function on the whole complex 
plane with the poles at z = logn, n li 2, ... 

f,(z) ~ ? 
-¼+ioo 

is analytic on H and 

((s - 1) szd 
((s) e s 

h(z) = j ((;(:/) e8 zds 

!(-¼,~) 

is regular on the whole complex plane. 

(3.5) 

(3.6) 

Theorem 2. The function J(z) can be continued analytically to a meromorphic 
function 011 the whole complex plane, which satisfies the functional equation 

and 

( ) 
6 2z 

B z = --e + 
7r2 

J(z) + J(z) = B(z) 

1 
00 

µ(k) [ 1 2 1 +- - + + 
21r2 k~l n 2 k (nkez - 1)2 nkez - 1 (nkez + 1)2 

(3.7) 

(3.8) 

where B(z) is the meromorphic function on the whole complex plane with the 
poles of the second order at z = - log nk, n, k = 1, 2, .... 

The only singularities of J(z) are simple poles at the points z = logn (n = 
1,2, ... ) on the real axis with residue 

cp(n) 
res J(z) = --. , 

z=logn 21ri 
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and the poles of the second order at z - logm (m = 1, 2, ... ) with residue 

res f(z) = 
4 

; 2 °" µ(l) · l. 
z=-logm 7f m L...J 

!Im 

We have for Im z > 0 

l -4 

/( ) _ 1 j ((s - 1) sz.d 1 j ((s - 1) szd z -- -----e s+- ---e s-
21ri ( ( s) 21ri ( ( s) 

-¼+ioo 1(-¼,i) (3.9) 

1 liz f cp(n) 
- 21rie

2 

n=l n½(z logn) 

for Im z < 0 

f (z) = - f(z) + B(z) 

and for I Im z I< 7r 

-¼+ioo 
1 

f(z) =81r3i J ((2 - s) i/!'ll'r(2 - s)I'(s)eszds+ 
((1 - s) 

-¼ 
-¼+ioo 

+ ~ j ((2 - s)r(2 - s)r(s)e8 zds+ 
41r3 z ((1 - s) 

-¼ 
1 

00 

µ(k) [ 2 1 ] +- - + -41r2 L n2k nkez -1 (nkez - 1)2 
k,n=l 

1 J ((2-s) szd 
+21ri ((1-s)e 

8 

1(-¼,f) 

1 sz ~ cp(n) 
-e2 L...J 
21ri n=l ni(z - logn) 

4. Proof of Theorem 1. For z from the upper half plane H we have 

21ri/(z) = fi(z) + h(z) + '3(z), 

say, where fi(z), h(z), '3(z) denote corresponding integrals in (3.2). 

(3.10) 
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Since Res= 5 > 2 and ((s (-) l) = E rp(~) 
2 ( s n=l n 

5 +ioo 
00 2 00 

/J(z) = L rp(n) J esz-slognds = -e1" L rp(n) 
n=1 ! n=l n2(z - log n) 

The inversion of the order of integration and summation is justified for z E H by 
the uniform convergence of the integral and the series. 

The second term 

( ) J ((s 1) szd 
h z = ((s) e s 

!(-¼,½) 

is regular on the whole complex plane. 
By Stirling's formula and the functional equation for ((s) we have 

I
,<-~ +it)I 

4 « t 
((-~+it) 

4 
and consequently Ji(z) is absolutely convergent for y = Im z > 0. 

5. We shall first prove that f(z) (z = x + iy) has a meromorphic continuation 
toy> -1r. 

Consider the integral 

Ji(z) 

-¼+ioo 

J ((s - 1) eszds 
((s) 

convergent for y > 0 . By the functional equation for ( ( s) we get 

(s - l)1r 
((s - 1) 2s-l7rs-Z sin 

2 
r(2 - s}((2 - s) , 

1 21-s1r-s cos Tr(s) 

((s) ((1- s) 
and consequently 

fi(z) = i 

-¼+ioo 

= l J ((2 - s) (eis1r + 2 + e-is'll')r(2 - s)r(s)e5"ds = 
41r2 ((1 - s) 

¼ 

= f11(z) + /i2(z) + f13(z) 
(5.1) 
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Since r(s) « tu-½e-fltl, /11(z) is regular for y > -21r, /i2(z) for y > -1r, 

fi3(z) for y > 0. It means, that we have to continue /13(z) to a meromorphic 
function for y > -1r. 

We have 

fo(z)- 4~2 cz~oo -
= /i(z) + h(z) 

;-¼ ) e-is1!'((2 - s)r(2- s)r(s)e52 ds = 
((1 - s) 

-¼-ioo 
(5.2) 

It is easy to verify that the integral h(z) is convergent for y < 21r. Since f13(z) 
was regular for y > 0, the integral I 1 (z) is convergent for O < y < 1r. 

We have formally 

Ii(z) (5.3) 

To justify the inversion of the order of summation and integration for O < y < 1r 

we will see that the integral and the series converge uniformly. 
Since for O < y < 1r integrals along the upper and the lower side of the 

contour tend to O we get by Cauchy's theorem of residues 

-7ioo e•(log nk-i•+ •) r( 2 s)r(s)ds = 
-¼-ioo 

½+ioo 

= J es(Jognk-i1!'+z)r(2- s)r(s)ds - 21ri = 
(5.4) 

½-ioo 
= Ii(z) - 21ri, 

say. Putting s = -w in Ii(z) we have 

Using now for this Mellin - Barnes integral formula p. 256 in [3], for O < y < 
7r, we get 

(5.5) 
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By (5.3), (5.4) and (5.5) we have 

I1(z) = _1_ ~ µ(k) [21ri(l + e-lognk+i,r-z)-2 - 21ri] = 
41r2 L n2k 

k,n=1 

i 
00 

µ(k) [ 2 1 ] 
= 21r ~ n2k nkez - 1 + (nkez - 1)2 

k,n-1 

and fi(z) has the poles of the second order at z = -lognk, n, k 1, 2, .... 

(5.6) 

Finally by (5.1), (5.2) and (5.6) we obtain the following analytic continuation 
of fi(z) for y > -1r. 

For I y I< 1r 

¼+ioo 
1 

Ji (z) = 47r2 J _(('--2 --'-s) eis,rr(2 
((1 s) 

-¼ 
¼+ioo 

1 
+ 21r2 J ((2 - s)r(2 - s)r(s)eszds+ 

((1 - s) 
-¼ 

i 
00 

µ(k) [ 2 +- --
2rr k~l n 2k nkez 1 + ( nke}- 1) 2 ] 

- l. 
4 

1 J ((2- s) e-is1rq2 - s)r(s)eszds 
41r2 ((1 - s) 

-¼-ioo 

(5.7) 

where the first is holomorphic for y > -21r, the second for y > -1r, the third is 
meromorphic on the whole complex plane and the next is holomorphic for y < 21r. 

In accordance with Theorem 1, (5.7) completes the continuation of f(z) to 
the region y > -1r. 

6. Let us consider the function 

(6.1) 

where k(! denotes the order of multiplicity of the complex zero e of ((s), defined 
for z belonging to 

H- = { z E C : Im z < 0} 

Since I ((s) I ((s) I by (2.1) we choose Tn(n S Tn Sn+ 1) such that 

I 
((u - 1 - iTn) I < Tc 

((u -iTn) - n 
for 

1 5 
--<u<-4- -2 

(6.2) 

(6.3) 
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If ((s) has only simples zeros, then 

f(z) = lim ~ 
n-+oo L 

Now taking the integral 

(J 

-T,,_<Im e<O 

J ((s - 1) szd 
((s) e s 

round the contour symmetrical upon the real axis to L in (3.1). 

(6.4) 

Then the integral along the lower side of the contour tends to O as n tends 
to oo for z E H- and we have for n tending to oo by Cauchy's residue theorem 

where 

? 
-¼-ioo 

((s- 1) szds 
((s) e 

is regular on H- (the proof similar to this for fi(z) ), 

fi(z) = J ((s- 1) szd 
((s) e s 

1(-¼,i) 

is regular on the whole complex plane and 

r;(z) 

.!, 
2 

J ((s -1) szd 
((s) e s 

!-ioo 

sz ~ cp(n) 
-e2 L 
- n=lni(z-logn) 

00 

I: cp(n) 
n=l 

is meromorphic on the whole complex plane. 

~ 

] 
i-ioo 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

The inversion of the order of integration and summation is justified for z E 
H- by the uniform convergence of the integral and the series. 

Now / 1- ( z) analytic for y < 0 we have to continue to y < 1T just as Ji ( z) 
in §5. We have by functional equation for (( s) 

(6.9) 
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where 
l 

f-(z) = - 1-1- 4 
((

2 - s) eis1r+szr(2 - s)r(s)ds (6.10) 11 41r2 -¼-ioo ((1 - s) 

is absolutely convergent for y < 0, 

l 

1 1-;r ((2 - s) sz 
f12(z) 271"2 -¼-ioo ((l - s) e r(2 - s)r(s)ds 

is regular for y < 1r, 

r13(z) = 4:2 
_l. 

14 ((2 - s) e-is1r+szq2 s)r(s)ds 
((1- s) 

l . 
4 -ioo 

is absolutely convergent for y < 21r. 
So, we have to continued f ii ( z) to y < 1r. 

We have 

-¼-ioo 

(6.11) 

(6.12) 

-¼Hoo (6.13) 

- - 1- J ((2 - s) eis1r+szr(2 - s)r(s)ds = 
41r2 ((1 - s) 

_J.. 
4 

It is easy to verify that the integral 12 ( z) is convergent for y > -211". Since 
J;i(z} is regular for y < 0, the integral 11(z) is convergent for -21r < y < 0 and 
we can apply formula p. 256 in [3] to 11(z) for -71" < y < 0 in the similar way as 
to Ii (z) (see (5.3) - (5.6)). We get 

1_ z __ 1 ~ µ( k) [ 2 + 1 ] 
1 ( ) - 471"2 L n 2k nkez - 1 (nkez - 1)2 

n,k=l 

(6.14) 

and 11 ( z) has the poles of the second order at z = - log nk, n, k = 1, 2, .... 
Finally by (6.9), (6.10), (6.11), (6.12}, (6.13} and (6.14) we obtain the follo­

wing continuation of f 1 ( z) to y < 11". 
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For I y I< 1r 

f- ( z) = ..!_ ~ µ( k) [ 2 + 1 ] 
1 27r L....t n2k nkez - 1 (nkez 1)2 -

k,n=1 

l +· 1 1-- lOO 1"(2 ) 
- -

4 

"' -
8 

eis1rr(2 - s)f(s}e8 zds+ 
47r2 _J. ((1 - s) 

4 

1 1-¼ ((2- s) sz 
+ 27r2 -Lico ((1 s)r(2- s)r(s)e ds+ 

4 

(6.15) 

what completes the continuation of f-(z) analytic for y < 0 to the halfplane 
y < 1[. 

7. Proof of Theorem 2. By (5.7) and (6.15) for I y I< 7r 

_ i 
00 

µ( k) [ 2 1 ] 
fi(z) + fi (z) = ; ~ n2k nkez - 1 + (nkez - 1)2 + 

k,n-1 

-¼+ioo 

+ _l_ J ((2 - s)f(2- s)f(s)eszds = 
27r2 ((1 - s) 

-¼-ioo 

1 Loo µ( k) [ 2 1 ] A - -- ---+---- + 1 
7r n2k nkez - 1 (nkez - 1)2 

k,n=1 

The integrals A1 is convergent for I y I< 7r and we can apply formula p.256 
in [3] in the similar way as to /i(z) and /1 (z) (see (5.3) - (5.6)). 

We get 

A z = i ~ µ(k) [ 1 _ 2 ] 
i( ) 7r L....t n2k (nkez + 1)2 nkez + 1 · 

k,n=1 

Finally for I y I< 7r 

fi(z) + /1(z) = 

_ !:_ 
00 

µ( k) [ 1 + 2 + 1 _ 2 ] 
- 7r L n 2k (nkez - 1)2 nkez - 1 (nkez + 1)2 nkez + 1 

k,n=l 

(7.1) 
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By theorem ofresidue using (3.6) and (6.7) for ally 

Jz(z) + J2(z) = J 
1(-¼,½) 

((s - 1) szd 
((s) e s-

2 
. ((s 1) sz 2 . 6e2z = - 1rires ---e = - 1ri • -
s=2 ((s) 7r2 

and by Theorem 1 and (6.8) 

J 
l(-¼,i) 

h(z) + J3 (z) = 0 

Thus for I y I< 1r by (7.1), (7.2) and (7.3) we have 

21ri(J(z) + J-(z)) = 

((s - 1) szd 
((s) e s 

(7.2) 

(7.3) 

- ~ - ----+---+-------- + i 
00 

µ(k) [ 1 2 1 2 ] 
1r k~l n 2 k (nke"' - 1)2 nke - 1 (nke"' + 1)2 nke"' + 1 (7.4) 

12i 'lz 2 ·s( ) - -e~ = 1l'Z Z 
1[ 

Hence according to theorem 1 for all y < 1r 

J(z) -J-(z) + B(z) 

by the principle of analytic continuation and similarly for y > -n 

J-(z) - J(z) + B(z) . 

This implies that J(z) and 1-(z) can be continued analytically over the whole 
complex plane as a meromorphic function and for all z 

J(z) + J-(z) = B(z) (7.5) 

To prove the functional equation (3.7) observe that if e is a complex zero of 
((s) than so is 7}. 

For z E H we have 

J(z) lim 
n-+oo 

L 1 dke-1 [(s - e)ke esz((s - 1)) 
(! (k(! - 1)! dskg-l ((s) 

odm (!<Tn s=(! 

and further denoting s = (J' + iT 

s=(! 
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Now since ((s) ((s) we get 

f(z) lim 
n-+oo 

8=(! 

and finally 

f(z) = lim 
n-+oo 

(7.6) 
s=(! 

= f-(z) 

Next using (6.5) we have for z E H 

f(z) = f-(z) = - f(z) + B(z) = - f(z) + B(z) 

and by complex conjugation for z E H- and by the principle of analytic continu­
ation for z with Im z = 0. This proves (3. 7). 
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