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HYPERBOLIC FUNCTIONAL DIFFERENTIAL INCLUSIONS 
IN BANACH SPACES WITH NONLOCAL CONDITIONS 

M. BENCHOHRA & S.K. NTOUYAS 

Abstract: In this pa.per we investigate the existence of solutions to an hyperbolic functional 
differential inclusion in Banach spaces with nonlocal conditions. We shall rely on a. fixed point 
theorem for condensing maps due to of Martelli. 
Keywords: Nonlocal hyperbolic fundional differential inclusion, convex valued multivalued 
map, existence, condensing map, fixed point. 

1. Introduction 

This paper is devoted to the study of the existence of solutions for the following 
hyperbolic functional differential inclusion (Darboux problem) with nonlocal con­
ditions of the form: 

82u(x,y) 
oxoy E F(x,y,u(x,y)), (x,y) E Ja X Jb = [O,a] X [0,b] (1.1) 

n 

u(x, y) + L fi(x, y)u(x, bi+ y) = </>(x, y), (x, y) E [-r1, a] x [-r2, O] (1.2) 
i=l 

m 

u(x, y) + L9;(x, y)u(aj + x, y) = </>(x,y), (x, y) E [-r1, OJ x [-r2, b] (1.3) 
j=l 

where F: Jax Jb xC([-r1, O] X [-r2, O], E) - 2E is a closed, bounded and convex 
valued multivalued map,</> E C([-r1,a] x [-r2,b]\(O,a] x (O,b],E),ft: [-ri,a] X 

[-r2,0] - R,i = l, ... ,n,g; : [-r1,0] x [-r2,b] - R,j = l, ... ,m,a;,j 
1, ... , m, bi, i 1, ... , n are finite numbers such that O < a1 < a2 < ... am $ 
a, 0 < b1 < b2 < ... bn $ b, a > 0, b > 0, r1 > 0, r2 > 0 and (E, I · I) a separable 
Banach space. 
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For each u E C[-r1, aJ X [-r2, bl, E) and each (x, y) E Ja X Jb the function 
U(x,y) : [-r1, O] X [-r2, OJ - E is defined by 

U(:i:,y)(s, t) = u(x + s, y + t), for each (s, t) E [-r1, OJ x [-r2, OJ. 

In recent years several papers have been devoted to study the existence of solutions 
for partial differential and functional differential equations with nonlocal condi­
tions. We refer for instance to the papers of Byszewski [5], [6J, [7J and Czlapinski 
[14]. The nonlocal conditions were introduced for the first time by Chabrowski [9] 
for studying linear parabolic problems. Conditions of this type can be applied in 
the theory of elasticity with better effect than the initial or Darboux conditions. 
By using the Kuratowski noncompactness measure Byszewski and Papageorgiou 
gave in [4J an existence result for solutions to nonlocal Darboux problem for an 
hyperbolic inclusion. 

In this paper we shall give an existence result for the problem (1.1)-(1.3). 
The method we are going to use is to reduce the existence of solutions to problem 
(1.1)-(1.3) to the search for fixed points of a suitable multivalued map on the Ba­
nach space C([-r1, aJ x [-r2, b], E). In order to prove the existence of fixed points, 
we shall rely on a fixed point theorem for condensing maps due to Martelli [25]. 
Our result, e.>..-tends to the functional case the problem considered by Byszewski 
and Papageorgiou [4J. The case where Ji= 0, i = 1, 2, ... , n, 9j = O,j = 1, 2, ... , m 
was studied recently by authors in [2]. This result is also a generalization of some 
results on initial and Darboux problems for hyperbolic differential and functional 
differential equations considered in the papers [3J, [10], [lll, [12], [13], [21], [22], 
[20], [15], [16], [18], [23], [26], [27J. 

2. Preliminaries 

In this section, we introduce notations, definitions, and preliminary facts from 
multivalued analysis, which are used throughout this paper. In the sequel we will 
denote by C([-r1, OJ x [-r2, O}, E) the Banach space of continuous functions from 
[-r1, OJ x [-r2, OJ into E with the usual supremum norm II· II and by C(Ja X Jb, E) 
the Banach space of continuous functions from Ja x Jb into E with the norm 

llzlloo := sup{lz(x, y)I : (x, y) E Ja X Jb}, for each z E C(Ja X J1:,, E). 

A measurable function z : Ja x J1:, --t E is Bochner integrable if and only if 
lzl is Lebesgue integrable. (For properties of the Bochner integral see Yosida [28]). 
L1 (Jax J1:,, E) denotes the Banach space of measurable functions z : Jax J1:, --t E 
which are Bochner integrable. 

Let (X, I · I) be a Banach space. A multivalued map G : X --t 2x is 
convex (closed) valued if G(x) is convex (closed) for all x EX. G is bounded on 
bounded sets if G(B) = UxEBG(x) is bounded in X for any bounded set B of 
X (i.e. sup{sup{IYI: y E G(x)}} < oo). G is called upper semicontinuous (u.s.c.) 

xEB 
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on X if for each x* EX the set G(x*) is a nonempty, closed subset of X, and if 
for each open set B of X containing G(x*), there exists an open neighbourhood 
V of x* such that G(V) ~ B. G is said to be completely continuous if G(B) 
is relatively compact for every bounded subset B ~ X . If the multivalued map 
G is completely continuous with nonempty compact values, then G is u.s.c. if 
and only if G has a closed graph (i.e. Xn ---+ x .. , Yn ---+ y .. , Yn E G(xn) imply 
y .. E G(x .. )). G has a fixed point ifthere is x EX such that x E G(x). 

In the following BCC(X) denotes the set of all nonempty bounded, closed 
and convex subsets of X. 

A multivalued map G: Ja x Jb x C([-r1, O] x [-r2, Oj, E) ---+ BCC(E) is 
said to be measurable if for each w E E the function Y: Jax Jb---+ JR defined 
by 

Y(x,y) = d(w,G(x,y,u)) inf{lw-vl: v E G(x,y,u)} 

is measurable. 
An upper semi-continuous map G : X ---+ 2x is said to be condensing if for 

any subset B ~ X with o(B) =/= 0, we have o(G(B)) < o(B), where o denotes 
the Kuratowski measure of noncompacteness. For properties of the Kuratowski 
measure, we refer to Banas and Goebel [l]. 

We remark that a completely continuous multivalued map is the easiest 
example of a condensing map. For more details on multivalued maps see the books 
of Deimling [17] and Hu and Papageorgiou [19]. 

Definition 2.1. A multivalued map Jax Jb X C([-r1, O] X [-r2, O], E)---+ 2E is 
said to be an £ 1-Caratheodory if 

(i) (x, y) --. F(x, y, u) is measurable for each u E C([-r1, O] x [-r2, O], E); 
(ii) u 1----l> F(x, y, u) is upper semicontinuous for almost all (x, y) E Ja X Jb; 
(iii) For each k > 0, there exists hk E L 1(Ja X Jb,JR+) such that 

/IF(x, y, u)II = sup{lvl : v E F(x, y, u)} ~ hk(t) for all !lull ::; k 

and for almost all (x, y) E Ja X Jb, 

We will need the following hypotheses: 

(Hl) F: J0 x Jb x C([-r1, O] x [-r2, OJ, E)---+ BCC(E) is an L 1 - Caratheodory 
multivalued map and for each fixed u E C([-r1, a] x [-r2, bl, E) the set 

SF,u = { v E £ 1 (Ja X Jb, E) : v(x, y) E F(x, y, U(x,y)) for a.e. (x, y) E J0 x Jb} 

is nonempty. 

(H2) There exist functions p, q E L 1(Ja x Jb, JR+) such that 

IIF(x, y, u)II := sup{lvl: v E F(x, y, u)} ~ p(x, y) + q(x, y)llu(x,y)II 

for almost all (x, y) E Jax Jb and all u E C([-r1, a] X [-r2, bl, E). 
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(H3) there exist nonnegative constants M and N such that 

l/i(x,y)I::; M for each (x,y) E [-r1,a] x [-r2,0J,i = 1, ... ,n, 

lgj(x, y)I ::; N for each (x, y) E [-r1, OJ X [-r2, bl, j = 1, ... , m, 

and 

nM +mN < 1. 

(H4) For each bounded set B C C([-r1 , a] x [-r2 , b], E) and for each (x, y) E 
Ja X Jb the set 

n m 

{ </>(x, 0) + ¢(0, y) - ¢(0, 0) - L fi(x, O)u(x, bi) - LBi(O, y)u(aj, y) 
i=l j=l 

+ 1x 1Y v(t, s)dtds: v E SF,B} 

is relatively compact in E, where SF,B = U{SF,u: u EB}. 

Remark 2.2. (i) If dimE < oo, then for each u E C( Ja X Jb, E) the set SF,u is 
nonempty (see Lasota and Opial [241). 
(ii) If dimE oo, then SF,u is nonempty if and only if the function Y : Jax Jb ---+ 
]R+ defined by 

Y(x, y) := inf{lvl : v(x, y) E F(x, y, U(x,y))} 

is measurable (see Hu and Papageorgiou [19]). 
(iii) (H4) is satisfied if dimE < oo or if for each (x, y) E Ja X Jb the multiva­
lued map F(x, y,.) sends bounded sets of C([-r1 , OJ x [-r2 , O], E) into relatively 
compact sets. 

Definition 2.3. By a solution of (1.1)-(1.3) we mean a function u(•, ·) E C([-r1 , a]x 
[-r2, b], E) such that, there exists v E £ 1 ( Ja X Jb, E) for which we have 

n m 

u(x, y) = ¢(x, 0) + ¢(0, y) - ¢(0, 0) - L /i(x, O)u(x, bi) - LBi(O, y)u(aj,Y) 
i=l j=l 

and v(t, s) E F(t, s, u(t, s)) a.e. on Ja x Jb and conditions (1.2) and (1.3) are 
satisfied. 

Our considerations are based on the following lemmas. 



-
Hyperbolic functional differential inclusions 33 

Lemma 2.4. [24]. Let F be a multivalued map satisfying (Hl) and let r be a 
linear continuous mapping from L 1 (Ja x Jb, E) to G(Ja x Jb, E), then the operator 

is a closed graph operator in C( J0 X Jb, E) X C(J0 X Jb, E). 

Lemma 2.5. [25]. Let X be a Banach space and N : X - BGG(X) be a 
condensing map. If the set 

n := {u EX: >.u E N(u) for some >. > 1} 

is bounded, then N has a fixed point. 

3. Main result 

Let D = [-ri, a] x [-r2, bl, D [-r1, a] x [-r2, b]\(0, a] x (0, bl, D1 = [-r1, a] x 
[-r2 , 0], D2 = [-r1 , 0] x [-r2, b]. Now, we are able to state and prove our main 
theorem. 

Theorem 3.1. Assume that hypotheses (Hl)-(H3) hold. Then the problem (1.1)­
(1.3) has at least one solution on D. 

Proof. Thansform the problem (1.1)-(1.3) into a fixed point problem. Consider 
the multivalued map, N: C(D,E) - 2C(D,E) defined by: 

N(u) = h E C(D, E): h(x, y) = 

where 

n 

</>(x, y) - L fi(x, y)u(x, bi+ y), (x, y) E D1 
i=l 

m 

</>(x,y)- L9J(x,y)u(x+aJ,Y), (x,y) E D2 
j=l 

</>(x, 0) + ¢(0, y) ¢(0, 0) 
n 

- L fi(x, 0)u(x, bi) 
i=l 
m 

L9;(0, y)u(aJ, y) 
j=l 

+ 1x 111 

v(t, s)dtds, 

VE SF,u = { v E L1(Ja X Jb,E): v(t,s) E F(t,s,u(t,s)) for a.e. (t,s) E J0 X Jb }· 

Remark 3.2. It is clear that the fixed points of N are solutions to (1.1 )-(1.3). 
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We shall show that N satisfies the assumptions of Lemma 2.5. The proof 
will be given in several steps. 

Step 1. N(u) is convex for each u E C(Ja x Jb, E). 

Indeed, if h 1, h2 belong to N ( u) , then there exist v1, v2 E SF, u such that 
for each (x, y) E J0 X Jb we have 

n 

hi(x, y) = </>(x, 0) + ¢>(0, y) - ¢>(0, 0) - L fi(x, 0)u(x, bi) 
i=l 

Let OS: a: S: 1. Then for each (x, y) E J0 X Jb we have 

(0:h1 + (1 - 0:)h2)(x, y) = </>(x, 0) + ¢>(0, y) - ¢>(0, 0) 
n m 

- L fi(x, 0)u(x, bi) L g3(0, y)u(a3, y) 
i=l j=l 

+ 1x 1Y [0:v1 (t, s) + (1 0:)v2(t, s)Jds. 

Since SF,u is convex (because F has convex values) then 

0:h1 + (1- 0:)h2 E N(u). 

Step 2. N is bounded on bounded sets of C(Ja X Jb, E). 

Indeed, it is enough to show that there exists a positive constant c such that 
for each h E N(u), u E Br = { u E C(Ja X Jb, E) : llulloo S: r} one has !lhlloo S: c. 

If h E N(u), then there exists v E SF,u such that for each (x,y) E J0 x Jb 
we have 

n 

h(x, y) = ¢>(x, 0) + ¢>(0, y) - ¢>(0, 0) - L fi(x, 0)u(x, bi) 
i=l 

-f g3(0, y)u(a3, y) + lx 1Y v(t, s)dtds. 
j=l O 0 

By (HI) we have for each (x, y) E J0 X Jb that 

lh(x,y)I S: l<t>(x,0)I + 1¢>(0,y)! + !¢(0,0)1 

+ t lfi(x, 0)llu(x, bi)I + f lg3(0, y)llu(a3, y)I + 1x 1Y lv(t, s)idt ds 
i=l j=l O 0 

S: 1¢(x, 0)1 + l</>(0, y)I + 1¢>(0, 0)1 + nrM + mrN + 1x ly hr(t, s)dt ds. 
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Then 

llh!loo $ 3ll<Plloo + +nrM + mrN + la lb hr(t, s)dtds = c. 

Step 3. N sends bounded sets of C(Ja x Jb, E) into equicontinuous sets. 

Let (x1,Y1), (x2, Y2) Ela x Jb, X1 < X2, Y1 < Y2 and Br be a bounded set 
of C(Ja x Jb, E). For each u E Br and h E N(u), there exists v E SP,u such that 

n 

h(x, y) = <P(x, 0) + <j,(0, y) - <j,(0, 0) - L fi(x, 0)u(x, bi) 

Thus we obtain 

i=l 

m X r 
L9j(O, y)u(aj, y) + f Jo v(t, s)dtds. 
J=l Jo o 

n 

+ L lfi(x1, 0)u(x1, bi) /i(x2, 0)u(x2, bi)I 
i=l 
m 

+ L IYJ(0,y1)u(aJ,Y1)- 9J(0,y2)u(aj,Y2)I 
j=l 

+ lx 2 ly2 

lv(t,s)ldtds 
Xl Yl 

$ l<P(x2, 0) - <j,(x1, 0)1 + l<P(0, Y2) - <P(0, Y1)! 
n 

+ L l/i(x1, 0) /i(x2, 0)!lu(x1, bi)I 
i=l 

m 

j=l 

As (x2,Y2) - (x1,Y1) the right-hand side of the above inequality tends to zero. 
As a consequence of Step 2, Step 3 and (H4) together with the Arzela-Ascoli 

theorem we can conclude that N is completely continuous and therefore a con­
densing multivalued map. 
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Step 4. N has a closed graph. 

Let Un -- u,., hn E N(un), and hn -- h,.. We shall prove that h,. E 
N(u,.). 

hn E N(un) means that there exists Vn E SF,u,. such that 

n 

hn(x, y) = </>(x, 0) + </>(0, y) - </>(0, 0) - L fi(x, 0)un(x, bi) 
i=l 

m X y 

- L9i(O,y)un(ai,Y) + 11 Vn(t,s)dtds. 
j=l O 0 

We must prove that there exists g,. E SF,u. such that 

n 

h,.(x, y) = </>(x, 0) + </>(0, y) - </>(0, 0) - L fi(x, 0)u,.(x, bi) 
i=l 

m xr 
- LYi(O,y)u,.(ai,Y) + 1 Jo v,.(t,s)dtds. 

j=l O 0 

Now, we consider the linear continuous operator 

r: L1 (Ja X Jb, E) -- C(Ja X Jb, E) 

vi---;. r(v)(x,y) = 1x 1Y v(t,s)dtds, (x,y) E J0 X Jb. 

From Lemma 2.4. it follows that r o SF is a closed graph operator. 
Clearly we have 

II (hn(x, y) - </>(x, 0) - </>(0, y) + </>(0, 0) 
n m 

+ Lfi(x,O)un(x,bi)+ L9i(O,y)un(aj,Y)) 
i=l j=l 

- (h .. (x, y) - </>(x, 0) - </>(0, y) + </>(0, 0) 
n m 

+ Lfi(x,O)u,.(x,bi) + Lg;(0,y)u,.(aj,Y))lloo - 0 
i=l j=l 

as n - oo. Moreover from the definition of r we have 

n 

(hn(x, y) - </>(x, 0) - </>(0, y) + </>(0, 0) + L f,(x, 0)un(x, bi) 
i=l 

m 

+ LYi(O, y)un(aj, y)) E r(sF,uJ, 
j=l 
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Since Un - u*, it follows from Lemma 2.4. that 

n m 

h*(x, y) </>(x, 0) ¢(0, y) + ¢(0, 0) + L fi(x, 0)u* (x, bi) + L 9J(0, y)u*(aj, y) 
i=l j=l 

for some v* E SF,u • . 

Step 5. The set 

n := {u E C(Ja x Jb,E): ,,\u E N(u) for some >. > 1} 

is bounded. 

Let u E n. Then ,,\u E N(u) for some >. > 1. Thus there exists v E SF,u 
such that · 

n 

u(x,y) = >.- 1¢(x,O) + ,,\- 1¢(0,y)->.-1¢(0,0)- >.- 1 Lfi(x,O)u(x,bi) 
i=l 

m 1:r:1y - >.- 1 L91(0,y)u(aj,Y) + >.-1 v(t,s)dtds. 
j=l O 0 

This implies by (H2) and (H3) that for each (x, y) E Ja x Jb we have 

lu(x, y)I $ 1¢(x, O)j + 1¢(0, y)I + 1¢(0, O)I + (nM + mN)llull 

+ 1:r: 1Y (p(t, s) + q(t, s) llu(t,s) II )dtds. 

We consider the function µ defined by 

µ(x, y) = sup{ly(t, s)I: (t, s) E [-r1, x] x [-r2, yl}, (x, y) E Ja X Jb, 

Let (x*,y*) E [-r1,x] x [-r2,y] be such that·µ(x,y) = lv(x*,y*)I. If (x*,y*) E 
J0 x Jb, by the previous inequality we have for (x, y) E J0 x Jb 

µ(x,y) $ 1¢(x, 0)1 + 1¢(0, y}I + 1¢(0, O)I + (nM + mN)µ(x, y) + l!Pllv(J
0
xJ0 ) 

+ 1:r; 1y q(t,s)lluct,s)lldtds 

~ 311¢11 + (nM +mN}µ(x,y) + IIPIILl(J,.xJb) + 1x 1Y q(t,s)µ(t,s)dtds. 

Thus 

1 1x1y µ(x,y)$l-nM-mN[311¢11+11Pllu(JaxJ0)+ 
0 0 

q(t,s)µ(t,s)dtds]. 
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Invoking Gronwall's inequality we get that 

Since for every (x, y) E Ja X Jb, llu(x,y)ll $ µ(x, y), we have 

llull= := sup{lu(x,y)I: (x,y) ED}$ M. 

This shows that n is bounded. 

Set X := C(D, E). As a consequence of Lemma 2.5. we deduce that N has 
a fixed point which is a solution of (1.1)-(1.3) on D. 
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