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INEQUALITIES FOR THE GRADIENT OF EIGENFUNCTIONS
OF THE LAPLACE-BELTRAMI OPERATOR

STEVO STEVIC

Abstract: In this paper we shall consider properties of the eigenfunctions of the Laplace-
Beltrami operator A, and properties of its gradient for a proper domain D with a conformal
metric, which density is equal to the reciprocal value of a defining function p(z) for this domain
ie. ds = p~1(z)|dzl.
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1. Introduction

Throughout this paper n is an integer greater than 1, D is a domain in the
Euclidean space R" , B(a,r) = {2 € R"||z — a] < r} denotes the open ball
centered at a of radius r, where |z| denotes the norm of 2 € R™ and B is the
open unit ball in R™. Let dV(z) denote the Lebesque measure on R"™, do the
surface measure.

We shall say that a locally integrable real valued function f on D possesses
the H L-property, with a constant ¢, if
f(a) € i/ f(z)dV(z) whenever B(a,7)C D

™ B(a,r)

for some ¢ > 0 depending only on n.

For example, subharmonic functions possess the H L-property with ¢ = 1. In
[4] Hardy and Littlewood essentially proved that |u|P, p > 0, n = 2 also possesses
the H L-property whenever u is a harmonic function in D. In the case n > 3 a
generalization was made by Fefferman and Stein [3] and Kuran [5]. An elementary
proof of this can be found in [7]. In fact the author proved the following theorem:

Theorem A. If a nonnegative, locally integrable function f possesses the HL-
property, with a constant ¢, then fP, p > 0 also possesses the HL-property but
with a different constant ¢; depending only on ¢,p and n.
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The following theorem was proved in [8]:
Theorem B. Let 1) be a proper subdomain of R™, f € C*(D) such that

K K
Af@I<— sup |[Vi@|+—3 sup |f(2) M
z€B(a,r) ™ zeB(a,r)

where K, Ky are positive constants independent of B(a,r) C D. Then |f|? pos-
sesses the HL-property. If (1) holds with Ko = 0, then |Vf|P possesses the
HL-property.

A function p(zx) shall be called (globally) a defining for the domain D if
peCYD;), DcC Dy, dp, #0, when =z € 8D and p(z) >0, z € D.

The proof of the fact that a defining function exists for every proper domain
D C R™ with C! boundary can be found in [9]. Observe that this defining function
is not unique. For example, if p(z) is a defining function then cp(z), ¢ > 0 is also
a defining function for the same domain.

In this paper we shall consider a proper domain D with a conformal met-
ric whose density is equal to the reciprocal value of a defining function for this
domain i.e. ds = p~'(z)|dz]. For such a metric the volume element is dV,(z) =
p~*(z)dV (z), the surface area element is do,(z) = p' "(z)do(z), the normal
derivative is a—iL = p(m)g—ﬁ, the gradient is V,f = p(z)Vf, and the Laplace-
Beltrami operatgr is

_ n_@_ 2-'n._§-£

see, for example [1].

In section 2 we shall prove a few auxiliary results.

In section 3 we shall generalize Theorem B and among other results, we
shall prove that the eigenfunctions of the Laplace-Beltrami operator A, and the
norm of its gradient possesses the H L-property, especially the solution to Laplace-
Beltrami operator possesses the H L-property. More precisely, we shall prove:

Theorem 1. If f is an eigenfunction of the Laplace-Beltrami operator A,, then
|f1? and |V f|?,p > O possesses the HL-property.

Also we shall give some inequalities for the eigenfunctions and the norm of its
gradient. The most important is the following:

Theorem 2. If f is an eigenfunction of the Laplace-Beltrami operator A, then

/D PtV PV, < C /D Pl IPdV,, >0, a>0,

where the constant C depends only on D,p,n, A and o.

One can find some other classes of functions which possess the H L-property
in [7], [8] and [10].
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2. Preliminaries

One can easily prove the following:
Lemma 1. Let K be convex compact subset of R™. If f € C1(K), then

(Ve > 0)(36 > 0)(Vz,y € K)(|z~y| < 6 = |f(z)—f(¥) —(Vi(¥),z—y}| < elz—y]).

By Lemma 1 and the Heine-Borel theorem we obtain:

Lemma 2. Let K be compact connected subset of domain D C R™. If f ¢
C'(D), then

(Ve > 0)(36 > 0)(Vz,y € K)(lz—y| < 6 = [f(z)-f(¥)—(VS(v), z—1)| < e|lz—yl).

Lemma 3. It p(z) is a defining function for a proper domain D C R"™ then there
are A, B > 0 such that Ad(z,0D) < p(z) < Bd(z,0D) whenever = € D.

Proof. For any = € D there is z,, € dD such that d(z, z,,) = d(z, D).
By Lemma 2

jp(2) = p(zm) —~ (Vo(Tm), T — Tm)| < €|z — Tm| when |z —am,| <.
Since p(z,,) = 0, it follows that
lo(2)] > (Vp(zm), T — Tm)| — €|z —2m|, when |z—zm|<s.

On the other hand, the vector x — z,, is orthogonal on the tangential hyper-
plane of the hypersurface p(z) = 0 in z,, i.e. Vp(zm) and = — z,, are colinear
vectors. Therefore

(Vo(zm), T — zm)| = [Vp(@m)| [T~ 2m|
from which we get
lp(z)| > (IVp(zm)| - €)lz —Tm|, when |z —zm| <.

Since p(z) is a defining function then Vp(z) # 0, * € dD. Consequently from
p € C*(D) we get that mingeap |Vp(z)] = m > 0. For € < m choosing € = m/2
we get |p(x)| > B|x—2m]| ie. p(z) > B|x—2,,| when 7 is in the §-neighbourhood
of dD. The set D, = {z € D| d(z,8D) > 8} is compact, therefore p(z) has a
minimum M; > 0. In the same manner we can conclude that d(z,d0D) has a
maximum Mz >0 in D;. For ¢ < M,/M,, ¢ > 0 we get p(z) > cd(z,dD), z €
D; . From all of the above we conclude that we can choose A = min (c, 2) .
From

lp(z)] = |p(z) — pzm)| < |z —zm| sup {Vp(z + (zm — z)1)]
t€(0,1]

< |z = Tm| sup [Vp(z)|
z€D

we can conclude that we can choose B = sup,¢p|Vp(z)]. B is finite since p €
C'(D). u
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Hereafter we shall consider that the defining function p(z) is a real valued
C? function.

Then next lemma is a special case of the Green’s formula which is valid on
Riemannian manifolds.

Lemma 4. Let p(z) be a defining the function of D, and let function f € C?(D).

Then 8
Apdep = /

—~——do,  whenever B(ae,7) C D.
B(a,r) dB(a,r) anp

3. Proof of the main results

In this section p(z) is a defining function for a proper domain D C R™ with a
conformal metric with density equal to the reciprocal value of the defining function
for this domain i.e. ds = p~!(z)|dz|, A, is the corresponding Laplace-Beltrami
operator for such a metric.

The following three lemmas generalize Theorem B in the case Ko = 0.

Lemma 5. Let D be a proper subdomain of R, f € C?(D) such that
|Af(a)] < —k sup |V f(z)]|

z€B(a,r)

for some ¢ > 0 and k € N, whenever B(a,r) C D. Then

IVi(a)| < —k sup |f(z) — f(a)],

z€B(a,r)

for some ¢; > 0, whenever B(a,r) C D.

Proof. Since D is a proper domain we can suppose that r € [0,1]. Also, it is
enough to prove the theorem for closed balls in D.
In {8], the following inequality was proved:

n
Vfla)l < — sup |[f(x) + r su Af(zx)|,
VI@I<T s @]+ S s 1)

whenever B(a,r) C D for f € C?(D).
By translations we can reduce the proof to the case @ = 0. Let B (0 p) cD
and M; = supgq 4 |f(z)|. Choose & € B(0,p) so that the function g(z) =

|Vf(z)|(p — |z|)* attains its maximum at & € B(0, p). This implies that on the

ball B (&, 3—:2’1') we have:

N k
Vi) < V@) sup (”"“‘) = |V f(3)].

meB(&,uﬂ)
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From the hypotheses we have

;
- sup |Vf(z)],
n+ 1% jep(a,s) (@)

N n
IVf(a)| < :Mf +

where s=r+t, r,t > 0.
Let s = —% and 5@ = o7t From that we have c(:,,ﬂ) ¢k 4t = £=lal
It is easy to see that this equation has a unique positive root tp which belongs

to the interval (O, PTMI) . Since t € (0,1) we have (E(%?T]l + 1) t> £ 2|al, which

S\ k L\ k
implies Lj (%‘ﬂ) <r <Ly (p_—zlﬂ) for some L1, Ly > 0. From all of the above
we get
211.Mf g 2"“111\:[; .
T Li(p — la}*

V@] < 2My 4 M VI@] e V@) <

Thus

PHinM,  Htin
= sup |f(z)].
L, L1 zeB(0,p)

9(0) = [VS(O)lp* < [VF(@)l(p —la)* <

Applying the above to the function f(z)—b, b € R and puting b = f(0) we
obtain the desired result. |

Lemma 6. Let D be a proper subdomain of R®, f € C)(D) such that

Vi@ < = sup 1/(2)],
T" x€B(a,r)

for some ¢ > 0 and k € N, whenever B(a,r) C D. Then the function |f|?, (p >
0) possesses the HL-property.

Proof. We may assume that B C D, in contrary we shall consider the function
f(a+rx), for r < d(a,dD) it is defined on B. Also we may assume that [, |f] =1
and BC D.

Let g(z) = |f(z)|(1 — |z|)™*. Since ¢ € C(B), glon = 0, there is a point
a € B so that the function g(z) attains its maximum i.e. g(z) € g(a), z € B.
By the mean value theorem we have

[f(z) — f(a)| € sup |Vf(a+ h(z—a))|lz|, where = € B(a,t) C B.
heo,1)
By the hypotheses we get

t
[f(a)] < |f(a:)]+-—i sup |f(=z)], for s=t+r, z€ B(a,t).
T" z€B(a,s)
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Now choose t,r > 0 such that t +r = -1—# and }i— = 2—,,1@; As in the proof of
the previous lemma we can conclude that this system has a unique solution and
there are L1, Lz > 0 such that L;(1 — |a])* <t < Ly(1 ~ |a|)*.

On B (a, 1;2]“1) we have

(1= Ja)*" If(a)l
(- fer )"

Therefore |f(a)] < |f(z)| + |/ (a)], for z € B(a,t) ie. |f(a)| < 2|f(z)|. Integrat-
ing this inequality over B(a,t) we obtain

kn
@< (15) @i<

= 2| f(a)l.

wirif@l <2 [

|f(z)|dV (z) < 2,
B(a,t)

which implies
9]

(1= |af)*n

From that we have |f(0)] < c; = ¢; f; |f|dV, as desired.
So, the function |f| possesses the HL-property. Thus by Theorem A we
obtain that the function |f|P possesses the H L-property for every p > 0. [ |

2
1/ (a)] < o S

Lemma 7. Let D be a proper subdomain of R" f e CY(D) such that

V@< 5 s 1/() - /(o)

z€B(a,r

for some ¢ > 0, and k € N, whenever B(a,r) C D. Then {Vf|P (p > 0) possesses
the HL -property.

Proof. By Theorem A it is enough to prove that there is a ¢ > 0 such that the
function |V f|? possesses the H L-property.
Also it is enough to prove the inequality

VA < /B IV (@)1dV ().

Let g(x) = f(z) — f(0) then

2c
[Vg(0)| < = sup |g(=)],
™ zerB

where rB = B(0,r).
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By Lemma 6, |g|P possesses the HL-property for every p > 0. Thus, we
have

k41 2k+lc c

— [ l9(@)dV ()
rB

(V£(0)| = |Vg(0)| <

<
S l9(2)] € —— =

Co

= 2 [ b@av(z).

Taking r = 1 we obtain

V£(0)] < 5 fB l9(2)]dV(z) = e /B | /0 1 f’(tm)dtl 4V ()
<o [ @) Eaave — o [ 1970 [ [2azavn
~a [ 916 = Lavy) < 2 [ sl maviw)

since from y = tz we have 0 < |y| = t{z| < t < 1. By Hoélder’s inequality we get

i< 2 ([ o) ([ woraw)

Choose p > 1, such that the last integral converges. Using polar coordinates
we have

1
—(n-Tpgy :f / ~(n=1p n=14:(Vdp = 1 ’
J W= [ [ e Qo = ey

for 27 > p > L. For such p we obtain ¢ = _£5 such that the function |V S|

possesses the H L-property. |

We are now in a position to prove Theorem 1.
Proof of Theorem 1. From (2) we have:

Aot = PH(Af = (n - 2)%(vp, vi).

So, the eigenfunction of the Laplace-Beltrami operator satisfies the partial diffeen-
tial equation

/\f
) = J
—(n ) (Vp, V)=
From this we have
Afl < "‘Lg’f L+ 2221971 10,
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If max_ 55 |Vp(x)| = M, and A is a constant chosen in a manner described in the
proof of the Lemma 3, then

MIVI@In-2) /@)

IAf@) < =3 d(z, dD) A% d(z, 0D)?

Thus the eigenfunction satisfies the condition (1). By Theorem B we get
that the function |f|?,p > O possesses the H L-property.

Let us now show that |V f|?, p > 0 possesses the H L-property. Let B(a,r) C
‘D, by Lemma 4 and since f is an eigenfunction of the Laplace-Betrami operator
we have:

8p@) [ w@=-rf @ -s@wer [ 2L,

B(a,r) B(a,r) aB(a,r) anﬂ
Hence
of
1Ay f(a)] dV,(z) < |A| |f(z) — f(a)ldV,(z) + I
B(a,r) B(a,r) 8B(a,r) |OMp
Since
1
[ r@-rai@= [ ] f'(a+t(m-a))dt) 4V, (a)
B(a,r) B(a,r) (/0
1
- [ | [ st o, @ - oy v
B(a,r) |JO
< swp Vi@ [ |z—aldv,()
z€ B(a,r) B(a,r)
<r sup [Vf(z) dv,(z)
z€B(a,r) B(a,r)
and
of
/ a—dangp sup |V f(z)] do,
aB(a,r) np z€B(a;r) 4B(a,r)

where M, = max_5|p(z)], we obtain
fBB(a r) de
18, (a)] < sup [Vf(2)] | r|Al + My———— |, (3)
’ Bla,r) * Tnar) Vs (@)

whenever B(a,r) C D.
By Lemma 3 we have

do
faB(a,r) doy cc faﬂ(a,r) d({,ans‘; w=T

= Y1 dV{:ﬂz )
fB(“s") dv;’ (:‘IJ) fB(a,r) d(z, 8 D)

whenever B(a,r) C D.
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It is clear that B(a,r/2) C B(a,d(a,8D)/2). If z € B(a,d(a,dD)/2), we can

conclude that ]

5d(a,8D) < d(z,8D) < gd(a, aD). (4)

Irom that we get

da(£) . -
Jona/2) aEamy Janian 2y (€ diam(D)
dV(z < Cad(a,8D) f av(z) < .
fB(a,r/Z) dII,gDS" B{(a,r/2)

From (3) and (5) we have

(5)

jam (D K
Bot@i< s (95 (G4 MCTE) < K wup 19500)
B(a,r/2) T B(a,r/2)
Thus,
K
Af(@)| < 5 sup [Vf(a)]
zEB(a,r)

whenever B(a,r) C D.
By Lemma 5 and Lemma 7, we obtain that |V f(z)|?,p > 0 possesses the
H L-property.
Lemma 8. If f is an eigenfunction of the Laplace-Beltrami operator A,, then
C
FRI@) < S [ P >0 (6)
T B(z,r)
whenever B(z,r) C D, where C = C(p,n, A) is a constant.
Proof. By Theorem 1, we have
lf ()P < —(/;11-/ |f|PdV, whenever B(z,r)C D.
r B(z,r)
By Lemma 5, we have
K
Vi) < 5 sup |f(y)l (M)
r yEB(z,r)
From (7) we get
P
8K
IVf(z)|P € (—3— sup lf(y)l> «
™ yeB(z,r/2)

Since

/ fPaV, ye B(z,r/2),
B(y,r/z)

we have

c,2»
sup  [f)P < 2 / FPav,
yGB(I‘f‘/z) T B(:r,r)

and thus (6) follows. |
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Proof of Theorem 2. Let us put r = d(a,8D)/2 in (6), we have

c
d(a, 8D)" ST T
(a,0D)FIVI(@) < 33Dy /B<a,d<a,ao>/z>

Since, by Lemma 3 there are A, B > 0 such that
Ad(a,0D) < p(a) < Bd(a,dD),

|f (z)[PaV ().

whenever a € D, we have

o7 |,
d(a, D)™ Jp(a,d(a,0D)/2)

Multiplying (9) by p®(a)dV,(a) and then integrating over D, we obtain

pP(a)VF(a)f < |f(z)[PaV (z).

[ P IP(a)|V £ () PV (a)
D

_pHa) . Ve
gC/Dd(a’ oD)" B(a,d(a,8D)/2) |/ (@) aV ()dV,(a).

By Fubini’s theorem we have

_pa) APV ()Y (a
/D d(a, OD)" B(a,d(a,8D)/2) |/ (z)PaV(z)dV,(a)

= )P _‘f&.z’..),.._ a T
= frer [ e spmav@ave,
where F(z) = {alz € B(a,d(a,0D)/2)}. From (8) we have

_PA) NV (x
Li@r [ b apmaveaa
z)|P a a—2n a .
<c /D /(@) /E 40, 9Dy aV (v (2
From (4), we obtain

f |f(:c)[”/ d(a,8D)*2"dV (a)dV (z)
D E{(z)

<¢ [ 1@pde, 000" [ viaiva)
D E(z)
Using (8) one more time, we obtain

/ \f(@)Pd(z, 8D)> " ] dV (a)dV (z)
D E(x)

)P p* 2" (g a z).
<C /D (@)™ (@) fE L V@@

(8)

(9)
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Since E(z) C {a||la—z| < d(z,0D)} we get fE(x) dV(a) < Cd(z,0D)" < Cp™(z).
Thus
[ u@rse @ [ weawe

E(z)
<c /D F(@)Poe " (z)aV (z) = C /D (@) o (2)dV, (z).

From all of the above we obtain the result. |

Remark. Throughout the above proof we used C to denote a positive constant
which may vary from line to line.

Lemma 9. If f is an eigenfunction of the Laplace-Beltrami operator A,, for
A #£ 0, then

1
|f(a)| < C (T + —-——) sup |V f(z)|, whenever B(a,r) C D,
T]/\l z€ B(a,r)

where C is a constant depending only on D, A\ and n.

Proof. Let B(a,r) C D. By Lemma 4 and since f is an eigenfunction of Laplace-
Betrami operator we have

Af(a) dv,(z) = —,\/

B(a,r) B(a,r)

@) - fanavia) + [ o

— do..
8B(a,r) anp g

If we literarly quote the proof of the second part of Theorem 1 we obtain our
result. |

Lemma 10. If f is an eigenfunction of the Laplace-Beltrami operator A,, for
A#£ 0, then
C
Cr@r <5 [ viere) (10)

B(a,r)

p > 0, whenever B(a,r) C D, where C is constant depending only on D,p, A
and n.

Proof. By Theorem 1, we get

C
[V f(a)lP r—"/;( )lVfI”dV, whenever B(a,r) C D.

On the other hand, by Lemma 9, we have

(@) sK(ﬁL -l-lﬂ) sup |Vf(a)] (11)

z€ B(a,r)
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From (11) we get:

P
1 P
(@) < QK ( + —) sp V@) (12)
T|A| vEB(ar/2)
Since
» . C2° P
V)P € — |VfIFdV, ye€ B(a,r/2)
r B(y‘r/Z)
we have
p . C2" P
sup |Vf(y)If € — |V fIPav. (13)
yEB(a,r/2) T B(a,r)
Inequality (10) now follows from (12) and (13). |

By Lemma 10, in the same manner as in Theorem 2, we can prove the
following:

Theorem 3. If [ is an eigenfunction of the Laplace-Beltrami operator A,, for
A # 0, then

/ ()| [(@)PdV,(z) < C / V@) @)dVy(@), p>0, a>0,
D D

where C is constant depending only on D,p,n,A and «.

We leave the proof of this theorem to the reader.
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