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RESONANCE CURVES IN THE BOMBIERI-IWANIEC METHOD 

MARTIN N. HUXLEY 

Abstract: The construction of resonance curves in the author's monograph 'Area, Lattice 
Points, and Exponential Sums' is modified so that the resonance curves now have a differen
tial equation, a functorial mapping property, and better approximation properties. 
Keywords: exponential sums, approximation, functorial. 

1. Introduction 

The Bombieri-Iwaniec method is used to estimate the exponential sums S 
= .Ee(J(m)), where e(t) = exp 21rit is the complex exponential function nor
malised to have period 1, and the phase function f(x) is smooth but rapidly chang
ing. Plots of the partial sums of S show regions of apparently random walk, and 
progressive spirals; Sir Michael Berry calls these spirals 'curlicues'. The curlicues 
occur around values of x at which f"(x) takes a rational value 2a/q with q small. 
In the Bombieri-Iwaniec method the curlicues are the major arcs (regions where 
there is good Diophantine approximation), and the remaining regions are regarded 
as made up of incomplete curlicues of large radius (minor arcs). Bombieri and 
Iwaniec [1] were able to estimate the contribution of major arcs directly, and that 
of minor arcs in mean eighth power, in the special case f(x) = Tlogx. The ex
tension to an 'arbitrary' f(x) and subsequent improvements by Huxley, Kolesnik 
and Watt are detailed in the monograph [3]. The method raises number-theoretic 
spacing problems, the second of which involves an action of the group SL(2, Z) 
on numbers constructed from the derivatives of f(x). 

Iwaniec and Mozzochi [9] adapted the method to the exponential sums which 
arise in counting the number of integer lattice points below a smooth curve y = 
= g(x). Major arcs occur around values of x at which g'(x) takes a rational 
value a/ q with q small. The rest of the range for x is divided into minor arcs, 
each labelled by a rational value of g'(x) on the interval, with q large. The 
contributions of minor arcs are estimated in mean fourth power. Iwaniec and 
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Mozzochi had g(x) = T/x, and the present author generalised the method to 
'arbitrary' g(x). 

In the mean fourth power argument, two different minor arcs arc counted 
only once if there is an affine map of the form 

(:)-(~ ~)(:) (modulo integers), 

with the matrix in SL(2, Z), which superposes the corresponding arcs of the curve 
y = g(x) up to a certain accuracy. The author, perhaps unwisely, called this 
phenomenon 'resonance'. The number of resonant pairs of minor arcs has to be 
estimated in order to complete the estimation of the original exponential sum. 
This is the only point in the Bombieri-Iwaniec and Iwaniec-Mozzochi methods 
where the actual form of the function f(x) or g(x) matters, apart from having to 
exclude trivial exceptional functions like f (x) = x2 , g(x) x. 

The natural method of counting would be to fix a/ q, and ask how many 
matrices give resonances. The matrix acts on a/q by 

a --q 

Aa+Bq 
Ca+Dq. 

This seems very difficult. Bombieri and Iwaniec fixed the matrix, and estimated 
the number of rationals using only two of the four coincidence conditions necessary 
for a resonance. The author [2] interpreted the other two conditions as: an integer 
point lies close to a certain curve, the 'resonance curve'. We remark at this point 
that the shortened version of [2j given in chapter 15 of [3] is actually wrong because 
the lemma corresponding to our Lemma 5.5 was omitted. 

The Bombieri-Iwaniec method would reach essentially its final form if we 
could prove that most resonance curves have no integer point close to them. In this 
paper we give a precise construction of the resonance curve, involving a differential 
equation like that for the polar dual of a plane curve, and we prove a 'functorial 
under inclusion' property, which we use to obtain the relationship between integer 
points and resonance curves to greater accuracy. The applications to exponential 
sums, lattice points, and to the Riemann zeta function [4,5,6] will be published 
separately. 

We treat the Second Spacing Problem from the beginning, with simplifica
tions in Lemmas 4.1 and 4. 7, which were the key lemmas used by Huxley and 
Watt in [7,8]. We do not use the results on rational points dose to a curve from [2] 
and [3 chapter 4]. In the new approach, Lemma 4.3, that coincidences give in
teger points close to the resonance curve, is separated from its sharpened form 
Lemma 5.2, that long coincidences give integer points closer to the resonance 
curve. Section 5, on the correspondence between coincidences and integer points, 
has been expanded from the accounts in [2] and [3], which were over-simplified. 
Lemmas 5.4 and 5.5 should make matters clearer. The paragraph of proof corre
sponding to Lemma 5.5 was omitted in error from [3 chapter 15]. 
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To sketch the functorial property, we note that the resonance curve depends 

both on the matrix ( ~ ~) of SL(2, Z) and on a 'reference interval' between 

consecutive Farey fractions e / r < a/ q < f / s. We represent the reference inter

val by the matrix ( ~ ; ) of SL(2, Z). Allowable subintervals correspond to 

multiplying on the right by a matrix of SL(2, Z) with non-negative entries. The 
resonance curve for the subinterval is mapped onto the resonance curve for the 
whole interval, by an affine map modulo integers whose shift vector is close to 
an integer vector, and whose matrix is the matrix used to construct the subin
terval, but transposed, because the resonance curve lies in a dual vector space. 
The difficult part is to show that the shift vector is close to an integer vector; 
approximation theory wants to be linear, but the algebra is linear fractional. It is 
not possible to make the shift vector zero without using the entire Taylor series 
off (x) or g(x) in the construction. However we only require f(x) to be class C 4 , 

or g(x) to be class C3 . 

The precise conditions which we assume for the function f (x) are as follows. 
We suppose that f(x) is obtained on scaling a fixed function F(x) by f(x) = 

TF(x/M), which is four times continuously differentiable for 1 ~ x ~ 2, and 
its derivatives satisfy: 

(1.1) 

for r 2, 3, 4, 
(1.2) 

for r 2, 3, where C 1 is some positive constant. In some ranges we require extra 
conditions, either (1.2) for r 4, or 

(1.3) 

for some positive constant C3 (the numbering of constants corresponds to Theo
rems 1 and 3 of [2]). We also consider a family of functions f(x, y) = TF(x/M, y), 
which are four times partially differentiable with respect to x, with F 11 and F111 
non-zero twice differentiable functions of x and y, which satisfy (1.1), (1.2) 
and (1.3) in the appropriate ranges for each fixed y, and also 

(1.4) 

for r 2, where we have written Fi or 81F for 8F/8x, F2 or fhF for 8F/8y, 
and similarly for other partial derivatives; note that F12 means (F1 )2 = 8281F. 
In some ranges we require extra conditions, either (1.4) for r 3, or 

3Ffu + 4F11 Fu 11 
F11111 
Fn112 

3F11F111 
F1111 
Fn12 

(1.5) 



10 Martin N. Huxley 

Here again C4 and C5 are positive constants. The implied constants in the order 
of magnitude notation (Landau's O and Vinogradov's «) are constructed from 
the constants Ci. 

This paper and [4j originally formed one long preprint, and references to 
[4 sections 3, 4, 5] in [5, 6] should be taken as references to this paper. 

2. Subdividing the sum 

We divide the sum from M to M2 into short intervals of length N. A related 
parameter R is defined as the least positive integer for which ½f"(x) changes by 
at least 1/ R2 on any interval of length N, so 

1 1 
-- ~ - min IJ(3)(x)I 
NR2 ---: 2 ' 

(2.1) 

We label the short interval as a Farey arc l(a/q). The label a/q is a rational 
value of ½f"(x), usually the rational value a/q with the smallest denominator q. 

Intervals for which the smallest denominator q is too small (q ~ Qo) or too 
large ( q ~ Q1 ) are exceptional. If the smallest denominator has q ~ Q1 ~ R + 1, 
then a/q lies between two fractions e/r and f /sin the Farey sequence :F(Q1 -1), 
with r + s ~ Q1, 1/rs > 1/R2

• If r ~ s, thens~ Qi/2, and 

(2.2) 

I
~ - ~, ~ _!_ ~ _2 __ 
q r rs rQ1 

We take Qo and Q1 satisfying 2R2 ~ QoQ1 ~ 3R2 , so that (2.2) implies r ~ Qo. 
We extend the interval l(e/r) to include all x with 

I e 1 "( ) I 2 - - -f X ~ --, 
r 2 rQ1 

forming the major Farey arc J( e/r). A Farey arc /( a/ q) which does not meet any 
major arc now has the smallest denominator in the range Qo < q < Q1 . There are 
incomplete Farey arcs in the complement of the major arcs and at the ends of the 
interval. For technical reasons there should be at least five complete Farey arcs in 
each component of the remaining sum (the minor arcs). Any smaller component 
is divided between the major arcs on either side. After this distribution a major 
arc J(e/r) has length 

N(~) « NR2 (-1- + ~) << NR
2 

« NQo. 
r rQ1 R 2 rQ1 r 

Lemma 7.6.1 of [3] transforms the sum over a major arc into two sums of lengths 
at most 

(e) r 2 (e) NQ~ K - «--N - «--
r NR2 r rR2 
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plus an error term, provided that 

Q ~ .2_(NR2)1f3 
o""' Bi ' 

(2.3) 

where B 1 is a constant sufficiently large in terms of the derivatives of the under
lying function F(x). The trivial estimate for a major arc sum is 

(
N R2) 1/4 (N R2)1/3 

« L Jr kr3 + ..Ji logM « 
k«l<(e/r) 

NQ3/2 (NR2)1/3 
« R; + Jr logM. 

The rational number e/r lies in an interval of length 

since Q1 > r, and the choice of parameters always satisfies 

M~NR. (2.4) 

Hence by 13] Lemma 7.6.1 the major arc contribution is 

( 
Mr. (NQ~/2 

(NR2)1/3 )~ 
0 L NR2 R + ..Ji log M 

r~Qo r r 

(
MQs/2 MQ3/2 ) (MlogM) 

= 0 R~ + (NR2)2/3 logM = 0 vN ' (2.5) 

provided that 

( R) 1/s 
Qo « N R, (2.6) 

a condition which implies (2.3). 
The remaining Farey arcs are minor arcs. On a Farey arc ½!"(x) runs 

through an interval J oflength o, where in (2.1) 

(2.7) 

Let e/ r be the rational number of smallest denominator on J. If r ;;;:: R, then we 
pick e/r as the rational approximation to ½f"(x). If r < R, then we pick a/q 
with q > R. The point e/r divides J into two intervals J1 and J2. Let J2 be the 
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longer, length o2 say. Let a/q be the rational number in J2 with second smallest 
denominator. Since ( a - e) / ( q - r) is not in h, we have 

so 

and 
1 02 1/2R2 1 -~---~----~-

qr 1 + 02r2 7 
1 + r 2 /2R2 7 

3R2 · 
(2.8) 

Having chosen the rational approximation a/ q on the Farey arc, we take as centre 
of approximation the integer m for which ½J"(m) is closest to a/q, and we use 
the approximation for f(m + n) 

writing 

an2 n 3 

f(m) + nf'(m) + - + -J<3)(m), 
q 6 

f'(m) = b + '\ 
q 

(2.9) 

where b is an integer and K. is bounded: b is the nearest integer to qf'(m) unless 
2qf'(m) is close to an odd integer, when we consider the two nearest integers, with 
two choices for b and K. in (2.9). Each minor arc sum is transformed by Poisson 
summation (including the finite Fourier transform mod q ). The Farey arc sums are 
grouped into classes according to the nature of the rational number a/q: the size 
range Q ~ q ~ 2Q, and, in [4], whether a/ q has a good rational approximation e/r 
with r much smaller than q. The Poisson summation requires the parameters N 
and R to lie in certain ranges: 

N 3 « MR2
. (2.10) 

3. Local Variables on Farey Arcs 

The name 'Farey arcs' suggests a curve. The underlying curve is the graph of y 
= f' ( x) . The area beneath this curve is f ( x), and Poisson summation interchanges 
the x- and y-axes. The centre of the Farey arc I(a/q) is the integer mo for 
which ½f"(mo) is closest to a/q. The cubic approximation to f(x) on I(a/q) 
gives a quadratic approximation to f'(x): 

y , ) ~ b + K. 2a ( ) )? f (x = -- + - x - mo + 3µ(x - mo =, 
q q 
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where b is an integer, -1 < K < 1. For q odd, let e/r be the fraction before 
2a/q in the Farey sequence :F(q). The vectors (r,e) and (q,2a) are a basis for 
the integer lattice. The change of variables 

X ry e(.x mo), Y = qy 2a(.x mo) 

gives 

Y 9'! b + K + 3µq( qX - r Y)2 
9'! b + K + 3µq3 

( X - b;) 
2 

If q is even we work in :F( q/2) and modify b and K to get the denominator q/2. 
The position of the graph of y f'(.x) with respect to the integer lattice modulo 
automorphisms is approximately determined by the the numbers µq3 (real), K 

(modulo one) and br/q (modulo one). In congruence notation, r is the integer 2a 
defined by 

1 ~ 2a ~ q, 2a.2a = 1 (mod q). 

The resonance curve is a device for comparing the approximations on neigh
bouring Farey arcs. We express the construction in terms of the function h( v) 
defined implicitly by 

V ~f"(.x), J'3\.x) = 6h(v). 

Then 
dv d.x 1 
d.x = 3h(v), dv 3h(v)' 

J'4)(:z:) = 6h'(v): = 18h(v)h'(v}. 

Lemma 3.1. (substitution) Let m 1 , m2 m 1 + n be integers, corresponding to 
v w1 , W2 respectively. Let 

For k = 0, 1, 2 let h be the integrals 

and let 

ai)k h'(v)dv, 
q1 

(3.1) 
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Then 

and 

Proof. We write rw2 vkh'(v) 
Jk = Jw1 3h2(v) dv. 

We obtain (3.2) at once by integration. For (3.3) we integrate by parts: 

fw2 l [ v ]w2 1w2 vh'(v) 
n lw1 3h(v) dv 3h(v) wi + w1 3h2(v) dv 

W2 W1 

3h(w2) 3h(wi) +Ji= 

_l_ (a2 + .,\2)- _l_ (a1 +Ai)+ Ji= 
3µ2 Q2 3µ1 Q1 

= >.2 _ ~ + _l_ ( a2 a1) _ a1 Jo + Ji 
3µ2 3µ1 3µ2 Q2 Q1 Q1 

by (3.2). The third term is G in (3.1), and the two integrals give Ii. 
For (3.4) we start from Taylor's theorem in the form 

rm+n . 
J'(m + n) = /'(m) + nf"(m) + Jm (m + n - x)/<3)(x)dx 

with m = m1, n = m2 - m1. The integral in (3.5) becomes 

We expand 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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so that (3.5) becomes 

We substitute (3.3) for ..\1n and cancel some terms to get (3.4). • 
In order to express Lemma 3.1 in terms of v, we write vi = ai/qi, vi = 

= h(vi), and we define Xi by ½!"(xi)= Vi. By construction mi is one of the two 
integers nearest to Xi (the nearest integer unless Xi is close to halfway between 
two consecutive integers; in counting arguments we must consider both choices 
for mi in this case). We want to replace G by K where 

(3.6) 

and 11,, by J1,, where 

Jv2 (v - vi)kh'(v) 
J1,, v1 3h2(v) dv. (3.7) 

Lemma 3.2. (approximation) We have 

-2=1+0 - , V· ( 1) 
14 M ~=l+o(!), (3.8) 

( 
Kk ) 

J1,, =Ii,,+ 0 M(NR2)k-1 . (3.9) 

and in (3.3) and (3.4) of Lemma 3.1 

(3.10) 

(3.11) 

Proof. For (3.8) we use 

rm, 1 (4) 1 
µi vi ix, e/ (x)dx « MNR2" 
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For (3.9) we use 

We substitute (3.8) and (3.9) into (3.3) and (3.4). For (3.11) we have also used 

/13 - /\1 2 2 \2 \2 1 ( N2R4) 
3µ

2 
+ >.1 Io « (N R 2 ) 2 N R + ( w2 - w1)-x::,- « 

1 1 K 1 
« NR2 + M"NR2 « NR2 . • 

To study an interval [a, ,B] of values of if"(x) with ,B-a < 1/3, we consider 
the rational number b/ j in [2a-,B, 2,B-a] of least denominator. Let a/hand c/k 
be the predecessor and successor of b/j in the Farey sequence :F(j). Choose 
integers t ~ 0, u ~ 0 with 

a + bt 
2 

a + b( t + 1) 
h+jt < a-,B~ h+j(t+l)' 

b( u + 1) + c 
213 

bn + c 
---'--:S::: -a<--
j ( n + 1) + k "' ju + k . 

The intervals [(a+ bt)/(h+ jt), b/j] and [b/ j, (bu+ c)/(ju+ k)] cover the interval 
[a, /3]. If either interval does not meet [a, f3], then we discard it. Each (remaining) 
interval is of the form [e/r, f / s] with f / s-e/r 1/rs, with length at least (3-a, 
with one endpoint and the mediant ( e + /) / ( r + s) in the interval [2a - (3, 2(3 - a). 
This implies 

(max(r, s))
2 ~ B(,B 

1 
a). 

Each rational number in a reference interval [e/r, f / s] can be written as 

a eu + ft 
q ru +st' 

(t,u) = 1. 

This is a linear fractional map from u/t in the interval (0, oo) to a/ q in the open 
reference interval ( e / r, f / s) . 

Lemma 3.3. (reference interval transformation) Consider a reference interval 
e/r ~ a/q ~ f /s of values of ½J"(x), UJith fr-es= 1. In Lemmas 3.1 and 3.2 
let 

a1 e a2 eu +ft e t 
q1 r' q2 ru + st r + r(ru +st)' 

corresponding to a change of variable from v to x u/t by 

V 
e 1 
-+--
r r(rx + s)' 

h(v) h1 (x). (3.12) 
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Write b, K., .,\, µ, v for b1, K.1, A1, v1 , v2. In this notation (3. 7) becomes 

and, corresponding to (3.1), (3.2), (3.3), and (3.4) we have 

K 
t 

3vr(ru +st)' 
1 1 

3 = 3 + Jo, /l, V 

r .,\2 ,\ ( K) 
n = l\. + 3v - 3µ + J1 + 0 M , 

b? + K.? b + K. 2en ') ( 1 ( K
2
)~ ~ ~ = --+-+3vK~+2,\2K+J2+0 NR? I+ M . 

ru + st r r ~ 

Then 

wht!re 
B=bu+2(eu+ft)n 

is an integer, 0 is a real number with 

0 = (b + K.)s + 2.,\ 
r 3µr' 

and G 1 (x) is the function of x u/t defined by 

with 

1 2 
G1(x) = ------+-Ji (rx + s)h, 

3h1(x)r2 (rx + s) r 

1 
G~(x) ------ -rJ? 

3h1(x)r(rx + s)2 ~, 

"( 2 
Gi x) = 3h1(x)(rx + s)3 · 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

Proof. We get (3.15) by direct integration, whilst (3.14), (3.16), and (3.17) are 
restatements of (3.6), (3.10) and (3.11), and (3.13) follows from (3.7) by the sub
stitution (3.12). We verify (3.22) and {3.23) from the definition (3.21) of G1 (x) 
by differentiation. The variable x u/t decreases as x increases, so there is a 
minus sign in (3.13) and (3.22). 
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For the main result (3.18) we multiply (3.17) by ru + st, using 

e t 
(ru +st)-= eu + ft - -. 

r r 

This gives 

bst KSt 2nt 
bu+ KU+ - + - + 2(eu + ft)n - -+ 

r r r 

+ ~ t + ~:~ + ( ru + st)h + 0 ( N ~ 2 ( 1 + : )) , 
(3.24) 

where we have substituted for (ru + st)K from (3.14). By (3.16) we have 

2nt Kt 2A2t Kt 2,\t 
+-+ =--+-r r 3vr r 3µr 

2t (Kt) -;:.!1 + 0 Mr , (3.25) 

and the error term is O(K2Q/MNR2
). We substitute (3.24) into (3.23) and col

lect terms to obtain (3.18). • 

A Farey arc I(a/q) corresponds to a change of basis for the integer lattice 
to the vectors ( q, a), (a, -ij_), where aa + qij_ 1. If t, u satisfy tl + uu = 1, 
u ~ 1, then we have 

(: -;/) (! ; ) ( ! -_u) = ( eu + ft 
t ru + st 

e~ - Ju) 
rt - su ' 

so that 
(eu + ft)(rt - su) (ru + st)(el Ju)= 1, (3.26) 

and 
r u rl-su 

(3.27) 
t(ru+st) t ru + st 

Lemma 3.4. (Inverses mod q) Write b2 + K2 = B + L = B + l + K2 in the notation 
(3.19), where l is an integer. Let ((x)) denote the reduction modulo 1 of x. Then 

((a;2
} = { (r:u ::~b2} = 

= (-}ci Ci) fu K K,>r 2,\2 } +-- - +--:---,-- + 
t t t(ru + st) 3v(ru + st) 

+o(;Q+ :q)· 
Proof. By (3.26) we have 

(rt - su)B = (rt - su)bu + 2(rf - su)(eu + Jt)n 

(rfu + stt - s)b + 2(1 + (ru + st)(el fu))n 

= 2n - bs + (ru + st)(bf + 2(et - fu)n). 

(3.28) 
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Hence 
(((rf-su)B1 = ((2n-bs1, 
\\_ ru + st )} \\_ ru + st )} 

and by (3.27) 

(( (rt - su)b21 ((2n - bs + (rt - su)i1 = 
\\_ ru + st )} \\_ ru + st ru + st )} 

(( 2n - bs ( r ft) \\ 
= \\ ru + st + t(ru + st) - t i)} 

_ (( 1 ( 2n _ bs + r L) _ K.2r _ iu 1 
- \\ ru + st t t( ru + st) t )} · 

From (3.16) and (3.18) 

rL 
2n+

t 
2K + - - - + 211 + 0 - + 2A2 2A ( K) 

3v 3µ M 

(3.29) 

+ ~ ((b+ K)st + 2At +KU_ tG1 (!!.) + O (_g_ (l + K
2

)~\ 
t r 3µr t N R 2 M ~) 

b 
2t K.(ru + st) 2A2 

21 s+-----+----+-+ 1-
3vr(ru + st) 3v 3v 

( 
t 21 (ru+st) 1 ) 

-r -----+- 1---- 2 + 
3vr2 (ru + st) r t 

(
K NR

2 
( Q ( K

2
)~\ 

+O M + KQ NR2 l+ M ~) = 

= bs 2A2 K.(ru + st) _ ru + st G' (~) 0 (~ K) 
+ 3v + 3v t 1 t + K + M · 

We obtain (3.28) by substituting (3.30) into (3.29). • 

4. The Exact Resonance Curve 

The Second Spacing Problem is to count the number of coincidences betweeen 
pairs of Farey arcs I(a/q) and I(a' /q'). Let (b + K)/q and µ be the coefficients 
of the approximation on the Farey arc l(a/q), and let (b' + K')/q', µ' be the 
corresponding coefficients on I( a'/ q'). We recall that a/ q and µ have fixed orders 
of magnitude, with 

1 "( ) M 2! X X NR2' 
! JC3)(x) X _1_ 
6 NR2 ' 

(4)( 1 
f x) «: MNR2. (4.1) 

We suppose that q and q' lie in the same range Q ~ q ~ 2Q. We define the 
inverse a (mod q) by aa = 1 (mod q) and similarly a'a' = 1 (mod q)'. The 
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Coincidence Conditions can be written as 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

where !!xii denotes the absolute value of ((x)), the reduction of x modulo one, 
and .!11, ... ,.!14 are less than½. By (4.1), (4.3) implies q x q', so we lose little 
generality by restricting q, q' -to the same range Q ~ q ~ 2Q. The sizes of Lli 
depend on Q. We suppose that 

R4 
Ll1 « HNQ2' 

R2 
.!13 « HQ' 

(4.6) 

(4.7) 

The parameter H can be taken equal to N in this paper, but H may be smaller 
in other applications of resonance curves [3 chapters 8, 9]. 

Define the integers ij, q' by aa + qij 1, a' a' + q' q' = 1 . The First Coin
cidence Condition ( 4.2) says that there is an integer matrix of determinant one 
(the 'magic matrix') with 

(
a' 
q' 

-q') = (A B) (a ~if) 
a' C D q a 

and 
ICI = la'q aq'I ~ Ll1qq' ~ 4Ll1Q2

, 

so, by (4.6), jCj is bounded uniformly in Q. Since 

¢ a q ~ - = C- + D, - - = C- - A 
q q q' q' ' 

we can classify magic matrices as follows. 
Type 1. The identity matrix, and a finite set of other matrices. 
Type 2. Other triangular matrices with A D 1, B O or C O. 
Type 3. Matrices with A, B, C, D non-zero, C / D negative, and 

A 
-x 
C 

D B 
XDX 

B M 
AX NR2 ' 

Matrices (if any) with BC non-zero that do not satisfy the conditions for type 3 
must have AD bounded; they are the extra matrices of type 1. 

For a type 3 matrix the fraction v = a/q lies in a short interval close to 
-D /C, called the domain of the magic matrix, and v' a' /q' lies in a short 
interval close to A/C. Our next lemma (parts of Lemmas 14.3.1, 14.3.2 and 
14.3.3 of [3]) uses the Second Coincidence Condition to shorten these intervals. 
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Lemma 4.1. (the Second Coincidence Condition) For upper triangular matrices 
the Second Coincidence Condition (4.3) holds only when 

/:,.2M 
B « NR2' (4.8) 

prnmded that the underlying function F(x) satisfies 

(4.9) 

for some constant C1 . 
For lower triangular matrices the Second Coincidence Condition ( 4.3) holds 

only when 
C l:,.2NR2 

« M ' (4.10) 

prnmded that the underlying function F(x) satisfies 

(4.11) 

for some constant C3. 
For type 3 matrices, which have 

(4.12) 

for some sufficiently large constant B2, the Second Coincidence Condition holds 
precisely when ½f"(x) lies in the intersection of the range of ½f"(x) with an 
interval D( i12), the domain of the magic matrix, with length 

(4.13) 

Proof. The lower bound for i12 in ( 4.6) allows us to replace µ and µ 1 by h( v) 
and h(v') in (4.3) with error O(1/M) = 0(.6.2 ). Hence 

log h(v) - log h(v') - 3 logq1 + 3 logq « i12. 

For upper triangular matrices q = q' . We have 

d 
dv log h(v) 

so by (4.1) and (4.9) 

h'(v) 

h(v) 

2/<4)(x) 
f(3)(x)2' 

I
d I NR

2 

dv log h(v) x ~-

Since B v' - v , we deduce ( 4.8). 

(4.14} 
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For lower triangular matrices a= a', so the left hand side of (4.14) is 

log h( v) - log h( v') - 3 log v' + 3 log v. 

We have 

d 
d(l/v) (log h(v) 

2 (h'(v) 3) 
3logv) = -v h(v) - ; = 

By (4.11) 

f"(x) (3/(3)(x)2 - f"(x)J<4)(x)). 
2f(3)(x)2 

!d(ld/v)(logh(v)-3logv)I x N:2 , 

and since C 1/v' - 1/v, we deduce (4.10). 
For type 3 matrices v lies in a range of length 0(1/ICI) which can be 

covered with a bounded number of reference intervals [e/r, f / s], so that v' lies in 
the reference interval [e' / r', f' / s'] , where 

( f' e') = (A B) (! e). 
s' r' C D s r 

We extend the notation (3.12): 

ex+f e'x+f' 
v -- v' -- h(v) - h1(x} h(v') = h?.(x), (4.15) 

rx + s ' r' x + s' ' - ' -

so that ( 4.14) becomes 

logh1(x) -logh2(x) - 3log(r'x + s') + 3log(rx + s) ~ Ll2; (4.16) 

we note that rx + s x r'x + s'. The derivative of the left hand side of (4.16) is 

hi(x) h~(x) 3r' 3r _ --------+---
h1(x) h2(x) r'x + s' rx + s 

h'(v) 1 h'(v') 1 3C 
= h(v) · (rx + s)2 - h(v') · (r'x + s')2 + (rx + s)(r'x + s1) 

1 (3c + 0 (NR2)~ 
(rx + s)(r'x + s') M ~ · 

By (4.12), if the condition holds at x x1 and x = x2, then 

r2 .!!:_ log ( h1(x)(rx + s)3 ) dx x C r2 dx 
lei dx h2(x)(r'x + s')3 lx1 (rx + s)2 

= C (r(rx: + s) r(rx: + s)) = C (;:: :~ - ;:: :~) C(v1 -vz). 

The domain of the magic matrix has been restricted to the interval of v on which 
(4.16) holds. Its length has order of magnitude (4.13). Of course the domain may 
extend outside the range of v corresponding to the sum S. • 
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To express the Third and Fourth Coincidence Conditions on a reference 
interval we extend the notation of Lemma 3.2 and (4.15) by writing 

, 1co hz(x) dx 
Jk = - u/t 3h~(x) r'k(r'x + s1 )k' 

G ( ) 1 2 I ( I ') I 2 x = 3h2(x)r12 (r'x + s') + r' J1 - r x + 8 J 2 ' 

(4.17) 

(4.18) 

corresponding to (3.13) and (3.21). The coincidence-detecting Fortean function is 

There is a technical point concerning the Fourth Coincidence Condition ( 1.5). 
We would like to relax (4.5) to 

(4.19) 

We chose K as the difference between qf'(m) and the nearest integer b. Thus (4.19) 
implies (4.5) unless K is close to ±1/2, when we could have K

1 close to =Fl/2. 
For K close to 1/2 we count the Farey arc I(a/q) twice, with both choices b 
and b + 1 for the nearest integer, and for K close to -1/2 we count both b 
and b l. Changing b changes the integer f. in Lemma 3.4. This double counting 
increases the number of coincidences counted, but it enables us to pass from (4.19) 
to (4.5) for two of the four choices of K and K

1
• 

Lemma 4.2. (bounds for the Fortean function) If the First and Second Coinci
dence Conditions hold at x = u/t, then 

(4.20) 

and for i = 0, 1, 3 

(4.21) 

with 
3r J(5r5 J(5Q2r5 

gC3)(x)+ rx+sg"(x) « MN3R6 -I-D.1 N4R8 . (4.22) 

Proof. From the definitions (3.7) and (4.17) 
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so by (3.21), (3.22), (3.23), and (4.18) 

( X) - 1 - 1 + 0 ( K2 ) 
g - 3h1(x)r2(rx + s) 3h2(x)r'2(r'x + s') Mr ' 

, ) 1 1 O ( K
3
r ) g (x = --------.,,. + --,------.----,..,,. + --- ' 

3h1(x)r(rx + s)2 3h2(x)r1(r1x + s1
)
2 MNR2 

II ) 2 2 
g (x = 3h1(x)(rx + s)3 3h2(x)(r1x + s')3 • 

Noting that 

h~(x) 
h'(v) 1 

(rx+s)2 « M(rx+s) 2' 

and similarly for v1
, we have 

g(3)(x) = ----- + ----- + 0 2r 2r' ( J(
5
r

5 
) 

h1(x)(rx + s)4 h2(x)(r'x + s1) 4 MN3 R 6 · 

Here 
NR2 NR2t 

K;;;:::---;;;::: 
r(rx + s) rQ 

(4.23) 

and we deduce (4.20) from the Second Coincidence Condition in the form (4.16). 
We have 

r' r r's - rs' C ------
r'x + s' rx + s (rx + s}(r'x + s') 

------« 
(rx + s )(r'x + s') 

Hence 

r'x + s' rx + s ------
r' r 

3r 
g(3)(x) + --g"(x) = 

rx + s 

2 ( r' 
- h2(x)(r'x + s')3 r'x + s' 

C Q2 
- « .l\1-, 
rr' r2 

(4.24) 

(4.25) 

(4.26) 

which gives (4.22) by (4.24). Substituting the bound (4.20) for g"(x), we obtain 
the case i 3 of (4.21). The cases i = 0 and i = 1 are proved similarly, 
eliminating the first term and using (4.25). • 
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Lemma 4.3. ( coincidence detecting) Let x u / t, and suppose that 

e 1 
+ r 

a eu + ft f ~-=---~ 
q ru + st s 

1 
2R2 ' 

with Q ~ q ~ 2Q and 

K= t ~ ✓MNR2 

3h1(u/t)r(ru+st) H · 

Let 
y = a g'(x), 

where a and r, are the constants 

z = fJ + xg'(x) - g(x), 

' a K-K, 

(b + K}s (b' + K')s' 2..\ 2..\' 
{,=-'-------+---. 

r r' 3µr 3µ'r' 

(4.27) 

(4.28) 

(4.29) 

(4.30} 

(4.31) 

Suppose that the four Coincidence Conditions (4.2) to (4.7) hold on I(a/q), with 
the parameter H in (4.7) and (4.8) satisfying 

Then there. are integers c and d with 

y=c+O ( 
R2 ) 

H(rx + s) 

z = d+O (n(::s}) = d+O (~;). 

Proof. The inequalities ( 4.27) inlply 

1 t 

l u 
-:,:::-
2R2 "'sq' 

~-, 
rq 

K»N, 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

We use the notation of Lemmas 3.3 and 3.4, with dashes denoting the correspond
ing quantities on the Farey arc I(a' /q'). The Fourth Coincidence Condition is 

(((0 - 0')t + (K - K')u - tg(u/t))) ~ i + N~2 + :;~2 
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by (3.18). We note that in (4.30) and (4.31) a = ;;, ;;,', /3 = 0 0', and the 
error terms are all O(Q/ H) by (4.28) and (4.31). In the notation of Lemma 3.4 
we have 

f-£' ( 4.37) 

The Third Coincidence Condition can be written as 

(( l , (u) u(f- f') ;;, - ;;,' Kzr 10,r' \\ 
\ -tg t - t + -t- - t(ru + st) + t(r'u + s't))} « 

R 2 1 1 K 
«HQ+ Q + KQ + MQ' 

where we have taken the terms in >.2 and >.~ in (3.28) into the error term. 
By (4.32), (4.35), and (4.28), the error terms are all O(R2 /HQ). By the identity 
in (4.24) we have 

K~r' Kzr (;;,~ - Kz)r K~ ( r' r ) 
t(r'u + s't) - t(ru + st) = t(ru + st) + t r'u + s't - ru + st 

( K~ - Kz)r ;;,~C 
t(ru + st) (ru + st)(r'u + s't) · 

(4.38) 

We use the First and Fourth Coincidence Conditions to estimate the two terms 
in (4.38) as 

Q r R1 1 N R2 R2 R2 

« H'tQ + HNQ 2 « H'KHQ + HN « HQ' 

The Third Coincidence Condition has been simplified to 

(-ig' CD u(f t f') + f] « ;~. (4.39) 

Multiplying (4.39) by t, we have 

(( (U)\\ R
2
t R

2 
Kr 

\\ a - g' t }} « HQ x H ( rx + s) x H N' 

so (4.33) holds for some integer c. Multiplying (4.39) by u, we have 

(( cw (tt - l)(f - f') _ !:'. , (!:)\\ « R2
x . 

\ t + t t 9 t )} H ( rx + s) 
Substituting f - f' from (4.36) gives 

((9 (~) - ~g' (i) 13)) « H(::: s) +it« 

Krx ru s Krx R2x « -- + - + « X ------,----,-
H N Ht II JIN H(rx + s) 

by (4.35) and (4.36). Hence (4.34) holds for some integer d. • 
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The resonance curve is the locus of the point (y, z) as x varies. We sum
marise some useful properties of the derivatives. 

Lemma 4.4. (derivatives of the resonance curve) We have 

dy 
-g"(x), 

dz 

dx 
dx = xg"(x), 

and 
dz dy 1 

dy 
-x, 

dz ' X 

d2 z 1 dzy 1 
dyz g"(x)' dz2 x 3g"(x)' 

d3z g(3)(x) d3y 3g11(x) + xg(3)(x) 
dy3 g"(x)3' dz3 x5g"(x)3 

Proof. These formulae follow by repeated differentiation of (4.29). • 
We call the resonance curve C(e/r, f / s; e' /r', f' / s'); it is determined by the 

two reference intervals [e/r, f / s] and [e' /r',f' / s']. Our next two lemmas show 
that the resonance curve depends more on the magic matrix than on the reference 

. intervals. 

Lemma 4.5. (the reverse resonance curve) The resonance curve C* = C(f / s, e/r; 
f'/s',e'/r') is obtained from the resonance curve C C(e/r,f/s;e'/r',f'/s') by 
translation by a constant vector (TJ, () and then interchanging the y and z axes. 
The vector (r,, () is approximately an integer vector, with 

with 

r ( K
2

) llr,il « N R2 1 + M ' s ( K
2

) 11(11 « NR2 1 + M ' 

K 
1 

h ( ) 
x NU, 

3 1 0 rs 

where U is the number of Farey arcs I(a/q) with e/r < a/q ~ f /s. 

Proof. To adapt Lemma 4.3 to the reverse-oriented curve G*, we replace f(x) 
by - f (-x), which changes the signs of h( x), n, K, A, µ and the numerators e, 
f. At the end of the calculation we change the signs of y and z 

To compare C with G* , we write 

X 1/x, 

Let j(X) be the analogue of g(x). Then 

""(X) 2 
J = 3h3(X)(r + sX)3 

2 3 "( ) 
3h4(X)(r' + s'X)3 = x g x · 
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The variables Y and Z on C* have 

Y - J j"(X)dX J xg"(x)dx, 

Z = J Xj"(X)dX = J g''(x)dx, 

so that Y z + (, Z y + r, for some constants r, and (. 
We use the notation of Lemma 3.3 with a~/ q2 = f / s. At x O we have 

y = A - A', z B - B', where 

A = K - G~ (0) = K + ___!__2 + rJ2, 
3vrs 

B = (b + K)s + 2>. - G1 (0) 
r 3µr 

= (b+;;,)s + 2>. __ 1 __ 2Ji+sJ
2

, 

r 3µr 3vr2s r 

and A' , B' are the corresponding expressions for the reference interval [ e' / r', J' / s'] . 
The corresponding point on C* is X = co 1 where Y = a2 C - C', 

Z /32 D - D' with 

C K3, 
D = (b2 + K2)r _ 2>.2 

s 3vs 

( the minus sign comes from the sign changes due to the orientation of C* ), and C', 
D' are the corresponding expressions for the reference interval [ e' / r', f' / s']. 
By (3.18) 

so 

By (3.17) 

(b2 + K2)r 2 ( r ( K 2 )) 
8 

=b+;;,+2en+3vK r+2>.2Kr+rh+O NR2 l+ M )) 

1 2>.2 ( r ( K
2 
)~ 

=b+2en+K+ 3vrs2 + 3vs +rJ2+0 NR2 1+ M ~' 

so 

( 
K2) IID-AII « N~2 1+ M . 

The corresponding inequalities hold for A', B', C', and D', and we deduce the 
Lemma. • 
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A resonance curve C(e/r, f /s; e' /r', f' /s') can be constructed for any pair of 
reference intervals !e/r, f / sj and !e' /r', f' / s']. It is of interest if there is a suitable 
magic matrix with 

( f' e') 
s' r' 

and the Second Coincidence Condition holds at one end of the reference interval 
[e/r, f / s]. Let h, j, k, f be non-negative integers with hf - jk 1. We define 

( f~ e~) = (!' e') (~ k) 
S6 r~ s' r' J h ( 

A B ) ( Jo eo) . 
C D so ro 

Then 
.: ~ eo < lo ~ f... 
r ro so s 

A typical rational number in the subinterval [e0 /ro.fo/s0] is 

a eouo + Joto eu + ft 
q rouo + soto ru + st ' 

where 

Lemma 4.6. ( affine lifting) Let x, y, z be the trariables for the resonance curve 
C = C(e/r,J/s;e'/r',f'/s'), and xo, Yo, zo those for Co C(eo/ro,fo/so; 
~/r6, f~/s6). The mapping 

X 
hxo + j 
kxo +f 

induces an affine map of Co into C of the form 

( h -k) (z, y) = (zo, Yo) -j f + ((, 17). 

The constants 17 and ( are approximately integers: 

17 = bof-b 2en b~f + b' + 2e'n' + 0 (N~2 (1 + :)) , 

( -boj - 2/ n + b~ + 2/1 n' + 0 ( 
8
R?, + K ) , 

N = Mr 

(4.40) 

where n = mo m is the distance between the centres of approximation on the 
Farey arcs I(e/r), I(eo/ro), and 

k 
K=--xNU 

3µorro 
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is the approximation to n at x h/k. Here U is the number of Farey arcs I(a/q) 
with e/r < a/q ~eo/ro. 

Proof. From ( 4.40) we have 

Let 

roxo + so 
rx+s= k 0 , 

xo+ -t 

h(eox +lo), 
rox + so 

dx 1 
_..,......----,,. 

dxo (kxo + £) 2 · 

Let Yo ( Xo) be the Fortean function in the construction of Co. Then 

Then 

"( ) 2 Yo xo = 
3h3(xo)(roxo + so)3 

2 y" ( x) 
(kxo + £)3 · 

Y - j y"(x)dx = j(kxo + f)yri(xo)dxo = -kzo +£Yo+ r,, 

z= jxy"(x)dx= j(hxo+j)yri(xo)dxo=hzo jyo+( 

for some constants r,, (. 
We compute the constants by putting x = h/ k, x0 = oo, so rx + s = ro/k. 

We have 
y a-y'(x) A-A', 

where by (3.22) 

and 
z = /3 + xy'(x) - y(x) = B - B', 

where by (3.21) and (3.22) 

B = (b + K)s + 2-X + !_:G~ (!:) -G1 (!:) 
r 3µr k k k 

= (b + 11:)s + 
3
2,x _ (~r + :oik _ ~Ji + sh. 

r µr ,µor-r~ r 

At xo = oo on Co we have 

foo - k/3o C - C', -jao + h/3o = D - D', 

where ao and /3o are given by ( 4. 31) for the curve Co , so 

k(bo + Ko)so 2k-Xo r 
C = ----- - --+ fKo = -bof+ -(bo + Ko) 2I<r-Xo, 

ro 3µoro ro 

D h(bo + Ko)so 2h-Xo . b . s (b ) 2hKr-Xo 
-----+-- -JKo OJ+ - o+Ko +---. 

ro 3µoro ro k 
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Substituting from (3.17), we have 

C -b0 £ - 2K r Ao + b + K. + 2en + 3µoK 2r + 2J\0 K r+ 

+ rJ2 + 0 ( N ~ 2 ( 1 + : ) = 

= -b0£ + b + 2en +A+ 0 ( N ~ 2 ( 1 + ~ )) · 
Similarly by (3.17) and (3.16) 

b 
. 2hKrJ\o (b+ K)s 2ens 3 K 2 2

\ K 
D = oJ + k + --- + -- + µo s + -"O s+ 

r r 

+ sJ2 +o (N~2 (1 + :)) = 

. 2n (b+K)s 2✓\oKro 
boJ + 2f n - - + --- + k + 

r r 

k
2
s ( s ( K

2
)~ + 3µor2rJ + sJ2 + 0 N R2 1 + M ~ 

=boJ+2fn+---+---+O - -. (b + K)s 2)\ 2J1 ( K ) 
r 3µr r Mr 

k(ro+hr) ( s ( K
2
)~ 

- 3µor 2rJ + sJ2 + O N R2 
1 + M ~ 

. ( K s K
2
s ) = boJ + 2f n + B + 0 Mr + N R2 + MN R2 . 

In the error term we have 

s ro 1 
NR2 « kNR2 ::=:: Kr' 

so we may drop the last term. • 
The conclusions of Lemma 4.6 remain true if we allow f = 1, s O or 

e = -1, r = 0, so that the label a/ q is infinite at the end of the resonance curve 
G( e/r, f / s; e' /r', f' / s'). 

It is also possible to sharpen Lemma 4.6 as follows. An integer point (co, do) 
in a disc with centre (yo, zo) on Go G( eo/ro, Jo/ so; e~/rh, JU s~) is lifted to an 
integer point (c, d) in an ellipse with centre (y, z) on G(e/r, f / s; e' /r', J' / s'). The 
major axis of the ellipse is close to the tangent at (y, z), so the nearest point on 
the resonance curve to (c, d) is much closer than (y, z). There are exceptional 
cases when (y, z) is near the cusp or an end of the curve G(e/r, f /s; e' /r', f' / s'). 
We do not need to use this refinement in [4]. 

In Proposition 2 we have a family of sums with different values of a param
eter y with O ( y ( 1. We write the Farey arcs as I(a/q, y) to indicate which 
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sum of the family they come from. The underlying function F(x, y) depends on x 
and y. We write F1, Ji for 8F/8x, 8f /8x, F2 and h for 8F/8y, 8f /8y, and 
similarly for higher partial derivatives. The function h(v, w) depends on v and w. 
To avoid a clash of notation we use 81 for 8 I av and 82 for 8 I aw to indicate the 
partial derivatives of h(v,w). Although w is the same variable as y, we have 

ax 
av 

2 

f111
1 

ax 
aw 

8y 

av 

so the Jacobian matrix has terms off the diagonal. 

0, 
8y 

aw 
1, 

Lemma 4.7. (the Second Coincidence Condition for a family of sums) Suppose 
that F(x, y) is defined for 1 ~ x ~ 2, 0 ~ y:,;; 1, and four times partially differen
tiable with respect to x, and that F11 (x, y), Fi11 (x.y) are non-zero differentiable 
functions of x and y with 

(4.41) 

for some constant C5 . Then for fixed a/ q, a'/ q' and y, the values of y' for which 
the Farey arcs l(a/q, y), l(a' /q', y') satisf.v the Second Coincidence Condition lie 
in an interval of length 0(6.2). 

Let J(y) be the range of v = ½f11(x, y) as x varies with y fixed. For fixed y 
and y' and a fixed type 3 magic matrix, the Second Coincidence Condition hol.ds 
if v lies in the intersection of J(y) with an interval D D(6.2 , y, y'), the domain 
of the magic matrix. The length of D is 

(4.42) 

For fixed y and y' and fixed upper triangular matrix (a P) ' the Farey arcs 

1( !, y) and 1( ! + B, y') which coincide in the Second Coincidence Condition 

have 

(4.43) 

For 
(4.44) 

where the constant B3 is sufficiently large in terms of the range of the derivatives 
of F(x, y), the rational a/q must lie in the intersection of J(y) with an interval 
D D(6.2, y, y'), proirided that F11 and Fi11 are twice differentiable functions 
of x and y, satisfying ( 4.9) with 

(4.45) 

The length of the domain D is 

;::::: NR21y-y'I' 
(4.46) 
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For fixed y and y' and fixed lower triangular matrix (b 0
1), the Farey arcs 

I (:, y) and I ( q+:c, y') which coincide in the Second Coincidence Condition 

have 
NR2 

C « (ly-y'! +~2) ~- (4.47) 

When (4.44) holds, the rational a/q must lie in the intersection of J(y) with an 
interval D = D(~2, y, y'), provided that F11 and Fi11 are twice differentiable 
functions of x and y, satisfying ( 4.11), u;ith 

where E is the determinant 

3Ff11 + 4F11F1111 
E= F11111 

F11112 

3F11F111 
F1111 
F1112 

The length of the domain D is given by ( 4.46). 

(4.48) 

The implied constants are constructed from C1, ... , Cs and from the upper 
bound.~ for the partial derivatives of F(x, y). 

Proof. The condition (4.14) becomes 

log h(v, y) - log h(v', y') + 3 log q - 3 log q' « ~2- (4.49) 

If v, v', and y are fixed, then the only variable term in (4.49) is logh(v',y'). We 
have 

a 1 h( ) _ /Jih(v, y) _ f111fi112 !112!1111 
2 og v, y - h( ) - 12 

v, Y 111 

which is uniformly bounded away from zero by ( 4.41). Hence for fixed v, v', y, 
the parameter y' lies in an interval of length 0(~2 ). 

In the other assertions of the Lemma, y, y' and the magic matrix are fixed. 
For type 3 magic matrices the argument of Lemma 4.1 works the same, irrespective 
of the values of the parameters. 

For upper triangular matrices we have v' = v+ B, q' = q. We put y' y+TJ. 
Then (4.49) becomes 

logh(v,y) - logh(v + B,y +TJ) « ~2-

By the mean value theorem, there is a T between 0 and 1 with 

We have 
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For lower triangular matrices a = a', so the left hand side of ( 4.49) is 

log h(v, y) - log h( v', y') - 3 logv + 3 log v'. 

We put u = 1/v, 

H(x, y) = u3 h(l/u, y), 

and we write 81H for 8H/8u, et cetera. We follow the same argument as above, 
using (4.11) and (4.48) in place of (4.9) and (4.45) to find that u must lie in an 
interval of length 

t!..2NR2 

X Mly-y'I' 

which corresponds to an interval for v of length ( 4.46). 

5. Coincident Farey Arcs and Integer Points 

First we compare the approximations on neighbouring Farey arcs. 

• 

Lemma 5.1. (neighbouring ·rational approximations) Suppose that the Coinci
dence Conditions (4.2) to (4.5) hold on the Farey arc I(e/r), so that 

urith 

and 

R4 
c« HN' 

µ'r'3 R2 
µr3 - l « HN' 

II 
bs _ b' s' II « R

2 
, 

r r' Hr 
r 

Ix. - x.'I « H' 

( 
MR

2
) H ~ min N, R2

, N 2 . 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

Suppose that a/ q lies in the reference interval [e/r, f / s] with Q ~ q ~ 2Q, 

B4R2 H 
--~r~Q~-

H B4, 
(5.6) 

urith B4 sufficiently large in terms of the derivatives of the underlying function 
F(x), and that 

(5.7) 
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Hence 

Now 
d 
dt (B81h(v + rB, y + TTJ) + T782h(v + rB, y + rTJ)) = 

(B28f + 2BT78182 + T]
28i) h(v + rB, y + TTJ) « 

(
IBINR2 

)
2 

1 2 2 1 « M + ITJI NR2 « (TJ + Ll2) NR2. 

Hence we have for O ~ t ~ 1 

The condition (4.41) implies 

Now 

Since TJ satisfies (4.44) with B3 sufficiently large, we have 

By continuity B 8'f h + TJ<h 82 h has constant sign, so 

I! (h(v + B, y + TJ) h(v, y))I-
= 111 

(B8fh(v+rB,y+TTJ)+TJ8182h(v+rB,y+rTJ))dtl x Z'· 
Hence 

I 
a I ITJINR2 

811
(logh(v+B,Y+TJ)-logh(v,y)) x M 2 , 

and ( 4.49), if it holds anywhere, holds for an interval in v of length given by ( 4 .43). 
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Then the four Coincidence Conditions hold for I(a/q) to the accuracy of (4.6) 
and ( 4. 7) weakened by a bounded factor. In Lemma 4.3 the points ( a, /3) cor
responding to I(e/r) and (y, z) corresponding to I(a/q) are close to the same 
integer point ( c, d) . 

Proof. Since the magic matrix is fixed, the First Coincidence Condition (5.1) still 
holds on I(a/q). By Lemma 4.1, the Second Coincidence Condition holds for an 
interval D(t:i. 2 ) in v of length 

by (5.1) and (5.2); if we multiply t:i.2 by a factor, then the interval D(t:i. 2 ) extends 
proportionately. Hence the Second Coincidence Condition holds at v = a/q, 
x = u/t, weakened by a bounded factor. 

In the notation (3.14), we have by (5.7) 

We write (5.3) as 

t 
K=-----::::::N, 

3vr(ru + st) 

bs b' s' 

r r' h + 'Y, 

From (3.18), in the notation of Lemma 3.4, 

with 

L-L' = 

R2 
bl«Hr· 

(0 - 0')t + (K-K
1
)u - tg(i) +o(N~2 (1 + 1;;)) = 

=ht+ ')'t + 0(~) + (K - K')~ru+ st) - tgcn + 0(N~2 ( 1 + !)) 
= ht+ 0 R

2
t + Q + ( R

2 
+ N) Nt + _9_ + _9._) 

Hr H H N M r N R2 H N 

(5.8) 

(5.9) 

= ht+ O (~), (5.10) 

where we have used (5.8), (5.9), (5.5), (5.4), and (4.21). The term O(Q/H) is 
numerically less than 1/2 if B4 is sufficiently large in (5.6), so, in the notation of 
Lemma 3.4, f - f' ht. In the Third Coincidence Condition we have by (3.28) 
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and (4.37) 

(( a;2 a:,; } = 

(( 1 '(u) u(f-f') K.-K.' K.2r K.;r' \\ 
= \ - t9 t - t + -t- - t(ru + st) + t(r'u + s't)}) + 

(
1 1 I<) 

+O Q+ KQ+ MQ 

--g - -hu+--+------------ + ( 
1 '(u) _ K. K-

1 
(K.; K-2)r K;c } 

t t t t(ru + st) (ru + st)(r'u + s't) 

( 
1 1 R2 

+ O Q + NQ + HQ « 
1 ( R2 N) N r r Q r R4 R2 R2 

« t H N + M R 2 + Ht + H. Qt + H N Q2 + HQ « HQ' 

where we have used (5.8), (4.21), (5.5), (5.4), (5.10), (5.1), and (5.6). Hence the 
Third and Fourth Coincidence Conditions hold on I(a/q) with accuracy (4.7), but 
the constants implied in the « sign are larger than in (5.3) and (5.4). 

For each x = u/t corresponding to a/q in the range (5.7), the point (y, z) 
is close to some integer point (c, d) by Lemma 4.3. The endpoint (a, /3) is close 
to (O,h). As in the previous calculation, (4.21) gives 

'(u) r 1 
g t « H « B4 

by (5.6), so c = 0 if B4 is sufficiently large. Hence 

u '(u) Q r 1 -g - « -.- « -, 
t t rt H B4 

and as in (5.10) 

(u) R
2 

1 
g t «Hr« B4' 

so d = h if B4 is sufficiently large in (5.6). This completes the proof of the 
Lemma. • 

In section 2 there was a case when the rational number e/r of smallest 
denominator had r < R, and we picked another label a/q, with 

_1_ ~ I~ -: I ~ 2C1 
3R2 "" q r "" R 2 

by (2.7) and (2.8). Taking e/r and f /s of Lemma 5.1 to be thee/rand a/q of 
section 2, we see that the Coincidence Conditions hold at e/r if and only if they 
hold at a/ q ( up to a bounded factor in the inequalities). Hence the change of label 
does not essentially affect whether a coincidence occurs. 
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Lemma 5.2. (coincident consecutive Farey arcs) Suppose that the conditions of 
Lemma 5 .1 hold, and that there are at least L 2 Fareg arcs strictly between 
I(e/r) and I(f / s), and that the L -1 Fareg arcs I(a/q) following I(e/r) have q 
in a range Q :,;; q :,;; 2Q satisfying (5.6), and that the four Coincidence Conditions 
(4.2) to (4.5) hold with the appropriate accuraeg (4.6) and (4.7). Suppose also 
that 

[i,iJF 
L « V Ii7v· 

Then the Second Coincidence Condition (4.3) holds with 

R2 

~ 2 « HL2N' 

and if the magic matrix is type 3, then 

R4 
c« HL3 

(5.11) 

(5.12) 

(5.13) 

The points (y, z) on the resonance curve corresponding to the L Farey arcs are 
close to the same integer point ( c, d), and there is an intermediate value of x for 
which 

y c+o(;) =c+o(HL(~:+s)), (5.14) 

z d + O ( rx; s) = d + O ( ::r) , (5.15) 

and 

K = l x LN. 
3h1 (x)r(rx + s) 

(5.16) 

Proof. We number the L Farey arcs as I(ai/qi), where a0 /qo = e/r, and 

ai eui + f ti 
Vi=-=---

qi rui + sti' 

Then 

(5.17) 

for i 0, ... , L - 3. The Fourth Coincidence Condition is 

From (5.4) of Lemma 5.1 
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so in the notation (5.9) we have 

The bound (5.10) in the proof of Lemma 5.1 says 

when (5.7) holds, so (5.19) is true for i 1, 2,3,4. 
We sharpen (5.18) to (5.19) for i = 5, ... , L 1 by induction on i. 

that k ~ 4 and (5.19) holds for i 1, ... , k. Since k - 2 > 2, we have 

rx + s ::::: rxk+ 1 + s 

for Xk-2 :,;; x :,;; Xk+l , and so for j = k - 2 or k we have 

1j ( ) 2d (rxk+l + s) 2 

x1 - Xk+l - rx + s v « R2 , 
Vk+l • 

and 

(5.18) 

(5.19) 

Suppose 

where we have used (5.17) to estimate the range of integration. We use the inter
polation mean value theorem in the form 

(xk-2 Xk) (g(xk+l) 1') (xk-2 Xk+l) (g(xk) 1') + 
+ (xk Xk+d (g(xk-2) ')') 

= t(Xk-2 -Xk)(Xk-2 - Xk+1)(Xk - Xk+1)9
11

({). 

for some { between Xk+l and Xk- 2 . Hence 

( ) rxk+l + s (rxk+l + s)
4 I 11 ( )I 

g Xk+l - 1' « H + R2 g { . 

Now { is an intermediate value between values xi at which the Second Coinci
dence Condition holds. Lemma 4.1 says the the set on which the Second Coinci
dence Condition holds in its analytic form is an interval, and the bound (4.20) of 
Lemma 4.2 is valid at x ={,with ~2;::::: R 2/NH. We deduce that 

( ) 
rxk+1 + s 

g Xk+J -')' « H . (5.20) 

Multiplication by ti gives (5.19) with a larger constant. Since q; « H/B4 by the 
condition (5.6), the left hand side of (5.19) is numerically less than 1/2. Hence 
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(5.18) implies (5.19) with the same implied constant, independent of i, and (5.20) 
holds uniformly in k. This completes the induction step. 

For the second half of the proof we suppose that the constants in (5.12) 
to (5.25) are so large that Lemma 4.2 implies Lemma 5.2 for L ~ 24. For L ~ 25 
we use a subsequence i0 , •• • , is of the Farey arcs I(adqi), with ij = [j(L - 1)/8], 
so that 

L-1 2L 
; ·+ 1 - ,; . >- -- - 1 >- -•1 •1 7 8 ?' 25. 

For j 1, ... , 8 let 0i be the corresponding value of xi. For x between 0s and 01 
we have 

and 

NR2 

LN::=::---, 
r(rx + s) 

R2 
rx+s:::::::-, 

Lr 

r• +1 R2 
0j-0j+1 Jv,.

3 

(rx+s)2dv:::;.> · 
J 

For each k 1,. ., 4 there is a ek between 02k and 02k+1 with 

'(c ) _ g(02k-1) - g(02k) R2 Lr2 r 
g <,,k - ------« .-,, «-. 

02k-1 02k HLr R- H 
(5.21) 

The next derivative g"(x) changes sign at most once, so the range for x can be 
divided into at most two subintervals on which g'(x) is monotone. At least two 
consecutive ek fall into the same subinterval. If for example e1 and 6 fall into 
the same subinterval, then g'(x) is monotone between fa and 6, and we have 

r01 + s R2 

g(01 ) - 1 « H « HLr· 

The value x = 01 satisfies (5.16), and the corresponding point (y, z) satisfies 
(5.14) and (5.15) with c 0, d = h. 

Now we take k 2f and k 2f - 1 in (5.21) for f 1, 2. There is an 1Je 
between 6e and 6e-1 with 

"( ) _ g'(6e-1) - g'(6e) !_ Lr2 Lr3 

g 1Je - 6e-1 6e « H. R 2 « HR2 . 
(5.22) 

Therefore there is a ( between 112 and 1]1 with 

(5.23) 

Now (5.22) is equivalent to 

log h 1 (x) - log h2(x) + 3 log(rx + s) 3 log(r' x + s') « 
(rx + s)3 R2 (5.24) 

« NR2 jg"(x)I « HL2N 
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for x r,1 and T/2. Prom the analysis in Lemma 4.1, if the magic matrix is upper 
or lower triangular, then (5.24) holds for all x, which implies (5.12). If the magic 
matrix is type 3, then (5.24) holds for an interval of x which includes r,1 and T/2. 
Putting x = (, we see from (5.23) and (5.24) that 

£2 5 
(3) (i) r " ( ) r 

g ..., + r( + s g ( « H R4 . 

By (4.24) and (4.26) in the proof of Lemma 4.2, we have 

2C L2r 5 L2r 5 N 2 

h2 (()(r( + s)(r'( + s1) 4 « HR4 + MR6 ' 

so 
R4 NR2 

c« HL3N+ M. 

By (4.12) we can drop the second term in the upper bound for C, so we have (5.13). 
If we take the constant in (5.12) large enough, then the interval on which the 
Second Coincidence Condition (4.3) holds to an accuracy (5.12) extends for at 
least L Farey arcs on each side of x = ( by (4.13). We note that (5.12) is 
consistent with the requirement that 82 ~ 1/M of (4.6) when (5.11) holds. • 

Lemma 5.3. (points close to long resonance curves) Let (5.5) hold, and let C 
= C( e / r, f / s; e' / r', f' / s') be a resonance curve. Suppose that there is a block of L 
consecutive Farey arcs I(a/q) on which the Coincidence Conditions (4.3) to (4.7) 
hold, corresponding to an interval J of values of x, and for all x on J 

K(x) 1 ✓MNR2 
------~ , 
3h1(x)r(rx+s) H 

(5.25) 

and the denominators q lie in some range Q ~ q ~ 2Q satisfying (5.6). Then 
there is an integer point ( c, d) and an x' in J for which the point (y', z') on the 
resonance curve satisfies 

y'=c+O ----- , ( 
R2 ) 

HL(rx' + s) 

z'=d+o ----- . ( 
R

2
x' ) 

HL(rx'+s) 

Moreover either 
B R2 

min /g" (x) I ~ ---5
---

x' /2,r;;x,r;;2x1 HLx'(rx' + s) 

(5.26) 

(5.27) 

(5.28) 

for some constant Bs, sufficiently large in terms of the bounds for the derivatives 
of the underlying function F(x), or there is a value x = x 1 at which y = c and 

(5.29) 
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and a value x = x2 at which z = d and 

y c-1 ( d) + 0 ( R2 ) 
c IIL(rx2 + s) ' 

(5.30) 

where z G(y) is the equation of the resonance curve. 

Proof. If L ~ 100, then (5.26) and (5.27) follow from Lemma 4.2. For L > 100 
we number the Farey arcs I(ai/Qi). Let o: = [L/4], f3 [3L/4], and let J' be 
the interval [ao:/ Qo:, ap/ qp]. Let c/ g be the rational number of least denominator 
in J'. Then c/ g is aif qi for some i. If i ~ L/2, then we take eo/ro = c/ g, 
and we take fo/ s0 to be the successor of eo/r0 in the Farey sequence :F(ro). 
The resonance curve Co = C( eo/ro,/o/ so; e'o/r'o, Jb/ s'o) represents all the Farey 
arcs I(a1/q1) with i ~ j ~ /3, at least (L + 1)/4 arcs. By Lemma 5.2 there is 
an integer point (eo, do) close to Co; for some xo the corresponding point (Yo, zo) 
has 

y0 Co + 0 ( ~) , zo do + 0 ( II:ro) , (5.31) 

If j > L /2, then we take Jo/ so = c/ g, and eo/ro to be the predecessor of Jo/ so 
in the Farey sequence :F(so). We apply Lemma 5.2 to c; C(Jo/so, eo/ro; 
JM s'o, e'o/r'o), and then we use Lemma 4.5 to deduce an integer point close to Co 
with 

Yo eo +o II:
2

s
0 

+ ;~2 (1 + ~)), 

zo do + 0 (; + so ( 1 + ~)) , 

where we write 

Ko_ 1 __ 1_ (lo _ eo) ~ _1_ (Jo _re) 
- 3h3(0)roso - 3h3(0) so ro "' 3h3(0) so K(xi ), 

(5.32) 

(5.33) 

where x1 is the value of x with (ex+ J)/(rx + s) Jo/so. Since eo/ro is 
between e/r and f /s, the fraction f /s lies in the Farey sequence :F(s0 ), so 
Jo/ so ~ f / s, and x 1 ~ 0. There are at least ( L + 1) / 4 Farey arcs represented by 
the resonance curve C0 , so by (5.25) 

{MNw 
LN «Ko~ y ~' (5.34) 

and 
NR2 R 2 

roso ::::: Ko « r"> (5.35) 
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the inequality (5.35) is also valid in the case i ::;;; L/2. Using (5.34) and (S.35) 
with (5.5), we can simplify (5.32) and (5.33) to 

Yo = Co + 0 ( H12

s
0

) , zo c4i + 0 (;) . 

In both cases, for x in J' we have 

so that 

e L - 3 ex + f f L - 3 -+--~--~----
r 4R2 "' rx + s "" s 4R2 ' 

I Lr x Ls 
-->-- -->--
rx + s :r 5R2 ' rx + s :r 5R2 · 

We have e/r::;;; eo/ro <Jo/so::;;; f /s, so we can write 

(5.36) 

(5.37) 

as in Lemma 4.6 with h, f ~ 1, j,k ~ 0, hf-jk L If k > 0 then we have 

j so f so 1 2so 
< < < + ~ 

h ro k ro hk ro 
(5.38) 

so 
2kso kN R 2 kR2 

f::,;;--«-K 2 ~L2· 
ro or0 r0 

(5.39) 

Even if k O, we still have the first inequality in (5.38), so 

. hso so NR2 R2 

J < - < - ~ -- « --. 
ro r Korro Lrro 

(5.40) 

Lemma 4.6 lifts the point {eo, c4i) close to C0 to a point (c, d) close to some 
point (y', z') on C where the gradient of C is -x'. In the case (5.32) we have 

, ( r ( Kf )~ (fro kR
2 

) 
Y = c + O N R2 1 + M ~ + O H + Ii Lro ' 

z' = d O (-s K1) 0 (jro .!:.!!?._) + N R 2 + Mr + H + H Lro ' 

where 

K1 = K (!:_) = k . 
k 3µ,orro 

(5.41) 

(5.42) 

In the case (5.36) we have 

y'=c+o(;R2 (1+~))+0(~0 + :~:
0
), (5.43) 

z' d+o (N~2 + !~) +o (h;o + i~:
0
). (5.44) 
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Let K' = K(x'). Then by (5.25), (5.5), and (5.37) 

« HL(rx' + s)' 

and 

s K 1 s K' s N R2 rx1 + s 
N R2 + Mr « N R2 + Mr « H + H K 1r « H « 

rx1 R2 s R2 x1 R2 x 1 

« -. ( ) + ( ) « ( ) . H L rx' + s r H Ls rx1 + s H L rx' + s 

By (5.39) and (5.40), if k # 0, then 

fro kR2 kR2 K1r K'r R2 

H + HLro « HLro « HLN « HLN « HL(rx' + s)' 

and if k O, then £ 1 , r ro and 

Next we have 

Now by (5.37) 

so we have 

fro kR2 

-+--
H HLro 

r R2 

H « _H_L_(-rx_'_+_s_)' 

hR2 hs0 hR2 hR2 

H + IILro « H + IILr0 « IILro. 

~ = £ _ eo ~ !_ _ ex' + J + 0 (.£) « 
sro s ro s rx1 + s R2 

J ex'+ J x1 

« - - ---= ----
s rx'+s s(rx'+s)' 

jro hR2 R 2x' - + -- « -----,----,
H IILro IIL(rx' + s) 

We have as above if k # 0 

kso £R2 kR2 R 2 

- + « « ----. 
H HLso HLro HL(rx'+s) 

Now by the construction of the interval J' in the case i > L/2, 

_1_ = __ 1 __ + 0 (-L ) « __ 1 __ 
rso r(rx' + s) R2 r(rx' + s)' 

(5.45) 
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so if k = 0, then h = .e = l and 

kso fR2 

-+--
H HLso 

R2 R2 
--«-----
HLso HL(rx' + s) · 

Also in the case i > L/2 

_j_ = [_ _ f o < f ex' + J x' 
sso s so s rx' + s s(rx1 + s)' 

so 
jR2 R2x1 
--«-----
HLso HL(rx'+s)' 

and by (5.35) and (5.45) 

hso hR2 R2x' - « -- « ----. 
H HLro HL(rx' + s) 

Hence the error terms in (5.41), (5.42), (5.43), and (5.44) can all be estimated as 
in (5.26) and (5.27). 

Suppose that (5.28) is false. Then since 

y - y' 1x g" (x)dx, 
x' 

the values of y 1 for x' /2 ::;;; x ::;;; 2x' include an interval [y' 6, y' + 6] with 

2H L(rx' + s) · 

If B5 is so large that l, is greater than the error term in (5.26), then y c for 
some value x = x1 with x' /2::;;; x1 ::;;; 2x1. The corresponding value z z1 has 

C y' 

for some ~ between z1 and z'. We deduce (.5.29). A similar argument shows that 
z = d for some value x x2, and (5.30) holds. • 

Our next two lemmas address points that were overlooked in [3]. We count 
coincidences by estimating the number of integer points close to resonance curves. 
In [2] and [3] it seemed obvious that an integer point close to the curve corresponds 
to at most one interval of coincident Farey arcs. In Lemma 5.4 we prove a little 
less, that there are at most seven such intervals. Lemma 5.5, that any two integer 
points close to the resonance curve differ in both coordinates c and d, is implicit 
in the calculations of [3]. The statement and proof of Lemma 5.5 were omitted in 
error from the detailed account in [3]. 
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Lemma 5.4. (coincidences with the same integer point) In Lemma 4.3 the Farey 
arcs for which the four Coincidence Conditions hol,d, and the integers c, d take 
fixed values, fall into at most seven disjoint intervals, such that if I(a/ q) is any 
Farey arc in one of those interval,s, then the four Coincidence Conditions, weakened 
by a bounded factor, hold on I(a/q). 

Proof. We divide the resonance curve into at most seven regions. By Lemma 5.1 
there is at most one point Xo with g"(xo) 0. The corresponding point (Yo, zo) 
on the resonance curve is a cusp. The curve has one concave and one convex 
branch. We consider each branch separately. Each branch has negative gradient, 
so the lines y = c, z d divide it into at most three parts. Finally, if the points 
where x s/2r and x 2s/r occur in the same region, then we divide the region 
at the point where x s/r. On each part of the curve the numbers g11 (x), y c, 
and z -d have constant sign, and either x ~ 2s/r or x;;;,: s/2r holds throughout. 

Now suppose that there are two Farey arcs I(aifq1 ) and I(a2 /q2) at which 
the four Coincidence Conditions hold, with x 1 and x2 in the same region of the 
curve, corresponding to the same integer point (c, d) in Lemma 4.3. Consider 
a general value x u/t in X1 ~ x ~ X2. In the notation of Lemma 3.4 and 
Lemma 4.3 we have 

L- L' ~t + au - tg(¥) + 0 (N~2 (1 + K~x))) = 

~t + au - tg ( 7) + 0 ( 1) , 
by the assumptions (4.32) and (4.28). At x = x1 and x 2 we actually have 

L - L' = dt + cu+ 0 (;) . 

Subtracting and dividing by t, we have for x = x 1 and x2 

ru + st rx+ s 
~-d+(a-c)x-g(x)« Ht «~-

(5.46) 

(5.47) 

The derivative of the left hand side of (5.46) is a - c - g'(x) y - c, which has 
constant sign, so the left hand side is monotone for x1 ~ x ~ x2. For x ~ 2s /r 
we deduce that (5.46) holds for x 1 ~ x ~ x2. In the case x ;;;,: s/2r we put 
X t/u 1/x, and we use 

( 1) q r + sX r (~ - d)x + a - c - X g - « - « -- « -X Hu H H. (5.48) 

The derivative with respect to X of the left hand side of (5.48) is 
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so the left hand side is monotone, and (5.48) holds for x1 ~ x ~ x2 . In both cases 
we have (5.46), the Fourth Coincidence Condition weakened by a bounded factor. 

For the Third Coincidence Condition, by Lemma 3.4 

{a;2 _a:~~} 
(( 1 (u) u(R-f') a K<>r ,.,,'r' \\ 

= \\ -tg' t - t + t - t(ru ~ st) + t(r1u
2

+ s't)}) + (5.49) 

+o (t + K!x)q) · 

The assumption (4.27) of Lemma 4.3 implies (4.35), so J((x) » N, and we may 
drop the second error term in (5.49). For x1 ~ x ~ x2 we have (5.46), so (4.38) 
gives 

K,
1 r 1 

K, r (K,1 
- K,<>)r K,~C 

2 2 2 - _ - « 
t(r'u + s't) t(ru + st) t(ru + st) (ru + st)(r'u + s't) 

q r R4 1 N R2 R2 R2 

« H·tq + HNq2 « H. K(x)q + Hq « Hq' 

where we have used (4.35) again. Next we note that 

c u(R-f') c-u(cu+dt) 
ct-du, 

t t t 
an integer, so (5.49) simplifies to 

For x x 1 or x 2 the Third Coincidence Condition holds, so (4.33) asserts that 

R2 
y c a-c-g'(x)«H( ) (5.50) 

rx+s 

at x = x 1 and x2. The derivative of the left hand side of (5.50) is -g"(x), which 
has constant sign, so the left hand side is monotone for X1 ~ x ~ X2. For x ~ 2s/r 
we deduce (5.50) for x 1 ~ x ~ x 2 . The other case is s /2r ~ x « R2 /r2

; the upper 
bound for x comes from (4.27). The combination (5.47) minus x times (5.50) gives 

rx R2 R2 

/3- d + xg'(x) - g(x) « H + Hr « Hr (5.51) 

at x = x 1 and x2 • The derivative of the left hand side of (5.51) is xg" (x), 
which has constant sign, so the left hand side is monotone and (5.51) holds for 
x 1 ~ x ~ x 2 • Subtracting from (5.47) and dividing by x, we recover (5.50) for 
x1 ~ x ~ x 2 . The steps from (5.49) to (5.50) are reversible, so we have 

(( ab2 _ a'b~ \\ « .!£__ 
\\ q q' }) HQ 

for x 1 ~ x ~ x 2 , the Third Coincidence Condition weakened by a bounded factor . 

• 
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Lemma 5.5. ( uniqueness of coordinates) Let L and Q be positive integers, urith Q 
satisfying (5.6). Let B 6 be a constant sufficiently large in terms of the derivatives 
of the underlying function F(x). Then on the part of the resonance curve with 

HLN 
K(x) ~ B6Q' (5.52) 

among the integer points ( c, d) corresponding to blocks of at least L conscutive 
Farey arcs I(a/q), each urith q ~ 2Q, strictly between the Farey arcs I(e/r) 
and I (f / s), the integer c determines the integer d uniquely, and the integer d 
determines the integer c uniquely. 

Proof. If x corresponds to a Farey arc I(a/q) in such a block, then 

1 a e ex+ J e 
~ 

2Qr q r rx + s r 

1 

r(rx+s)' 

1 J a J ex+ --~---=-- ----,-
2Qr s q s rx + s r( rx + s) ' 

X 

so rx + s ~ min(2Q, 2Qx), and since r ~ Q, we have 

s 2Q 
Q ~ X ~ -;:-· 

(5.53) 

If I(aifqi), I(a2/q2) (with x 1 < x2) lie in blocks with the same c but with 
different d1 and d2, then in (5.27) 

so for B,1 sufficiently large we have ldi - zil ~ 1/4. Hence for some ( in x1 < ( < 
< x2 we have 

1 

2 
~ lz1 z2I = l((Y1 - Y2)l ~ x2IY1 - Yzl ~ 

2Q Q R2 Q 1 
~ -;:-!Yi - Yzl « -.;:· HL(rx1 + s) « HLNK(xi) « B6' 

which is impossible if B6 is sufficiently large. 
Similarly if l(aif q1), I(az/qz) (with x1 < x2) lie in blocks with the same d 

but with different c1 and Cz, then in (5.26) 

R2 r r 1 
ci - Yi« H L(rxi + s) « H LNK(x,) « B6Q « B6' 

and since B6 is sufficiently large, we have jci Yil ~ 1/4. Thus for some ( in 
x1 < ( < x2 we have 
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and we have 
R2 

xi~ («II Lr 

There are now two cases. If rx1 ~ s, then (5.52) with x = x 1 gives 

NR2 IILN --«--
r2x1 B6Q' 

and so 
R 2 IILxi R 2 

~ « B6Q « B6Qr' 

(5.54) 

which is impossible if B6 is sufficiently large. If rx1 ~ s, then (5.52) with x = x1 
gives 

NR2 IILN 
-« BQ' rs 6 

and (5.53) and (5.54) lead to the similar contradiction 

B6R2 s R 2 

II Lr « Q ~ x 1 « II Lr · • 
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