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A DIAGONAL EMBEDDING THEOREM FOR FUNCTION
SPACES WITH DOMINATING MIXED SMOOTHNESS

JAN VYBIiRAL

Abstract: The aim of this paper is to study the diagonal embeddings of function spaces with
dominating mixed smoothness. From certain point of view, this paper may be considered as a
direct continuation of [8] and [6].
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1. Introduction

Spaces with dominating mixed smoothness were introduced by S. M. Nikol'skii
({4], [5])- The simplest case on the plane R? are the spaces of Sobolev type

SWERY = {111 € LoE), 1S @D = 1Ll +[| T 115 [+
o)) G 1 o ||+ || e | 2} < 0 (1)

where 1 < p < oo, =0,1,2,...;(i = 1,2). The mixed derivative %ﬁg—é plays
the dominant part here and gave the name to this class of spaces.

These spaces were studied extensively by many mathematicians. We quote
Amanov ({1]), Schmeisser and Triebel ([7]) to mention at least some of them. We
describe some aspects of this theory necessary in the sequel in Section 2. Sections

3 and 4 are devoted to the study of the trace operator

TIf(JI],:Eg) ——Pf(I?],.’L‘]). (12)

In 8] Triebel proved that, for 1 < p € 00, the trace operator (1.2) is a retraction
from S;(:]"T"')B(RQ) onto BZ,(R), where ¢ = min(r1,72,71 + 12 — %) > 0. The
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g-dependence was studied in [6]. Rodriguez proved that (1.2) is a retraction from
537 B(R?) onto Bg (R), where

1 1
0<pgoo,0<g<o0,p>0 =max(1—)—1,0) and min(rl,rg)#;

In the "limiting case” min(ry,r2) = % the same result is proven for ¢ < min(1,p).
We fill some of the minor gaps left open by Rodriguez in the B-case and
study the trace operator in the context of F-spaces. As these include the spaces
of dominating mixed smoothness of Sobolev type (1.1), we answer the question of
their traces on the diagonal.
I would like to thank to prof. Sickel and prof. Triebel for valuable discussions
on this topic.

2. Notation and definitions

As usual, R? denotes the d—dimensional real Euclidean space, N the collection
of all natural numbers and Ny = NU {0}. The letter Z stands for the set of all
integer numbers and C denotes the plain of complex numbers.

If z,y € R%, we write z > y if, and only if, x; > y; for every i = 1,...,d.
Similarly, we define the relations z > y,z < y,z < y. Finally, in slight abuse of
notation, we write t > XA for z e RE e R if z; > Ni=1,...,d.

When o = (ai,...,a4) € N¢ is a multi-index, we denote its length by
o = E?:l -

Let S(RY) be the Schwartz space of all complex-valued rapidly decreasing
infinitely differentiable functions on R¢. We denote the d—dimensional Fourier
transform of a function ¢ € S(R?) by ¢. Its inverse is denoted by V. Both *
and V are extended to the dual Schwartz space S’(R?) in the usual way.

We recall the basic aspects of the theory of function spaces used in the se-
quel. We don’t mean to give some extensive survey on various decomposition tech-
niques. Especially, as far as the standard Besov (B (R%)) and Triebel-Lizorkin
(F3 ,(R?)) spaces are considered, we use the references [9] and [10]. Furthermore,
we give the definition of function spaces with dominating mixed smoothness in
general dimension. Setting d = 1, one gets the one-dimensional version B} (R)
or Fj ,(R), respectively.

Let ¢ € S(R) with

o) =1 if [t <1 and @) =0 if |t (2.1)

N

We put o = @, 1(t) = ¢(t/2) — ¢(t) and

pi(t) =¢(277t), teR, jeN
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For k = (ki,...,k4) € N¢ and z = (z1,...,24) € R? we define pr(z) =
Gk, (#1) -+ @iy (xa) - Then, since

Z pr(z) =1 forevery zeRY (2.2)
keNd

the system {W}EeNg forms a dyadic resolution of unity with the inner tensor
product structure.

Definition 2.1. Let 7 = (rl,...,_rd) cRY, 0<g< oo
(i) Let 0 < p < 0o. Then ST B(R?) is the collection of all f € S'(R?) such
that

1185 BEllp = (3 257 i(epf) L @I17) " = 1257 (o) e (L)
keNg
(2.3)
is finite.
(ii) Let 0 < p < 0o. Then ST F(R?) is the collection of all f € S'(R?) such
that

1S5 F@, = || ( 5 1257 weh ) L@y @)

kend
= 11257 (0 f)V |Lp(8y)]]
is finite.

Remark 2.2. Sometimes, we write S;qA(Rd) meaning one of spaces S;qB(Rd)
or S;QF(Rd). As mentioned above, by setting d = 1, we get B, ((R) = S,(,ng(R)
and Fp (R) = S,(,?F(R). If we replace in this case the factor 2% by (k +

1)°2%* o € R, we get the spaces of generalised smoothness A,(,fg,a)(R). We refer to
[3] and references given there for details.

Our approach uses the full power of several decomposition techniques deve-
loped for these function spaces in [9}, {3} and [12]. They all work with sequence
spaces associated to these function spaces.

Forve Nd,m e 7% we denote by Qps the cube with the centre at the point
27Vm = (27"'my,...,27Y4m,) with sides parallel to the coordinate axes and of
lengths 27%1,... 27% . We denote by Xym = X@y+ the characteristic function
of Qpm and by ¢Qu3 we mean a cube concentric with Qg5 with sides ¢ times
longer.

Definition 2.3. If 0 < p,q < 00, ¥ € R? and

A={dmeC:7eN mezd} (2.5)
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then we define
F 7 5 (71 a/p\ /4
STl = {/\ IAlsh 0l = (Z o7 (7 ,,)q( Z IA;ml’”) ) < oo} (2.6)
TENG mezd
and

ot ={r st = | (2 Z|2“*Aumxum()P)”TLAR“)

TeNd ez

oo} (2.7)

Remark 2.4. We point out that with A given by (2.5) and gg(z) = Z Aomxpm(T),

with the usual modification for p and/or ¢ equal to oo.

mezl
we obtain
I\shgbll = 11277 golla(Lp)ll,  {Alshf1l = 1279wl Ly (€)1,
Definition 2.5. If 0 < p,q < 00, r,a € R and
={A\n €C:pueNgnelZ} (2.8)

then we define

(r.a) (r,a) agou(r—1)g p a/p aq

b = PN = (3 e )72 P( hal) ) <oop 29)
HENo nez

and

sz =D isg =] (S S ity “?’WM()I)ITLP<R)]]<00} (2.10)

€N n€Z

with the usual modification for p and/or g equal to co.

Next we briefly describe the atomic and subatomic decomposition. We refer
to {11} and [12] for details. Compared to the situation there, we now concentrate
on the "regular” case,

Op = max(% -1 O) in the B-case
F > (2.11)

Opq = max(m 1 0) in the F-case.

Definition 2.6. Let K € N§ and v > 1. A K -times differentiable complex-valued
function a(z) is called K -atom related to Qpwm if

supp a C vy, (2.12)
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and N .
|D%a(z)| £ 2% for 0<a<K. (2.13)

Theorem 2.7. Let 0 < p,g € 00, (p < 0o in the F—case) and T € R4 with
(2.11). Fix K € N& with

Then f € S'(R4) belongs to S;QA(R“‘) if, and only if, it can be represented as

f= Z Z Apmapw(z), convergence being in S'(R9), (2.15)
DeNg mezd

where {ap7m(T)}peng meze are K -atoms related to Qpm and A € sh,a. Further-
more,

inf}[z\]s.:qaﬂ,

where the infimum runs over all admissible representations (2.15), is an equivalent
quasi-norm in S}, A(R?).

Definition 2.8. Let 3y € S(R) be a non-negative function with

supp ¥ C {t € R : |t] < 2%} (2.16)
for some ¢ > 0 and
S wt-ny=1, teR (2.17)
nci
We define ¥(z) = (z1) - ... ¥(xq) and VA (z) = 2°¥(z) for = (z1,...,%a)

and 3 € Nd. Further let 7 € Rd and 0 < p € 00. Then
(Ba)pm(z) = VA (2"x —m), TeNE mezd (2.18)

is called an 3-quark related to Q.

Theorem 2.9. Let 0 < p,q < 00 (with p < 0o in the F-case) and 7 € R? with
(2.11).
(i) Let

A={¥:8eN} with W¥W={_ecC:veN,mez

and let p > ¢, where ¢ is the number from (2.16). Then f € S’(R%) belongs to
S;QA(R“) if, and only if, it can be represented as

f= Z Z Z /\gﬁ(ﬁgu);;n—(a:), convergence being in S’(]Rd), (2.19)

AENG TeNg M Ze
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where (fq)sw(x) are §-quarks related to Qpw and

sup 298 ||/\ﬁ|3 all < o0.
ﬁENd

Furthermore,

inf sup 2"|Bl|§/\ﬁ[s g2l < oo,

BENG

where the infimum runs over all admissible representations (2.19), is an equivalent
quasi-norm in S} A(R%).
Remark 2.10. According to [ |, [10] and (3], similar decomposition theorems are
available also for spaces A( .2) (R). They may be obtained from Theorem 2.7 and
Theorem 2.9 by setting d = 1 and replacing S;QA(IRd) with A(S a)(R) and s

with a(S o) .

Lemma 2.11. Let 0 < p < 00,0 < ¢ < 00,7 € R? and 7,72 > 0. Let

= 2y, TeN§, meZd (2.20)

Then . ~
| 27T Aomlx ey () | Lo(la)]| |~ [|AIs] 4 1]

with constants of equivalence independent of A.

Proof. We follow closely [2]. Namely, from (2.20) we see that
XEym(Z) < CWXQFF(x)’ T e R

and
XQsw(T) ScMxp;-(z), T€ R
Here M = M3 o M;, where
1 T1+s8
(M f)(z) = sup — |f(t,x2)ldt, =z = (71,22) € R?, (2.21)

§>0 2 Ty—8

and similar for Ms.
Then we take w > 0 such that w < min(1,p,q) and observe

1 27 Domlxess () [ Latla)||= || 277 Pomlxes () [ L2 (€0)][*

with a direct counterpart for |[Als], of1l. This, together with the boundedness of
the maximal operator M (see [7] or [12] for details) finishes the proof. [

By I' = {(t,t) € R?® : t € R} we denote the diagonal of R?, As T is
isomorphic to R, all the function spaces considered so far may be taken over
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from the real line to I'. In the natural sense, we get Ap A (]R) (F) for all
admissible o, p,q and 7.

Finally, we discuss the notion of the trace. The trace operator T f, as it is
described in (1.2), makes sense only when the function f satisfies some regularity
conditions, especially, if it is continuous. This is satisfied for f € S;qA(]RQ) with
F > %. To avoid this restriction, we use the following general definition of the
trace. It is well known that S5 ;B(R?) < C(R?). So, for f € S5, ;B(R?), we
may define (trr f)(t) = f(¢,t). If S(R?) is a dense subspace of S;QA(RE’) and
trr satisfies the inequality

| tre FIX (D) < CIfIS] AR, f € S(R?), (2.22)

for some quasi-Banach space X(I') — S’(R), then there is a unique extension
operator trr: S ,A(R?*) — X(T). It turns out that this defines the trr f for all
fes i A(R?) w1th max(p,q) < oo and 7 = (r;,r2) with 7 large enough and
this definition does not depend on X(T'). In the last case, ¢ = 0o, we use the
embedding ST  A(R?) — S77°A(R?), with ¢ > 0 small, which defines trr f as
soon as the trace operator is defined on S 1 A(R?).

We write trr: ST A(R?) — X (T), if (2 22) is satisfied for all f € S]  A(R?).
The symbol trr 57 | A(R?) = X (T') is used to denote that trr: S  A(R?) — X(T)
and, moreover, there is an (linear, bounded) extension operator ext: X(I') —
S;‘QA(IR?) such that trp o ext= id.

Hence trp S;QA(RQ) = X(T) if, and only if, trr is a retraction from
57 A(R?) onto X(T).

3. Traces of B-spaces

Theorem 3.1. Let 0 < p,g < 00, and 7 = (r},72) € R? with

1
O0<r £ rg,g:min(rl,rl + 19 — —I;) > ap.

If 7o # ;—7 or ro = -:; and ¢ < min(1,p) then
trr 57 ,B(R?*) = BZ (T).
If ro =1 1< min(p,gq) then

7'1

ber ST, B(R?) = BY3 (D).

Finally, if g = %, p < min(1,q) then

3

trr: S B(R 2, BT (1)
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and
ext: B,(;r(; mm( -1, 0))( ) B(R2)
n
T2
e
r
/4 Bpla
V
/
/
L/
T2
1 ~ By,
Bp?q p
0'3; £
0 i
Up 5 1

Proof. Step 1. - quarkonial decomposition, definition of trr f
Let f € S7  B(R?). According to Theorem 2.9, f may be decomposed as

f=3 1 o= 3 M_(bapwme) (3.1)

BENZ VENZ fez?
with
sup 298| A8(s7 bl ~ || f1S] , B(R?)|I. (3.2)
gen?

We point out that we may assume that the coefficients A of the optimal
quarkonial decomposition (3.1) depend linearly on f. We refer again to [10] and
[12] for detailed discussion of this effect.

Naturally, we define

tre f= ) (trr fla, (e Nat) = Y > MaBapm(tt).  (33)

BeN2 TeN? ez?
In (3.3) we may restrict to 7 from
By = {m € Z° supp (Bqu)sm NT # 0}
Next we split

By = Boa (3.4)

neZ
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such that
sup |Bpn| < 00 (3.5)

T,n

and, for p = max(vy, v3),
{t: (Bp)swm(t,t) #0} C (27%(n—¢),27¥(n+c)), 7 € By, (3.6)

for some fixed constant ¢ > 0.
Using this new notation, we rewrite (3.3).

tr e =35 ¥ ST Aa(Basm(t.t) (3.7)

u=0nezZ TEN2 meBg,
max(vy,v)=p

= Z Z 'YEnaﬁn(t)s

=0 neZ

where

a=2W 30 ) I
VEN3 mEBy,
max(vy,va)=u
We have to prove that

1. af, are atoms according to Definition 2.6, for d = 1, related to (u, n).

2. 17816801l < c2#BIN|ST b, resp. (12 1b5Ty ] < c2981AB1ST bl| (k)
3. trr f defined by (3.3) coincides with the trace operator introduced in
Section 2.

It is easy to prove the first statement. The support property (2.12) follows
directly from (3.6). Also the second property (2.13) is satisfied (up to some constant
which depends only on ¢ from Definition 2.8). To prove the third statement,
consider f € 8% ;B(R?). Then M € 59,6 for every 3 € N§ and the series in (e)
both converge umformly on R% So, for f € 3, ,B(R?), trr f defined by (3.3)
coincides with the trace operator of Section 2. Usmg density arguments, this may
be extended to all f € S ,B(R?).

So, in the following we concentrate on the proof of ().

This will finish the first part of the proof, namely the existence and bo-
undedness of the trace operator trr: S;qB(]RZ) — BZ,(I'). To see that, denote
w =min(1, p,q) and write

If trr f1BE, (D]
< Y lltrr NlBE DY <e D |18l

ﬁ€N2 ﬁeN'J

<e Y 2PN ST bl csup 201|285 (Bl < | fIST  B(R?)[[“.
pene BeN
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Step 2. - Proof of (). We take 3 € N3 fixed and suppose, that the sequence
M=)= {)q;jﬁ 17 e N§, ™ € By}
is given. Then we set

Yun = Z Z l)\v:ﬁﬂ, peENg, nez.

UGNE “'rﬁ'EB; n
max(vy,ve )=p

We recall (3.4) for the relation of By, and B;.
Finally, we denote

1 1
a(¥) = max(v, v2) (g - ;) -7 (F - 1—)) (3.8)
and
8= { % - Tn:iﬂ’ if o= % and ¢ 2 min(l,p), (3.9)
0 in other cases.

Next, we point out that, if ¢ = 7y,

a(p) = vo(ry — 1) — vi(ry — %) < ~vy(rg — %) for 11 €1y, (3.10)
T —va(rg — %) for vy > v, '
and, for g =7y + 719 ~ ;1;,
a(7) = (va —u)(r1 — %) <0 for  vi < vy, (3.11)
) (= ) (re - i) <0 for 1 > e, ’

The estimates (3.10) and (3.11) play a crucial role in the following calculations.
We need to prove that

[{an oG + 17248 )| < e[ {mm g (27 06,) 1, (3.12)

where £, and £, on the left-hand side denotes sequence spaces with one-dimensional
summation and the same symbols stand for sequence spaces with two-dimensional
summation on the right hand side.

If p <1, then

PILAED DD DR DI P LSS DD W PCE AT )
nez neZ veN? meBy, © TeN? me B,
max(vy,v )=u max{vy,va)=pn

And if g < 1(== §=0), we get immediately,

izu gwl)q(z ,Y‘m)” < igu(g*%)q Z ( Z ])‘gmip)ﬁ

= nez u=0 TENZ meRy
max(vy,v2)=p
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This, together with (3.8)-(3.11), finishes the proof of (3.12) for 0 < ¢ < p < L.
If p<1 and % > 1, we get by (3.13) and Hoélder’s inequality

Z(u+ 1)pagele=e( 3 'nm) <

u=0 nez
o q
< Z(#+1)ﬁq( Y o7 (F=1)p+a@)p 3 i)xml”)” <
u=0 veN2 meEBy
max(vy,vz)=u
0o .‘l
ST T RS o)) (2 o)
p= PeN3 eBy DeN
max(vy,va)=p max(vy v )=y
Here ()" = -4 is the conjugated index to 1.

So, if ro # %, then J = 0 and, according to (3.10) and (3.11), the last
sum is uniformly bounded and the result follows. If ro = %, the last sum is
<eu+ 1)‘_é7 =c(p+1)%F = (u+1)799.

Next we consider p > 1. From (3.5) we get

S eml<e (Y Peml?)r, neZ, veN (3.14)

MEBy mebBg,

By this notation, we get

Z(“+ 1)Pagule= l)q(z,nm) <

nez

aoulo—3) “ P\
ég(pqtl)ﬁQ e "(Z( Z aun)) <

n€l  peN2
max(vy,vg)=pu

< Y (Fa ) (3.15)

p=0 UeNg nez
max(vy,va)==p

where in the last step we have used the Minkowski’s inequality (p > 1).
If ¢ < 1(= A = 0), we may estimate the last expression from above by

> 1

Soedn T (Ta) - ¥ o hen (S )

p=0 UeNg nek VENS me By
max(vy,V2)=pn
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As a(P) <0 for all ¥ € N2, this finishes the proof.
If ¢ > 1, we continue in (3.15) using Holder’s inequality.

o

LHS(315) < Z(“ + ]_)ﬁQ( Z 21/ (?'."-l-)+a(u) Z %)

p==0 veN? nez
max(vy,v2)=p

oo
o N g — ¢ 'H)'
SSurnn( S FCHS ) (X 2o
=0 TeN? nez TEN]
max(vy,v2)=p max(vy,va)=p

If now ry # 11—7, then the last sum is uniformly bounded for all ; € Ny and we get

the desired estimate. If ro = ;1; we get the same estimate with additional factor

(1 + 187 = (o 1)750,

Step 2. - extension operators

In this step we prove the boundedness of the corresponding extension ope-
rators. Loy

We fix f € B2 ([) (or f € BY%7 (D), respectively). Then it may be
decomposed into quarks

f= Zfﬁ—zzzxwwcu)w

=0 pu=0n€eZ

where the coefficients {)\ } depend linearly on f and belong to the corresponding

(0.3 q

sequence space b ; or by, Moreover,

sup 27| A7 b2 & || £ B2 (R)|
BeN

with constants independent of f.
We define

ﬂ —
Gy ug)(myma) (T1: T2) =

{ (Oa1)e, ,;mi (T1)R(2V2 (T2 - 27" my)), 1o
(B@t)uy ma (T2)R(2% (21 — 2772my)), 11

where h € S(R) with h(t) = 1 for {t| < 2% and h(t) = 0 for |t| > 2°*! and ¢
is the constant in (2.16). This definition ensures that 2“¢'ﬁa€-ﬁ are K -atoms for
every fixed K € N2 up to some constant which depends only on the function
involved in the definition of quarks and K.

If now rp > % or rp = % and ¢ < min(l,p) then {M 1 € b1 with

SUP gep, 2"611)\[b;jq” < c|'f|B;}q(R){|. 'e define

i, ma = (2 ]

va, my = 27 Y2my + 4,

A — A8
w0y (nj2-#nt+d]) = )‘,u,n» peENg, nekZ (3.16)
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and zero otherwise. Finally we set

ext f = Zextfﬂmzz Z .g ag_

B=0TeN: meZ?
and observe that for w = mm(l,p, q)

[l ext f1S7 o B(R?)||“

<Y llext fAST BRI <) 2984
=0 =0

< ¢ sup 2”‘6“’ny‘615§ I
BeNg ’

= ¢ sup 2""”( Z 27'(?”5'?( Z qu_ip)q/p)

BENo vEN wez?

Szaqb“w

w/q

w/
= ¢ sup 2°P% (Z 2“(”_l)q(z l/\ )q/p) ’

ﬂENO ““0 nez

= c sup 2P| NPT |1 < cf| £ BR, (R
BeNg

Furthermore, the definition of a[_:m ensures that troext f = f

The case rp < lp follows the same scheme. We define

8 —\B
Y (nm) ~ /\#s"’ peEN, neczZ

and fyg.ﬁ = 0 otherwise. We get now similarly to (3.18)

o= (E (G )

TEN? meZ?

(Z gu(ri+ra=2)q (Z A7 |p) "/”) e

nez

Finally, in the case r, = E,q > 1 and g > p we set for 0

e

% va) (i)

and zero otherwise. Then we get for g = 5 -1

H’Yﬁ“s;qblk = (Z 2"(7—%)4( Z | gﬁ{p) q/p)l/q

vENZ FReZ?

- (i 240904 1) (3 Y+ 1)'1/\ﬁn[p)‘7/") e
p=0

nez
= IV b))

<n
1
2

= (4 1)71A8 fi = [2¥227#n +

- H/\ﬁﬁbg,qH'

]

113

(3.17)

(3.18)

(3.19)

(3.20)
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4. Traces of F spaces

Theorem 4.1. Let
O<p<oo, O<g<goo, O0<r <1y
with 1 |
0= min(rl,rl + ry — 5) > Opyg-

Hm>%mm

trr 8] F(R?) = F2 (D). (4.1)
Hm<%&m
trr S} F(R?) = F2 () = BE, (D). (4.2)
If rg = % and p < min(l,q) then
trr Sy F(R?) = F71 (D). (4.3)
Ifr2=% and g <p <1 then
trr S5, F(R?) = FrL (T). (4.4)
IfTQZ% and 1 < p < q then
= 2 (ri,k-1)
trr: Sp ,F(RY) — Fpq (. (4.5)
Finally, if rg = 1—1, and p > max(l,q) then
. oF 2 (Tl,%‘l)
trr: Sy F(R®) — Fyp (M. (4.6)
/
r2
/
7 ¢!
“
Ve
/
1 T2
-_ p’q
P rybra— L
Bod ~ ”
L Z
Tpq
0 1
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Proof. We recall our task. We use again the notation (3.1)-(3.13).
We suppose, that the sequence

A= {Aﬁ‘ﬁ v e NS,"m“e BU}

is given, Then we set

> > Dol (4.7)

VENg ME By,
max(vy, v )=pu

i

Tun

and recall (3.4) for the relation of B,,,, and By. We need to prove that (ra > %)

H{vun Al S ell{Aom}sy o f1) (4.8)

or (ry < %)
I} fos Pl < el dm}is] oI (4.9)

respectively.

We split (4.7) into two parts,

b b
7;&111 = Z Z ]'X(#‘Vz),r_n'l* 7};211 = Z Z l'X(UI,#)rﬁI (410)

v2=0TE B, vy).n n=0WeBL, uyn

and prove (4.8) and (4.9) for both these parts separately.
Step 1. We start with the case o > %. We recall the definitions of sequence
spaces involved in (4.8) and obtain

HwndllP = [ (3 E e pnuntant) oy

p=0ncZ

and

o0 x1+1

(Z Z IZV.FAFﬁXUﬁ(xl,EZ)tq)Ed.’Bgdx]‘
1—1

TeNZ e By

Oembga 1Pz [

—-oQ v

So, to prove (4.8) for (), it is enough to prove

(o e] B
(555 2 fan(antt) <

p=0necZ

1
gc/ (Z Z 127 T Ao mxwm (21, 21 +$2)]")§d$2
-1

vE Ng me Bv

(4.11)

for every fixed z;.
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Finally, we try to change the notation in such a way that we could switch
from integrals to sums. With z; being fixed, there is only one n = n{u) such that

Xun{z1) = 1. We denote 'yff) = S’im. So, the left hand side of (4.11) reduces to

o0 P
9

(5 )

u=0

Finally, as a direct corollary of (3.5), we may suppose, that each By, contains
only one element. So, to every u € Ny and every vy £ u there is a unique
= T, v2) € By ua)n(uy- We denote A,y = A ) miuva):

We reformulate once more our task. We start with a given sequence

Az{AU:UGN%,UI 21/2},

and define

m

Yu = Z IA(/,;,VZ)[‘

1 %] =()

Finally, we use the Lemma 2.11 and choose the sets Epw such that E, ,,)
and E, v1) () are disjoint for vy # Vh.

%)) /
$
e

n(p,ve)

Saass
RO

Wit Epg

It turns out, that it is enough to prove that

00 o

(> !2“”7»(")5 <e i 27 (Y [N 1) E (412)
§=0

u=0 p=J

with ¢ independent on the starting sequence A. We just mention, that the j—sum
comes from decomposition of the integral in (4.11) according to the supports of
X7 involved.
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First we discuss the case ¢ < 1. In that case,

m m
Va7 L
18 <D P l® < D 220

va =0 v =0
If moreover 5 <1,
oo P 00 M P
(Sormng) < (Som 3 o ag )’
u=0 u=0 vo =0
00 oo e
= (Z 9-v23 Z |2w1+vzr2/\(u yz)]q) 9
vy =0 e
[» o] oo P
<c Z 9 Vva ( Z |2#r1+uzrz)‘(“‘uz)]fI) N
vp=() p==py

This proves (4.12) for p< ¢ <1 and r3 2
In the case ¢ < 1,4 < p we denote

e «)
- Z 12470 A v 19

n=vy

=

By this notation, the right-hand side of (4.12) may be rewritten like

[oe] P e
RHS(4.12) = Y 2-vz(2vmqbgz)“ = Y gulr= gy,

vy =0 vy =0

and the left-hand side may be estimated by

(Zlym (1) B §< (Z b3

u==0 va=0

This (and Holder’s inequality) finishes the proof of (4.12) for ry > % and ¢ <
Lg<p.

Next,weta.keq>l.Wedenoteﬁz—-al-,—:—lq-~lifrz-—-% and 3 =0 if

rg > 1
By Holder’s inequality we get

O

O SE e L IWR

Vo == "‘0
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Hence, for p € ¢,

(St Dprmninn)§ < (3 gema 3 gt )?

u=0 pu=0 va=0
oo - 00 P
co(E et o)
W2
v =0 By
o0 0o P
V2 purigtvarag g\
<e )y 2 (22 l/\(u,uz)I)
va=( u=vg

This finishes the proof of (4.12) for max(p,1) < ¢ and r; > %. But for r = %

this also proves the generalisation of (4.12), where 2#"! is replaced by (u+ 1)?2+m
on the left-hand side. Hence, also the boundedness of the trace operator in (4.5)
follows.

For p>¢>1and ry — % > £ > 0 we get similarly

m

1
v.<e ( Z ZVz(Tz-ﬁ‘f]q[/\“’wiq) 1

v =0

and

o0 N o0 P oo ) P
(Z QMTIQ,YB) 1< ¢ ( Z 2"2("2-‘5"5)4()32) a <e Z (zvz(‘l‘i*F)QbZz) a
pu=0 vy =0

12} =0

This finishes the boundedness of the trace operator for rp > ;—). In the case
of rg = %, we have only discussed the cases p < ¢ <1 and 1 < p < ¢. To complete
the proof in those cases, where the result depends on ¢, we consider p < 1 < q.
We get by Minkowski’s inequality

[ore] [ . E [o<] [ore] INp
(Z Qunq(z M(u.w)‘) ) < (Z ( Z Qurwl/\(“,pz)lq)q>
p=0 vg =0 =0 p=u,

o o

<Y (X zwx.x(u,mw)g = RHS(4.12).

Ug =0 H=v3

Finally, to prove the boundedness of the trace operator in (4.4) and (4.6) we
use the embedding _ _
ST JF(R?) — 87 B(R?),

which holds for ¢ < p, and Theorem 3.1.
Step 2. Next we discuss the remaining case 0 <) <12 < ¢ ,Q =Ty + T2~

1<
P =~ UOpg.
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We now need to prove (4.9). We introduce again the same notation as in the
Step 1. and replace (4.12) by

o0 (s ) oo e
Sy p<e Yy 2 (Y ‘2“T1+"2/\(u,j)|") e (4.13)
p=0 =0 u=j

Finally, we prove (4.13) for all 0 < ¢ < o0 if we prove it for ¢ = co. We denote

ay, = sup 2¥M [/\(“ va)l» V2 € No.
p2va

Then the right-hand side of (4.13) may be (for ¢ = 00) rewritten as

o oo
RHS(4.13) =c Z 2——uz( Sgp 2“”+V”2i’\u,vzf)p =c Z 2—Vz+uzr2pa€2_
vz =0 HZV2 vy =0

As for the left-hand side in (4.13), we get for p < 1

LHS(4.13) Zgupp Z Apwal? = Z Z 24P\, L IP < e Z 2u2(rz-~)pap

p,xO VQ"‘O vo=0 H=va l/z—O

For p > 1 we denote € = % —ry >0 and get

LHS(4.13) = Zymp #fp(z ou—v2)e/2—(pu— Vz)E/Q[,\ Ml)

vaz=(

Z QurLp- uep( Z Q(M—Vz)m/? ]P) ( Z 2‘(#“742)17'5/2)9/9’

1 2] =0 vg=0

<ec Z Z 2#"'1p"#‘?‘l’(#‘”"Z)pE/zi/\“’uz’P

va==Q =g

co o0 oo
<c Z 2-112?6/2&132 § 2’#6P+HP€/2 <c § 2-—1’25?0’52
V2=0 M=va l/2=0

This finishes the proof of (4.8) and (4.9) for 7). One could follow the same
arguments also for 72, Alternatively, to a given sequence

A= {\s ueNo,ul vo}

we consider a sequence _ _
A= {x\',,-'._l/-ENg,ln =z Vz}
defined by X(Vl‘yz) = Aw,.y) and use (4.12) for 7 associated with X. In this

way, we prove (4.8) and (4.9) for v(*) and finish the proof of boundedness of the
trace operator.
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Step §. Next, we consider the corresponding extension operators. We use the
same operators as in the B-case. The first one (given by (3.16) and (3.17)) gives an
extension operator in the case rg > %. To prove the corresponding inequality on
the sequence space level, we again fix z; and prove a pointwise inequality, which
now reduces to trivial

(Zgﬂnq Z ’YM,Vz )p/q Z2wlq|’\1 P/‘l
v =0

The same operator proves also (4.3).
The second operator, characterised by (3.17) and (3.20) gives an extension
operator for rp; < -11; and in (4.4). We omit the trivial calculation. u

References

(1] T.I. Amanov, Spaces of Differentiable Functions with Dominating Mized De-
rivatives. (Russian), Alma-Ata: Nauka Kaz. SSR 1976.

[2] M. Frazier and B. Jawerth, A discrete transform and decomposition of di-
stribution spaces, J. Funct. Anal. 93 (1990), 34-170.

[3] S. Moura, Function spaces of generalised smoothness, Diss. Math. 398
(2001), 1-88.

[4] S.M. Nikol’skij, On boundary properties of differentiable functions of several
variables, (Russian) Dokl. Akad. Nauk SSSR 146 (1962), 542-545.

[5] S.M. Nikol'skij, On stable boundary values of differentiable functions of se-
veral variables, (Russian) Mat. Sb. 61 (1963), 224-252.

(6] M.C. Rodriguez Fernandez, Uber die Spur von Funktionen mit dominie-
renden gemischten Glattheitseigenschaften auf der Diagonale. Ph.D-thesis,
Jena, 1997.

[7] H.-J. Schmeisser and H. Triebel, Topics in Fourier analysis and function
spaces. Chister, Wiley, 1987,

[8] H. Triebel, A diagonal embedding theorem for function spaces with domina-

ting mired smoothness properties, in: Banach Center Publications, Vol. 22,

Warsaw (1989), 475-486.

| H. Triebel, Fractals and Spectra, Basel, Birkhduser, 1997.

0] H. Triebel, The Structure of Functions, Basel, Birkhauser, 2001.

1} J. Vybiral, Characterisations of function spaces with dominating mixed
smoothness properties, Jenaer Schriften zur Mathematik und Informatik,
Math/Inf/15/03, 2003.

[12] J. Vybiral, Function spaces with dominating mired smoothness, preprint,

Jena, 2004 (submitted).

Address: Jan Vybiral, Mathematisches Institut, Fakultat fiir Mathematik und Informatik,
Friedrich-Schiller-Universitat Jena, 07743 Jena, Germany

F-mail: vybiral@minet uni~jena.de

Received: 11 January 2005



