INTEGERS REPRESENTABLE AS THE SUM OF POWERS OF THEIR PRIME FACTORS

Jean-Marie De Koninck ${ }^{1}$ \& Florian Luca ${ }^{2}$

Abstract: Given an integer $\alpha \geqslant 2$, let S_{α} be the set of those positive integers n, with at least two distinct prime factors, which can be written as $n=\sum_{p \mid r_{0}} p^{\alpha}$. We obtain general results concerning the nature of the sets S_{α} and we also identify all those $n \in S_{3}$ which have exactly three prime factors. We then consider the set T (resp. T_{0}) of those positive integers n, with at least two distinct prime factors, which can be written as $n=\sum_{p!n} p^{\alpha_{n}}$, where the exponents $\alpha_{p} \geqslant 1$ (resp. $\alpha_{p} \geqslant 0$) are allowed to vary with each prime factor p. We examine the size of $T(x)$ (resp. $T_{0}(x)$), the number of positive integers $n \leqslant x$ belonging to T (resp. T_{0}).
Keywords: Prime factorization

1. Introduction

Identifying all those positive integers n such that

$$
\begin{equation*}
n=\sum_{p \mid n} p^{\alpha} \tag{1}
\end{equation*}
$$

for some integer $\alpha \geqslant 2$ is certainly a difficult problem. Since prime powers p^{α} (with $\alpha \geqslant 2$) trivially satisfy (1), we shall examine the set S_{α}, namely the set of those positive integers n satisfying (1) but which have at least two distinct prime factors.

We first obtain general results concerning the nature of the sets S_{α}. We then identify all those $n \in S_{3}$ which have exactly 3 prime factors. We further consider the more general equation

$$
\begin{equation*}
n=\sum_{p \mid n} p^{\alpha_{p}} \tag{2}
\end{equation*}
$$

[^0]where the exponents α_{p} are allowed to vary with each prime factor p. Clearly all prime powers have such a representation (2). So let us define T (resp. T_{0}) as the set of all positive integers n having a representation (2) with each $\alpha_{p} \geqslant 1$ (resp. $\alpha_{p} \geqslant 0$) but with at least two distinct prime divisors. We obtain a non trivial upper bound for the number $T_{0}(x)$ of positive integers $n \leqslant x$ belonging to T_{0}.

Finally, we give a heuristic argument yielding lower and upper estimates for $T(x)$, the number of positive integers $n \leqslant x$ belonging to T.

2. General observations

For each integer $n \geqslant 2$, let $\omega(n)$ stand for the number of distinct prime factors of n and let $P(n)$ stand for the largest prime factor of n. We first make the following observations. Given $\alpha \geqslant 2$ and $n \in S_{\alpha}$, we have:
(i) $P(n)<n^{1 / \alpha}$.
(ii) Letting $r=\omega(n)$, then $r \geqslant 3$ and r is odd; this is easily established by considering separately the cases " n odd" and " n even".
(iii) If α is even, then $\omega(n)$ cannot be a multiple of 3 ; one can see this by considering separately the cases " $3 \mid n$ " and " $3 \nmid n$ ".
(iv) If $\omega(n)=\alpha$, then n cannot be squarefree, since otherwise, comparing the arithmetic mean with the geometric mean of the prime factors of n, we get

$$
n=q_{1} q_{2} \ldots q_{\alpha}=q_{1}^{\alpha}+q_{2}^{\alpha}+\ldots+q_{\alpha}^{\alpha} \geqslant \alpha q_{1} q_{2} \ldots q_{\alpha}=\alpha n
$$

a contradiction, since $\alpha \geqslant 2$.
(v) If $n \in S_{2}$, then, in view of (ii) and (iii), $r:=\omega(n)$ is odd, $r \geqslant 5$; moreover:

* if $r=5$, then $n \equiv 5$ or $8(\bmod 24)$,
* if $r=7$, then $n \equiv 7,10,15$ or $18(\bmod 24)$,
* otherwise $r \geqslant 11$.
(vi) A computer search shows that S_{3} contains at least 6 elements, namely:

$$
\begin{aligned}
378 & =2 \cdot 3^{3} \cdot 7=2^{3}+3^{3}+7^{3}, \\
2548 & =2^{2} \cdot 7^{2} \cdot 13=2^{3}+7^{3}+13^{3}, \\
2836295 & =5 \cdot 7 \cdot 11 \cdot 53 \cdot 139=5^{3}+7^{3}+11^{3}+53^{3}+139^{3}, \\
4473671462 & =2 \cdot 13 \cdot 179 \cdot 593 \cdot 1621=2^{3}+13^{3}+179^{3}+593^{3}+1621^{3}, \\
23040925705 & =5 \cdot 7 \cdot 167 \cdot 1453 \cdot 2713=5^{3}+7^{3}+167^{3}+1453^{3}+2713^{3}, \\
21467102506955 & =5 \cdot 7^{3} \cdot 313 \cdot 1439 \cdot 27791=5^{3}+7^{3}+313^{3}+1439^{3}+27791^{3} .
\end{aligned}
$$

(vii) If $n \in S_{4}$, then $\omega(n)=7$ or $\omega(n) \geqslant 11$. To show this, first let $r=\omega(n)$. We know from (ii) that $r \geqslant 3$ and odd; but from (iii), it follows that $r \neq 3$; hence, $r \geqslant 5$. But $r \neq 5$; indeed, if $r=5$, then first assume that $5 \mid n$; in this case, since $p^{4} \equiv 1 \quad(\bmod 5)$ for all primes $p \neq 5$,

$$
n=625+q_{2}^{4}+q_{3}^{4}+q_{4}^{4}+q_{5}^{4} \equiv 0+4=4 \quad(\bmod 5)
$$

which contradicts $5 \mid n$; on the other hand, if n is not a multiple of 5 , then $n \equiv 5 \quad(\bmod 5)$, again a contradiction. Hence, $r \geqslant 7$. Finally, in view of (iii), $r \neq 9$. Hence, we may conclude that $r=7$ or $r \geqslant 11$.
(vii) It is not known if T is an infinite set. However, if there exist infinitely many primes p of the form $p=\frac{2^{k}+3^{\ell}}{5}$, then $\# T=+\infty$, the reason being that in this case, we have $2 \cdot 3 \cdot p=2^{k}+3^{\ell}+p$.
(viii) Using a parity argument, it is clear that any number $n \in T$ has an odd number of distinct prime divisors. One can check that the smallest element of T is 30 ; in fact, 30 has two representations of type (2), namely

$$
30=2 \cdot 3 \cdot 5=2+3+5^{2}=2^{4}+3^{2}+5
$$

Letting $T(x):=\#\{n \leqslant x: n \in T\}$, a computer search shows that $T(100)=$ $6, T\left(10^{3}\right)=42, T\left(10^{4}\right)=109, T\left(10^{5}\right)=321$ and $T\left(10^{6}\right)=973$. On the other hand, the smallest odd element of T is 915 , in which case we have

$$
915=3 \cdot 5 \cdot 61=3^{6}+5^{3}+61
$$

3. Identifying those $n \in S_{3}$ with $\omega(n)=3$

Theorem 1. If $n \in S_{3}$ and $\omega(n)=3$, then $n=2 \cdot 3^{3} \cdot 7$ or $n=2^{2} \cdot 7^{2} \cdot 13$.
Proof. We prove this in 9 steps.

1. Write $x<y<z$ for the three distinct prime factors of n. Note that the given relation forces $z \mid y^{3}+x^{3}$, so that $z \mid y+x$ or $z \mid y^{2}-y x+x^{2}$, and similarly $y \mid z+x$, or $y \mid z^{2}-z x+x^{2}$, and $x \mid z+y$, or $x \mid z^{2}-z y+y^{2}$.
2. Assume $z \mid y+x$. Since $y+x<2 y<2 z$, this is possible only when $z=y+x$. If $x>2$, then $y+x$ is even, and so it cannot be an odd prime. Thus, $x=2, z=y+2$, but then

$$
x^{3}+y^{3}+z^{3}=8+y^{3}+(y+2)^{3} \equiv 16 \quad(\bmod y)
$$

which is impossible. Thus, $z \nmid y+x$, and $z \mid y^{2}-y x+x^{2}$. Since $z>3$, we als o conclude that $z \equiv 1(\bmod 3)$, because the relation $y^{2}-y x+x^{2} \equiv 0(\bmod z)$ implies that $(2 y-x)^{2} \equiv-3 x^{2}(\bmod z)$, which means that $\left(\frac{-3}{z}\right)=1$, which is equivalent to the fact that $z \equiv 1(\bmod 3)$. Here, and in what follows, for an odd prime p and an integer a we use $\left(\frac{a}{p}\right)$ for the Legendre symbol of a in respect to p. 3. Assume that $z^{2} \mid n$. In this case, we then get $z^{2} \mid y^{3}+x^{3}$, and by the previous arguments, it follows that $z^{2} \mid y^{2}-y x+x^{2}$. This is impossible because $y^{2}-y x+x^{2}=$ $y^{2}-x(y-x)<y^{2}<z^{2}$. Thus, $z \| n$.
4. Assume that $y \mid z+x$. Write $z:=\lambda y-x$, with some positive integer λ. Clearly $\lambda \geqslant 2$. We then get $x \equiv \lambda y(\bmod z)$. Since we also have $y^{2}-y x+x^{2} \equiv 0$ $(\bmod z)$, we get $y^{2}-y(\lambda y)+(\lambda y)^{2} \equiv 0(\bmod z)$. Thus, $z \mid y^{2}\left(1-\lambda+\lambda^{2}\right)$, and therefore $z \mid 1-\lambda+\lambda^{2}$. If $\lambda=2$, we get $z \mid 1-2+2^{2}=3$, which is impossible. If $\lambda=3$, we get $z \mid 1-3+3^{2}=7$. Thus, $z=7$, and therefore $7=3 y-x$. Since y is odd, we get $x=2$ and therefore $y=3$, which does give the solution

$$
2^{3}+3^{3}+7^{3}=2 \cdot 3^{3} \cdot 7
$$

mentioned in the statement of our theorem.
Assume now that $\lambda \geqslant 4$. Then,

$$
z=\lambda y-x>(\lambda-1) y=\lambda y \cdot \frac{\lambda-1}{\lambda} \geqslant \frac{3 \lambda y}{4} .
$$

Since $z \mid 1 \cdots \lambda+\lambda^{2}$, we also get

$$
\lambda^{2}>1-\lambda+\lambda^{2} \geqslant z>\frac{3 \lambda y}{4},
$$

and therefore that

$$
\lambda>\frac{3 y}{4} .
$$

Thus,

$$
z>\frac{3 \lambda y}{4}>\frac{9 y^{2}}{16} .
$$

Since we also have $z \mid y^{2}-y x+x^{2}$, we get that

$$
\delta=\frac{y^{2}-y x+x^{2}}{z}
$$

is a positive integer. However,

$$
\delta<\frac{y^{2}}{z}<\frac{16}{9}<2,
$$

therefore $\delta=1$, and so

$$
z=y^{2}-y x+x^{2} .
$$

Thus,

$$
n=x^{3}+y^{3}+z^{3}=(y+x)\left(y^{2}-y x+x^{2}\right)+z^{3}=z(y+x)+z^{3},
$$

therefore

$$
\frac{n}{z}=y+x+z^{2}
$$

Looking at this last relation modulo y, we get $x+z^{2} \equiv 0(\bmod y)$. Since $y \mid x+z$, we also get $z \equiv-x \quad(\bmod y)$ and therefore $z^{2} \equiv x^{2} \quad(\bmod y)$. Thus, $x^{2}+x \equiv 0$ $(\bmod y)$; hence, $y \mid x(x+1)$. This is possible only when $y=x+1$ and $x=2$. Thus, $x=2, y=3, z=3^{2}-2 \cdot 3+2^{2}=7$, so that $\lambda=3$, contradicting the fact that $\lambda \geqslant 4$.
5. From now on, we may assume that $y \nmid z+x$ and therefore that $y \mid z^{2}-z x+x^{2}$. If $y=3$, then $x=2$, in which case $z \mid 2^{3}+3^{3}=35$; hence, $z=7$ (because $z \equiv 1$ $(\bmod 3)$), which is a case already treated. Thus, we may assume that $y>3$, and since $y \mid z^{2}-z x+x^{2}$, an argument similar to the one employed at step 2 tells us that $y \equiv 1 \quad(\bmod 3)$.
6 . Here, we observe that $x \equiv 2(\bmod 3)$. Indeed, for if not, we must either have $x=3$, which is impossible because then $3 \mid n$, but $x^{3}+y^{3}+z^{3} \equiv 2(\bmod 3)$, or $x \equiv 1(\bmod 3)$, therefore $3 \not \backslash n$, while $x^{3}+y^{3}+z^{3} \equiv 0(\bmod 3)$.
7. Write $n:=x^{\alpha} y^{\beta} z$. Since we already know that $x \equiv 2(\bmod 3)$ and $y \equiv z \equiv 1$ $(\bmod 3)$, we reduce the relation

$$
x^{3}+y^{3}+z^{3}=x^{\alpha} y^{\beta} z
$$

modulo 3 to get $1 \equiv 2^{\alpha} \quad(\bmod 3)$. This shows that α is even.
8.1. Assume that $x=2$. We first show that $\alpha=2$. Indeed, for if not, we would first get $8 \mid y^{3}+z^{3}$ and hence that $8 \mid(z+y)\left(z^{2}-z y+y^{2}\right)$. Since $z^{2}-z y+y^{2}$ is odd, we get $8 \mid y+z$. Thus, $(y, z) \in\{(1,7),(7,1),(3,5),(5,3)\}(\bmod 8)$.
We know that $z \mid y^{3}+2^{3}$, and $y \mid z^{3}+2^{3}$. In particular, $-2 y \equiv(4 / y)^{2}(\bmod z)$, and so

$$
\left(\frac{-2 y}{z}\right)=1
$$

and in a similar way one deduces that

$$
\left(\frac{-2 z}{y}\right)=1 .
$$

Hence, we have

$$
\begin{aligned}
1 & =\left(\frac{-1}{z}\right)\left(\frac{-1}{y}\right)\left(\frac{2}{y}\right)\left(\frac{2}{z}\right)\left(\frac{y}{z}\right)\left(\frac{z}{y}\right)=(-1)^{\left(\frac{z-1}{2}+\frac{y-1}{2}\right)+\left(\frac{2^{2}-1}{8}+\frac{y^{2}-1}{8}\right)+\left(\frac{(y-1)(z-1)}{4}\right)} \\
& =(-1)^{1+0+0}=-1
\end{aligned}
$$

a contradiction. Therefore, $\alpha=2$.
8.2. Here, we show that $\beta \in\{2,3\}$. If $\beta=1$, we get

$$
4 y z=2^{3}+y^{3}+z^{3}>3(2 \cdot y \cdot z)=6 y z
$$

which is impossible, the above inequality following from the AGM-inequality. Using now the fact that $z \mid y^{2}-y x+x^{2}$ (see step 2), together with the fact that $y^{2}-$ $x y+x^{2}=y^{2}-x(y-x)<y^{2}$, we learn that $z<y^{2}$. Since

$$
3 z^{3}>x^{3}+y^{3}+z^{3}=4 y^{\beta} z
$$

we get

$$
y^{\beta}<\frac{3 z^{2}}{4}<\frac{3 y^{4}}{4}<y^{4}
$$

and therefore that $\beta<4$.
8.3. Assume that $\beta=3$. Rewrite the equation

$$
8+y^{3}+z^{3}=4 y^{3} z
$$

as

$$
y^{3}=\frac{z^{3}+8}{4 z-1}
$$

Let $D:=4 z-1$. Thus $z \equiv 4^{-1}(\bmod D)$. Since we also have $z^{3}+8 \equiv 0(\bmod D)$, we get $4^{-3}+8 \equiv 0(\bmod D)$ and therefore that $D \mid 1+8 \cdot 4^{3}=513=3^{3} \cdot 19$. Thus, $D \in\left\{1,3,3^{2}, 3^{3}, 19,3 \cdot 19,3^{2} \cdot 19,3^{3} \cdot 19\right\}$. Since z must be at least the second prime number which is congruent to 1 modulo 3 , we have that $D \geqslant 4 \cdot 13-1=51$, and since we also have that $D \equiv-1(\bmod 4)$, it follows that in fact only the instance $D=3^{2} \cdot 19$ is possible. Therefore $z=\frac{D+1}{4}=\frac{3^{2} \cdot 19+1}{4}=43$. However, for this value of z, the number $\frac{z^{3}+8}{4 z-1}=\frac{43^{3}+8}{4 \cdot 43-1}=465$ is not the cube of a prime number.
8.4. Assume that $\beta=2$. In this case,

$$
z^{3}<x^{3}+y^{3}+z^{3}=4 y^{2} z
$$

so that

$$
z^{2}<4 y^{2}
$$

which implies that $z<2 y$. But we also have that $y^{2} \mid\left(x^{3}+z^{3}\right)$, and since y does not divide $x+z$, it follows that $y^{2} \mid z^{2}-z x+x^{2}=z^{2}-2 z+4$. Since $z \equiv 1(\bmod 3)$, we also have that $3 \mid z^{2}-2 z+4$, and since $y>3$, we have that $y^{2} \mid\left(z^{2}-2 z+4\right) / 3$. Now write

$$
y^{2}=\frac{z^{2}-2 z+4}{3 \delta}
$$

where δ is a positive integer. We then get

$$
\delta=\frac{z^{2}-2 z+4}{3 y^{2}}<\frac{z^{2}}{3 y^{2}}<\frac{4 y^{2}}{3 y^{2}}=\frac{4}{3}<2
$$

which means that $\delta=1$. Thus, $3 y^{2}=z^{2}-2 z+4$. The original relation becomes

$$
4 y^{2} z=8+y^{3}+z^{3}=y^{3}+(z+2)\left(z^{2}-2 z+4\right)=y^{3}+3 y^{2}(z+2)
$$

so that

$$
4 z=y+3(z+2)=3 z+y+6
$$

which implies that $z=y+6$. Thus, $y \equiv-6(\bmod z)$, and since $z \mid y^{2}-y x+x^{2}=$ $y^{2}-2 y+4$, we get $z \mid(-6)^{2}-2(-6)+4=52=4 \cdot 13$. Thus, $z=13, y=z-6=7$, and we have obtained the solution

$$
2^{3}+7^{3}+13^{3}=2^{2} \cdot 7^{2} \cdot 13
$$

mentioned in the statement of our theorem.
9. From now on, we assume that $x>2$. The relation $x \mid y^{3}+z^{3}$ implies that $y^{3} \equiv-z^{3}(\bmod x)$ and therefore $-y z \equiv\left(z^{2} / y\right)^{2}(\bmod x)$, and so

$$
\begin{equation*}
\left(\frac{-y z}{x}\right)=1 \tag{3}
\end{equation*}
$$

In a similar way, using the facts that $y \mid x^{3}+z^{3}$ and $z \mid x^{3}+y^{3}$, one gets

$$
\left(\frac{-x z}{y}\right)=\left(\frac{-x y}{z}\right)=1
$$

Thus,

$$
1=\left(\frac{-y z}{x}\right)=\left(\frac{-1}{x}\right) \cdot\left(\frac{y}{x}\right) \cdot\left(\frac{z}{x}\right)=(-1)^{\frac{x-1}{2}} \cdot\left(\frac{y}{x}\right) \cdot\left(\frac{z}{x}\right)
$$

and similarly

$$
1=(-1)^{\frac{y-1}{2}} \cdot\left(\frac{x}{y}\right) \cdot\left(\frac{z}{y}\right)
$$

and

$$
1=(-1)^{\frac{z-1}{2}}\left(\frac{x}{z}\right) \cdot\left(\frac{y}{z}\right)
$$

Write $a:=\frac{x-1}{2}, b:=\frac{y-1}{2}, c:=\frac{z-1}{2}$. Multiplying the three relations above side by side and using quadratic reciprocity we get

$$
1=(-1)^{a+b+c+a b+a c+b c}
$$

which means that

$$
S:=a+b+c+a b+a c+b c
$$

must be an even number. Let us notice that it is not possible that all three numbers a, b, c are even. Indeed, if this were so, then $x \equiv y \equiv z \equiv 1(\bmod 4)$, and reducing the equation

$$
x^{3}+y^{3}+z^{3}=n
$$

modulo 4 , we would get $3 \equiv 1(\bmod 4)$, which is impossible. Thus, at least one of the numbers a, b, c is odd. This, together with the fact that S is even implies that all three numbers a, b, c are odd, therefore $x \equiv y \equiv z \equiv 3(\bmod 4)$. We reduce now the relation

$$
x^{3}+y^{3}+z^{3}=x^{\alpha} y^{\beta} z
$$

modulo 4, and since α is even (see step 7), we get $1 \equiv 3^{\beta+1}(\bmod 4)$ and therefore that β is odd. Thus, we may write our original equation as

$$
\begin{equation*}
x^{3}+y^{3}+z^{3}=m^{2} y z \tag{4}
\end{equation*}
$$

where $m:=x^{\alpha / 2} y^{(\beta-1) / 2}$ is an integer. Write $x+y=2 \ell$. Notice that since $x \equiv y \equiv 3(\bmod 4)$, we have that ℓ is an odd number. Let p be an arbitrary prime divisor of ℓ. Reducing the above equation $\bmod p$, we get $z^{3} \equiv m^{2} y z(\bmod p)$, therefore $y \equiv(z / m)^{2}(\bmod p)$. Thus,

$$
\left(\frac{y}{p}\right)=1
$$

Since $y \equiv-x(\bmod p)$, we get that

$$
1=\left(\frac{y}{p}\right)=\left(\frac{-x}{p}\right)=\left(\frac{-1}{p}\right) \cdot\left(\frac{x}{p}\right)=(-1)^{\frac{p-1}{2}} \cdot(-1)^{\frac{x-1}{2} \cdot \frac{p-1}{2}} \cdot\left(\frac{p}{x}\right)=\left(\frac{p}{x}\right)
$$

where in the above computation we used the quadratic reciprocity law together with the fact that $x \equiv 3(\bmod 4)$. Since the above formula holds for all prime divisors p of ℓ, we get, by multiplying all these relations, that

$$
1=\left(\frac{\ell}{x}\right)=\left(\frac{(y+x) / 2}{x}\right)=\left(\frac{4}{x}\right) \cdot\left(\frac{(y+x) / 2}{x}\right)=\left(\frac{2 y+2 x}{x}\right)=\left(\frac{2 y}{x}\right) .
$$

In the above argument, we used only equation (4) (which is symmetric in y and z), together with the fact that $x \equiv y \equiv z \equiv 3(\bmod 4)$ (which is also symmetric in y and z), but we did not use size arguments (i.e. the fact that $y<z$). Thus, an identical argument can be carried through to show that

$$
\left(\frac{2 z}{x}\right)=1
$$

Multiplying these last two relations we get

$$
1=\left(\frac{2 y}{x}\right) \cdot\left(\frac{2 z}{x}\right)=\left(\frac{4}{x}\right) \cdot\left(\frac{y z}{x}\right)=\left(\frac{y z}{x}\right),
$$

which together with the fact that

$$
\left(\frac{-y z}{x}\right)=1
$$

(see equation (3)), implies that

$$
\left(\frac{-1}{x}\right)=1,
$$

contradicting the fact that $x \equiv 3(\bmod 4)$.
This completes the proof of Theorem 1.

4. An upper bound for $T_{0}(x)$

Theorem 2. As $x \rightarrow \infty$, we have

$$
T_{0}(x) \leqslant x \exp \left\{-(1+o(1)) \sqrt{\frac{1}{6} \log x \log \log x}\right\} .
$$

Proof. First recall the estimate

$$
\begin{equation*}
\Psi(x, y):=\#\{n \leqslant x: P(n) \leqslant y\} \ll x \exp \{-(1+o(1)) u \log u\} \tag{5}
\end{equation*}
$$

where $u=\log x / \log y$ (see for instance Tenenbaum [4]). Now let

$$
\begin{equation*}
y=\exp \left\{\sqrt{\frac{3}{2} \log x \log \log x}\right\} \tag{6}
\end{equation*}
$$

and set

$$
\begin{equation*}
u=\frac{\log x}{\log y}=\sqrt{\frac{2}{3} \frac{\log x}{\log \log x}} \quad \text { so that } \quad u \log u=(1+o(1)) \sqrt{\frac{1}{6} \log x \log \log x} . \tag{7}
\end{equation*}
$$

It follows from (5), (6) and (7) that

$$
\begin{align*}
\#\left\{n \leqslant x: n \in T_{0}, P(n) \leqslant y\right\} & \ll x \exp \{-(1+o(1)) u \log u\} \tag{8}\\
& \ll x \exp \left\{-(1+o(1)) \sqrt{\frac{1}{6} \log x \log \log x}\right\} .
\end{align*}
$$

We shall therefore assume from now on that $P(n)>y$.
Let x be a large number with the corresponding y and u defined by (6) and (7). Then, using Stirling's formula, as well as the fact that

$$
\sum_{p \leqslant y} \frac{1}{p}=\log \log y+O(1)
$$

holds as y tends to infinity, we get

$$
\begin{align*}
\#\{n \leqslant x: \omega(n) \geqslant u\} & \leqslant \sum_{p_{1} \ldots p_{\lfloor u 1} \leqslant x} \frac{x}{p_{1} \ldots p_{\lfloor u\rfloor}} \leqslant \frac{x}{\lfloor u\rfloor!}\left(\sum_{p \leqslant x} \frac{1}{p}\right)^{\lfloor u\rfloor} \tag{9}\\
& \leqslant x\left(\frac{e \log \log x+O(1)}{\lfloor u\rfloor}\right)^{\lfloor u\rfloor} \\
& \leqslant x \exp \{-(1+o(1)) u \log u\} \\
& \ll x \exp \left\{-(1+o(1)) \sqrt{\frac{1}{6} \log x \log \log x}\right\}
\end{align*}
$$

Hence, from here on we may assume that $\omega(n)<u$.
We now neglect those integers $n \leqslant x, n \in T_{0}$ with $P(n)>y$ and such that $P(n)^{2} \mid n$, since the number of such integers is

$$
\begin{align*}
& <\#\left\{n \leqslant x: P(n)>y, P(n)^{2} \mid n\right\} \leqslant \sum_{p>y} \frac{x}{p^{2}} \tag{10}\\
& \ll \frac{x}{y}=x \exp \left\{-\sqrt{\frac{3}{2} \log x \log \log x}\right\} .
\end{align*}
$$

From here on, we shall therefore assume that $Q:=P(n) \| n$ and write $n=$ $m Q$. Now, writing (2) as

$$
\begin{equation*}
n=m Q=p_{1}^{b_{1}}+\ldots+p_{k}^{b_{k}} \tag{11}
\end{equation*}
$$

where $p_{1}<\ldots<p_{k}=Q$ are the prime factors of n and each b_{i} is non negative, we get from (11) that

$$
\begin{equation*}
p_{1}^{b_{1}}+\ldots+p_{k-1}^{b_{k-1}}+\delta \equiv 0(\bmod Q) \tag{12}
\end{equation*}
$$

where δ is 0 or 1 , depending if $b_{k}>0$ or $b_{k}=0$. The number appearing on the left hand side of (12) depends only on the prime factors of m and does not depend on Q, and moreover, each one of these numbers has at most $\log x$ factors. Thus, we may fix $m \leqslant x / y$ and count how many candidates there may be for a given prime number Q. Since n is not a prime power, we have $k \geqslant 2$, and therefore the left hand side of congruence (12) is a positive integer. Since $p_{i}^{b_{i}}<n \leqslant x$, it follows that $b_{i} \ll \log x+1$. In fact, $b_{i}<\log x+1$ always holds except when $i=1$ and $p_{1}=2$, in which case $b_{1} \leqslant \frac{\log x+1}{\log 2}$. Thus, the total number of integers which can appear on the left hand side of (12) is $\ll(\log x+1)^{\omega(n)} \ll(\log x+O(1))^{u} \ll$ $\exp \{(1+o(1)) u \log \log x\}$, which means that

$$
\begin{align*}
& \#\left\{n \leqslant x: n \in T_{0}, P(n)>y, P(n) \| n, \omega(n)<u\right\} \tag{13}\\
& \ll \frac{x \log x}{y} \exp \{(1+o(1)) u \log \log x\} \\
& \ll x \exp \left\{-(1+o(1)) \sqrt{\frac{1}{6} \log x \log \log x}\right\}
\end{align*}
$$

Theorem 2 then follows from (8), (9), (10) and (13).

5. Empirical lower and upper bounds for $\boldsymbol{T}(\boldsymbol{x})$

Although we cannot prove that T is an infinite set, a heuristic argument shows that

$$
\begin{equation*}
\exp \left(\frac{2}{e}(1+o(1)) \frac{\log x}{(\log \log x)^{2}}\right) \leqslant T(x) \leqslant x^{1 / 2+o(1)} . \tag{14}
\end{equation*}
$$

Our argument goes as follows. First, we will show that, heuristically,

$$
\begin{equation*}
T(x)=\frac{1}{2} \sum_{n \leqslant x} f(n), \quad \text { where } \quad f(n):=\frac{1}{n} \prod_{p \mid n}\left\lfloor\frac{\log n}{\log p}\right\rfloor \tag{15}
\end{equation*}
$$

from which we will show that (14) follows.
Indeed, given a positive integer n such that $\omega(n)$ is odd and writing $n=$ $q_{1}^{a_{1}} \ldots q_{T}^{a_{r}}$, then in order to have $n \in T$, we must find a representation of the form

$$
\begin{equation*}
n=q_{1}^{\alpha_{1}}+\ldots+q_{r}^{\alpha_{r}} \tag{16}
\end{equation*}
$$

Now, for each exponent α_{i}, there are $\left\lfloor\log n / \log q_{i}\right\rfloor$ possible choices. Hence, if a representation of the form (16) is possible, then the exponents α_{i} have been chosen in the interval $\left[1,\left\lfloor\log n / \log q_{i}\right\rfloor\right]$. Therefore, since there are $\prod_{i=1}^{r}\left\lfloor\log n / \log q_{i}\right\rfloor$ possible choices for the right hand side of (16), we should 'expect' that a representation of the form (16) will be possible with a 'probability' equal to $\frac{1}{n} \prod_{p \mid n}\left\lfloor\frac{\log n}{\log p}\right\rfloor$, thus establishing (15); note that the factor $\frac{1}{2}$ comes from the fact that a randomly chosen number has an odd " $\omega(n)$ " with a probability $\frac{1}{2}$.

It remains to prove that (14) follows from (15).
First we prove the lower bound. Let x be a large positive real number and let $k \geqslant 1$ be an integer.

Let $p_{1}<\ldots<p_{k}$ be the first k primes. We shall consider only the contribution to $T(x)$ of those positive integers $n=p_{1} \ldots p_{k} p \leqslant x$, where $p>p_{k}$ is a prime number. We first get rid of the integer parts. Clearly, if $i \in\{1, \ldots, k\}$, then

$$
\left\lfloor\frac{\log n}{\log p_{i}}\right\rfloor=\frac{\log n}{\log p_{i}}-\left\{\frac{\log n}{\log p_{i}}\right\}>\frac{\log n}{\log p_{i}}\left(1-\frac{\log p_{i}}{\log n}\right)>\frac{\log n}{\log p_{i}} \exp \left(-2 \frac{\log p_{i}}{\log n}\right),
$$

where in the above inequalities we used the fact that $\log p_{i} / \log n \leqslant 1 / 2$ and that the inequality $1-t>\exp (-2 t)$ holds for $t \in(0,1 / 2)$. Together with the fact that $\lfloor\log n / \log p\rfloor \geqslant 1$, we get
$f(n) \geqslant\left(\prod_{i=1}^{k} \frac{\log n}{\log p_{i}}\right) \exp \left(-2 \sum_{i=1}^{k} \frac{\log p_{i}}{\log n}\right)>\exp (-2) \prod_{i=1}^{k} \frac{\log n}{\log p_{i}} \gg \frac{(\log p)^{k}}{\log p_{1} \ldots \log p_{k}}$.
This implies that

$$
\begin{align*}
T(x) & =\frac{1}{2} \sum_{n \leqslant x} f(n) \gg \sum_{\substack{p_{1} \ldots p_{k} k \leqslant x \\
p>p_{k}}} \frac{1}{p_{1} \log p_{1} \ldots p_{k} \log p_{k}} \frac{(\log p)^{k}}{p} \tag{17}\\
& =\frac{1}{p_{1} \log p_{1} \ldots p_{k} \log p_{k}} \sum_{p_{k}<p \leqslant x / p_{1} \ldots p_{k}} \frac{(\log p)^{k}}{p}
\end{align*}
$$

$$
\begin{aligned}
& \gg \frac{1}{p_{1} \log p_{1} \ldots p_{k} \log p_{k}} \int_{p_{k}}^{x / p_{1} \ldots p_{k}} \frac{(\log t)^{k-1}}{t} d t \\
& \gg \frac{1}{p_{1} \log p_{1} \ldots p_{k} \log p_{k}} \frac{\left(\log \left(x / p_{1} \ldots p_{k}\right)\right)^{k}}{k} \\
& =\exp \left(k \log \log x-\sum_{i=1}^{k}\left(\log p_{i}+\log \log p_{i}\right)+O\left(\frac{k\left(\log p_{1}+\ldots+\log p_{k}\right)}{\log x}\right)\right) .
\end{aligned}
$$

The above chain of inequalities holds when k is such that

$$
\log \left(x / p_{1} \ldots p_{k}\right)-\log p_{k} \gg \log \left(x / p_{1} \ldots p_{k}\right)
$$

which in turn is true when

$$
\log p_{k}+\frac{\log p_{1}+\ldots+\log p_{k}}{\log x}=o(\log x),
$$

which holds when

$$
\begin{equation*}
\log p_{k}+\frac{k \log p_{k}}{\log x}=o(\log x) \tag{18}
\end{equation*}
$$

We now use the fact that, as k tends to infinity,

$$
p_{k} \leqslant k \log k+k \log \log k-k+o(k)
$$

(see Théorème $\mathrm{A}(\mathrm{v})$ in [1]), together with the well known estimate

$$
\sum_{p \leqslant y} \log p=\sum_{n \leqslant y} \Lambda(n)+O\left(y^{1 / 2}\right)=y+O\left(\frac{y}{\exp (c \sqrt{\log y})}\right)=y+O\left(\frac{y}{(\log y)^{2}}\right)
$$

where c is some positive constant and Λ denotes the von Mangoldt function, to conclude that

$$
\begin{equation*}
\sum_{i=1}^{k} \log p_{i}=p_{k}+O\left(\frac{p_{k}}{(\log k)^{2}}\right) \leqslant k \log k+k \log \log k-k+o(k) \tag{19}
\end{equation*}
$$

Since $p_{k}<2 k \log k$ holds for all sufficiently large k, we also have that

$$
\begin{align*}
\sum_{i=1}^{k} \log \log p_{i} & \leqslant k \log \log p_{k} \leqslant k \log (\log k+\log (2 \log k)) \tag{20}\\
& \leqslant k \log \log k+O\left(\frac{k \log \log k}{\log k}\right) \\
& =k \log \log k+o(k)
\end{align*}
$$

Introducing inequalities (19) and (20) into (17), we get

$$
\begin{align*}
T(x) & \geqslant \exp \left(k \log \log x-k \log k-2 k \log \log k+k+o(k)+O\left(\frac{k^{2} \log k}{\log x}\right)\right) \tag{21}\\
& =\exp \left(k \log \left(\frac{\log x}{k(\log k)^{2}}\right)+k+o(k)+O\left(\frac{k^{2} \log k}{\log x}\right)\right)
\end{align*}
$$

In order to maximize the main term of the above inequality, we should choose k versus x in such a way that the expression $k \log \left(\frac{\log x}{k(\log k)^{2}}\right)$ should be as large as possible. Thus, we choose $k:=\left\lfloor\frac{1}{e} \frac{\log x}{(\log \log x)^{2}}\right\rfloor$. We note that k is in the acceptable range; i.e., $p_{1} \ldots p_{k}<x$, that condition (18) is fulfilled, that with this choice of k we have

$$
k \log \left(\frac{\log x}{k(\log k)^{2}}\right)=(1+o(1)) k
$$

and that the error term is

$$
\frac{k^{2} \log k}{\log x}=\frac{k}{\log k} \frac{k(\log k)^{2}}{\log x}=O\left(\frac{k}{\log k}\right)=o(k) .
$$

Hence, we may replace (21) by

$$
T(x) \geqslant \exp (2(1+o(1)) k)=\exp \left(\frac{2}{e}(1+o(1)) \frac{\log x}{(\log \log x)^{2}}\right)
$$

which proves the left hand side of inequality (14).
We now prove the upper bound.
Fix a large number k and write

$$
\begin{equation*}
T(x)<\sum_{\substack{n \leqslant x \\ \omega(\mathbf{n})<k}} \frac{1}{n} \prod_{p \mid n} \frac{\log n}{\log p}+\sum_{\substack{n \leqslant x \\ \omega(n) \geqslant k}} \frac{1}{n} \prod_{p \mid n} \frac{\log n}{\log p}=T_{1}(x)+T_{2}(x), \tag{22}
\end{equation*}
$$

say. We have

$$
\begin{equation*}
T_{1}(x) \leqslant \sum_{\substack{n \leqslant x \\ \omega(n)<k}} \frac{1}{n}(\log n)^{\omega(n)} \leqslant \sum_{n \leqslant x} \frac{(\log n)^{k}}{n} \ll \frac{(\log x)^{k+1}}{k+1} \tag{23}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
T_{1}(x)<(\log x)^{k+1} \tag{24}
\end{equation*}
$$

holds if k is sufficiently large.

In the sequel, we shall be using the fact that, if k is sufficiently large, then

$$
\begin{equation*}
\prod_{i=1}^{k} \log p_{i}>(\log k)^{k} \tag{25}
\end{equation*}
$$

Indeed, since $p_{i} \geqslant i \log i$ holds for all $i \geqslant 2$ (see [3]), one gets

$$
\begin{equation*}
\log p_{i} \geqslant \log i+\log \log i \quad(i \geqslant 3) \tag{26}
\end{equation*}
$$

The inequality $\log (1+t)>t / 2$ holds for all $t \in(0,1 / 2)$. The function $t \longmapsto$ $\log \log t / \log t$ is decreasing for $t>e^{e}$ and its value at e^{e} is $1 / e<1 / 2$. Hence,

$$
\begin{aligned}
& \log (\log i+\log \log i)=\log \log i+\log \left(1+\frac{\log \log i}{\log i}\right)>\log \log i+\frac{1}{2} \frac{\log \log i}{\log i} \\
& \left(i>e^{e} \approx 15.2\right)
\end{aligned}
$$

We thus get

$$
\begin{aligned}
\sum_{i=1}^{k} \log \log p_{i} & \geqslant \sum_{i=16}^{k} \log (\log i+\log \log i)+O(1) \\
& =\sum_{i=16}^{k} \log \log i+\sum_{i=16}^{k} \log \left(1+\frac{\log \log i}{\log i}\right)+O(1) \\
& \geqslant \sum_{i=16}^{k} \log \log i+\frac{1}{2} \sum_{i=16}^{k} \frac{\log \log i}{\log i}+O(1) \\
& \geqslant \int_{16}^{k} \log \log t d t+\frac{1}{2} \int_{16}^{t} \frac{\log \log t}{\log t} d t+O(1) \\
& =\left.t \log \log t\right|_{t=16} ^{t=k}-\int_{16}^{t} \frac{1}{\log t} d t+\frac{1}{2} \int_{16}^{t} \frac{\log \log t}{\log t} d t+O(1) \\
& >k \log \log k
\end{aligned}
$$

where the last inequality follows for large enough k due to the fact that the function $\int_{16}^{k}\left(\frac{1}{2} \frac{\log \log t}{\log t}-\frac{1}{\log t}\right) d t$ tends to infinity with k, thus establishing (25). Using (25), we have

$$
\begin{equation*}
T_{2}(x) \leqslant \sum_{\substack{n \leqslant x \\ \omega(n) \geqslant k}} \frac{1}{n} \frac{(\log n)^{k}}{\prod_{i=1}^{\omega(n)} \log p_{i}} \leqslant \sum_{\substack{n \leqslant x \\ \omega(n) \geqslant k}} \frac{1}{n}\left(\frac{\log n}{\log \omega(n)}\right)^{\omega(n)} \tag{27}
\end{equation*}
$$

Using the fact that

$$
\omega(n) \leqslant \frac{\log n}{\log \log n}+(1+o(1)) \frac{\log n}{(\log \log n)^{2}}
$$

(see Pomerance [2]), together with the fact that the function $t \longmapsto\left(\frac{\log n}{\log t}\right)^{t}$ is increasing for $t \leqslant \log n$, it follows, from (27), that

$$
\begin{align*}
T_{2}(x) & \leqslant \sum_{\substack{n \leqslant x \\
\omega(n) \geqslant k}} \frac{1}{n} \cdot n \cdot e^{O\left(\frac{\log n \cdot \log \log \log n}{\log \log n}\right)} \tag{28}\\
& \ll \mathcal{N}_{k}(x) \exp \left\{O\left(\frac{\log x \log \log \log x}{\log \log x}\right)\right\}
\end{align*}
$$

where

$$
\mathcal{N}_{k}(x)=\#\{n \leqslant x \mid \omega(n) \geqslant k\} .
$$

It is easy to see, using Stirling's formula, that

$$
\begin{equation*}
\mathcal{N}_{k}(x) \leqslant x \sum_{\substack{q_{1}<\ldots<q_{k} \\ q_{1} \ldots q_{k} \leqslant 土}} \frac{1}{q_{1} \ldots q_{k}} \leqslant \frac{x}{k!}\left(\sum_{q \leqslant x} \frac{1}{q}\right)^{k} \ll \frac{x}{\sqrt{k}}\left(\frac{e \log \log x+O(1)}{k}\right)^{k} \tag{29}
\end{equation*}
$$

In particular, combining (28) and (29), for large x and k, we have that

$$
\begin{equation*}
T_{2}(x)<x \cdot\left(\frac{(\log \log x)^{3 / 2}}{k}\right)^{k} \exp \left\{O\left(\frac{\log x \log \log \log x}{\log \log x}\right)\right\} \tag{30}
\end{equation*}
$$

We now choose k such that $k:=\left\lfloor\frac{1}{2} \frac{\log x}{\log \log x}\right\rfloor$. It is clear that k is in the acceptable range; i.e., $k=\omega(n)$ for some $n \leqslant x$. Furthermore, inequality (24) shows that

$$
\begin{equation*}
T_{1}(x)<x^{1 / 2+o(1)} \tag{31}
\end{equation*}
$$

while inequality (30) shows that

$$
\begin{align*}
T_{2}(x) & <x \exp \left(\frac{3}{2} k \log \log \log x-k \log k-O\left(\frac{\log x \log \log \log x}{\log \log x}\right)\right) \tag{32}\\
& =x \exp \left(-\frac{\log x}{2}+O\left(\frac{\log x \log \log \log x}{\log \log x}\right)\right)=x^{1 / 2+o(1)}
\end{align*}
$$

Using (31) and (32) in (22), we obtain the upper bound in (14).

Acknowledgement. The authors would like to thank the referee for some very helpful suggestions.

References

[1] J. Massias and G. Robin, 'Bornes effectives pour certains fonctions concernant les nombres premiers', J. Théorie Nombres Bordeaux 8 (1996), 215-242.
[2] C. Pomerance, 'On the distribution of round numbers', Ootacamund, India 1984, K. Alladi, ed., Lecture Notes in Math. 1122 (1985), 173-200.
[3] J.B. Rosser and L. Schoenfeld, 'Approximate formulas for some functions of prime numbers', Illinois J. Math. 6 (1962), 64-94.
[4] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, 1995.

Addresses: Jean-Marie De Koninck, Départment de mathématiques, Université Laval, Québec G1K 7P4, Canada
Florian Luca, Mathematical Institute, UNAM, Ap. Postal 61-3 (Xangari), CP 58089 , Morelia, Michoacán, Mexico
E-mail: jmdk@mat.ulaval.ca; fluca@matmor.unam.mx
Received: 30 July 2004; revised: 20 December 2004

[^0]: 2001 Mathematics Subject Classification: 11A41, 11A25
 ${ }^{1}$ Research supported in part by a grant from NSERC.
 ${ }^{2}$ Research supported in part by projects SEP-CONACYT 37259-E and 37260-E.

