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EULER-RABINOWITSCH POLYNOMIALS AND CLASS NUMBER
PROBLEMS REVISITED

Richard A. Mollin, Anitha Srinivasan

Abstract: We prove a conjecture posed in [11] and continue the process of determining Euler-
Rabinowitsch polynomials that produce consecutive primes in a given range of inputs, and the
relationship with class numbers of the underlying quadratic field.
Keywords: class numbers; real quadratic fields, prime-producing polynomials, continued frac-
tions.

1. Introduction

In [11], we showed how work of Byeon and Stark in [2]- [3] actually followed
from work of the first author some years before the publication of the latter,
and corrected, extended and clarified the results of the latter as well. We left
a conjecture in [11] that we prove herein and we look at more general Euler-
Rabinowitsch polynomials than those considered in [11]. This allows us to get
both class number one and two results that extend results in the literature.

2. Preliminaries

We will be using continued fraction expansions herein for which we remind the
reader of the following, the details and background of which may be found in [10],
or for a more advanced approach in [6].

We denote the infinite simple continued fraction expansion of a given α ∈ R by

α = 〈q0; q1, q2, . . .〉 where qj ∈ N for j ∈ N and q0 = bαc,
where bαc is the floor of α, namely the greatest integer less than or equal to α.
It turns out that infinite simple continued fraction expansions are irrational, namely
α ∈ R−Q. There is a specific type of irrational that we need as follows.
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Definition 2.1. A real number α is called a quadratic irrational if it is an irra-
tional number which is a root of

f(x) = ax2 + bx + c (2.1)

where a, b, c ∈ Z and a 6= 0.

Remark 2.1. By the quadratic formula, the roots of (2.1) are given by

α =
−b +

√
b2 − 4ac

2a
,

and

α′ =
−b−√b2 − 4ac

2a
,

so if we take ∆ = b2 − 4ac, P = −b, and Q = 2a, then

α =
P +

√
∆

Q
and α′ =

P −√∆
Q

.

Also, ∆ > 0 since α ∈ R−Q, and P 2−∆ = 4ac is divisible by Q. These elementary
facts are formalized in what follows.

Theorem 2.1. A real number α is a quadratic irrational if and only if there exist
P, Q, ∆ ∈ Z such that Q 6= 0, ∆ ∈ N is not a perfect square, and

α =
P +

√
∆

Q
, (P, Q ∈ Z),

with Q|(P 2 −∆). Also,
α′ = (P −

√
∆)/Q

is called the algebraic conjugate of α. Here both α and α′ are the roots of

f(x) = x2 − Tr(α)x + N(α),

where Tr(α) = α + α′ is the trace of α and N(α) = α · α′ is the norm of α.

Proof. See [10, Theorem 5.9, p. 222]. ¥

We will primarily be concerned with the following type of quadratic irrational.

Definition 2.2. A quadratic irrational α is called reduced if both α > 1 and
−1 < α′ < 0.

Now we link back to continued fractions, but first need the following notion.
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Definition 2.3. The infinite simple continued fraction of α is called periodic
(sometimes called eventually periodic) if there exists an integer k > 0 and l ∈ N
such that qn = qn+l for all integers n > k. We use the notation

α = 〈q0; q1, · · · qk−1, qk, qk+1, · · · ql+k−1 〉, (2.2)

as a convenient abbreviation. The smallest such natural number ` = `(α) is
called the period length of α, and q0, q1, ..., qk−1 is called the pre-period of α.
If k is the least non-negative integer such that qn = qn+` for all n > k, then
qk, qk+1, . . . , qk+`−1 is called the fundamental period of α with period length de-
noted by `(α). When k = 0 is the least such value, then α is said to be purely
periodic, namely α = 〈q0; q1, . . . , q`−1 〉.
Theorem 2.2. Let α = (P0 +

√
D)/Q0 be a quadratic irrational, where D > 0 is

not a perfect square, Q0 is a nonzero integer, P0 ∈ Z, and Q0

∣∣(D−P 2
0 ). Recursively

define for any j > 0,

αj = (Pj +
√

D)/Qj ,

Pj+1 = qjQj − Pj , (2.3)

qj =

⌊
Pj +

√
D

Qj

⌋
, (2.4)

and
D = P 2

j+1 + QjQj+1. (2.5)

Then
α = 〈q0; q1, q2, . . .〉.

Moreover, α is periodic and when it is reduced it is purely periodic.

Proof. See [10, Theorem 510, p. 223]. ¥

We will need the following facts – see [6, §2.1, pp. 41–63] for complete details.
If `(α) = ` is even, then

P`/2 = P`/2+1, (2.6)
Q`/2+1 = Q`/2−1, (2.7)

and if ` is odd, then
P(`+3)/2 = P(`−1)/2, (2.8)

Q(`+1)/2 = Q(`−1)/2. (2.9)

Moreover, for any reduced quadratic irrational α with 0 6 j < `, we have

0 < Qj < 2
√

D, (2.10)

and
0 < Pj <

√
D. (2.11)
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Now we need to define arbitrary real quadratic orders in which we will work.
If D0 > 1 is a squarefree integer, then a fundamental discriminant ∆0 with funda-
mental radicand D0 is given by

∆0 =

{
D0 if D0 ≡ 1 (mod 4),
4D0 if D0 ≡ 2, 3 (mod 4).

(2.12)

Now suppose that ∆ = f2
∆∆0 = 4D/σ2 for a given positive integer f∆, called the

conductor for ∆ with associated radicand D with σ defined by

σ =

{
2 if ∆0 ≡ 1 (mod 4) and f∆ is odd,
1 otherwise.

(2.13)

Set

ω∆ =

{
(1 +

√
D)/2 if ∆ = D ≡ 1 (mod 4),√

D if ∆ ≡ 0 (mod 4),
(2.14)

called the principal surd associated with ∆ and

O∆ = [1, ω∆] = Z[ω∆] = Z+ ω∆Z

is called a real quadratic order in Q(
√

D0) having conductor f∆ and discriminant ∆
with associated radicand D. (The reader unfamiliar with the notions of a general
discriminant and radicand may consult [6, Section 1.5, pp. 23–24], for instance.)

We need information—see [6, pp. 54–59] for Equations (2.15)–(2.18) below—on
the continued fraction expansion of

ω∆ = 〈q0; q1, q2, . . . , q`−1, 2q0 − σ + 1 〉,
where ` = `(ω∆), q0 = bω∆c, and q1q2 . . . q`−1 is a palindrome, namely for
1 6 j 6 `,

qj = q`−j . (2.15)

The jth convergent for ω∆ for any non-negative integer j is given by

Aj

Bj
= 〈q0; q1, q2, . . . , qj〉,

where
Aj = qjAj−1 + Aj−2,

Bj = qjBj−1 + Bj−2,

with A−2 = 0, A−1 = 1, B−2 = 1, and B−1 = 0. Also,

A2
`−1 −B2

`−1D = (−1)`. (2.16)

The complete quotients for ω∆ are given by (Pj +
√

D)/Qj where P0 = σ − 1,
Q0 = σ, and for j ∈ N as defined in Theorem 2.2, from which we also get

σ
∣∣Qj for all j > 0, (2.17)
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and

Qj = σ for any 0 6 j 6 ` if and only if j ∈ {0, `}. (2.18)

We now establish the link between quadratic irrationals and ideals. We begin
with the following.

Theorem 2.3. Let I be a nonzero Z-submodule of O∆. Then I has a representa-
tion in the form

I = [a, b + cω∆]

where a, c ∈ N and 0 6 b < a. Furthermore, I is an O∆- ideal if and only if
this representation satisfies c

∣∣a, c
∣∣b, and ac

∣∣N (b + cω∆). When c = 1, I is called
primitive.

Proof. See [6, Theorem 1.2.1, p. 9] or [7, Theorem 3.5.1, p. 173]. ¥

Definition 2.4. To each quadratic irrational α = (P +
√

D)/Q there corresponds
the primitive O∆-ideal

I =
[
|Q|/σ, (P +

√
D)/σ

]
.

We denote this ideal by [α] = I and write l(I) for l(α).

The next result sets the stage for our primary discussion.
Note that the notion of reduction for quadratic irrationals translates to ideals,

namely we have the following.

Definition 2.5. An O∆-ideal is said to be reduced if it is primitive and does not
contain any non-zero element α such that both |α| < N(I) and |α′| < N(I).

Theorem 2.4. I = [a, (b +
√

∆)/2] is reduced if and only if there is a β ∈ I such
that I = [N(I), β] with β > N(I) and −N(I) < β′ < 0.

Proof. See [6, Lemma 1.4.1, p. 19] or [7, Theorem 5.5.1, p. 258]. ¥

Corollary 2.1. If ∆ > 0 is a discriminant and [a, b + ω∆] is a primitive ideal
with a <

√
∆/2, then I is reduced.

Proof. See [6, Corollary 1.4.3, p. 19]. ¥

Now, we let C∆ be the ideal-class group of O∆ and h∆ = |C∆| the ideal class
number. If I, J are O∆-ideals, then equivalence of classes in C∆ is denoted by
I ∼ J and the class of I is denoted by I. The following is crucial to the interplay
between ideals and continued fractions, known as the infrastructure theorem for
real quadratic fields or the continued fraction algorithm.

Theorem 2.5. Let ∆ = 4D/σ2 be a discriminant with associated radicand D, and
let I = I1 = [Q/σ, (P +

√
D)/σ] be a primitive O∆-ideal. Set P0 = P , Q0 = Q,

and for j ∈ N, let Ij = [Qj−1/σ, (Pj−1 +
√

D)/σ] as given in Theorem 2.2 in the
continued fraction expansion of γ = γ0 = (P +

√
D)/Q. Then I1 ∼ Ij for all

j > 1. Moreover, there exists a least value m ∈ N such that Im+i is reduced for all
i > 0.
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Proof. See [6, Theorem 2.1.2, p. 44]. ¥

Remark 2.2. The infrastructure given in Theorem 2.5 demonstrates that if we
begin with any primitive O∆-ideal I, then after applying the continued fraction
algorithm to α = α0, we must ultimately reach a reduced ideal Im ∼ I for some
m > 1. Furthermore, once we have produced this ideal Im, we enter into a
periodic cycle of reduced ideals, and this periodic cycle contains all the reduced
ideals equivalent to I.

If I = [Q/σ, (P +
√

D)/σ] is a reduced O∆-ideal, then the set

{Q1/σ,Q2/σ, . . . , Q`/σ}

represents the norms of all the reduced ideals equivalent to I (via the continued
fraction expansion of α = (P +

√
D)/Q).

Note that by Corollary 2.1, whenever there is an ideal of norm less than
√

∆/2,
then there is a reduced ideal with norm less than

√
∆/2. Thus, Corollary 2.2 below

applies to all such ideals and we will make extensive use of it in the balance of the
paper.

Corollary 2.2. A reduced ideal I = [Q/σ, (P +
√

D)/σ] of O∆ is principal if
and only if Q = Qj for some positive integer j 6 `(ω∆) in the continued fraction
expansion of ω∆.

Proof. See [5]. ¥

We will utilize the following in the next section.

Theorem 2.6. Suppose that ∆ = 4D/σ2 is a discriminant. Then the following
hold.

1. If Qj/σ is a squarefree divisor of 2D for some j ∈ N with j < `, then j = `/2.
2. If ` is even, then Q`/2/σ

∣∣2D, where Q`/2/σ is not necessarily squarefree.

Proof. See [6, Theorem 6.1.4, p. 193]. ¥

We will need the following which determines the generators of the ideal class
group C∆ of Q(

√
∆) having discriminant ∆. Recall that a non-inert prime ideal P

is one whose norm N(P) satisfies the Legendre symbol inequality (∆/N(P)) 6= −1,
while a split prime ideal is one with (∆/N(P)) = 1, and a ramified prime ideal is
one with N(P)

∣∣∆.

Theorem 2.7. If ∆ is the discriminant of a real quadratic field, then every class of
C∆ contains a primitive ideal I with N(I) 6

√
∆/2. Furthermore, C∆ is generated

by the non-inert prime O∆-ideals P with N(P) <
√

∆/2.

Proof. See [6, Theorem 1.3.1, p. 15]. ¥
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3. Euler-Rabinowitsch Polynomials

Definition 3.1. Let ∆ = 4D/σ2 be an arbitrary discriminant with associated
radicand D and q ∈ N a square-free divisor of ∆. Let α∆ = 1 if 4q

∣∣∆ and α∆ = 2
otherwise. Then

F∆,q(x) = qx2 + (α∆ − 1)qx +
(α∆ − 1)q2 −∆

4q
,

is called the Euler-Rabinowitsch polynomial, which was introduced by the first au-
thor in [6, Chapter 4] to discuss prime-producing quadratic polynomials. The spe-
cial case of F∆,1(x) was rediscovered in [2] and called a Rabinowitsch polynomial.
The following four lemmas, involving the Euler-Rabinowitsch polynomial, will be
needed in the sequel. In all of the lemmas, we assume that ∆ is a discriminant
with associated conductor f∆ and q is a positive square free divisor of ∆ such that
gcd(q, f∆) = 1.

Lemma 3.1. If p is prime then the following are equivalent.

(a) F∆,q(x) ≡ 0(mod p) for some non-negative integer x.
(b) The Legendre symbol (∆/p) 6= −1 and p does not divide q.

Proof. See [6, Lemma 4.1.2, p. 118]. ¥

Lemma 3.2. If B is any positive real number and p < B is any non-inert prime
in Q(

√
D), with p - q, then there exists an integer x > 0 with x < (B − α∆ + 1)/2

such that p
∣∣F∆,q(x).

Proof. See [6, Lemma 4.1.3, p. 118]. ¥

Lemma 3.3. If the radicand D associated with ∆ satisfies D ≡ 3(mod 4) and
D 6= 2p2 + 1 for any prime p, then the following are equivalent.

(a) |F∆,2(x)| is 1 or prime for all non-negative integers x 6
√

D − 1/2.
(b) The Legendre symbol (D/p) = −1 for all odd primes p <

√
D − 2/2.

Proof. See [6, Theorem 5.4.9, p. 183]. ¥

In the next result, the ideal over q is unique since q is divisible only by ramified
primes.

Lemma 3.4. If a > 0 is an integer with |F∆,q(x)| = a for some non-negative
integer x, then Q ∼ A, where A is an O∆-ideal with norm a and Q is the unique
O∆-ideal over q.

Proof. See [6, Lemma 4.1.4, p. 118]. ¥

Corollary 3.1. If q = 1 in Lemma 3.4, then whenever |F∆,q(x)| = a for some
non-negative integer x, then A ∼ 1.

Proof. This is immediate from Lemma 3.4. ¥
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We begin by showing how all Rabinowitsch polynomials for q = 2 may be de-
termined. The following generalize results obtained in [6, Theorems 4.2.5, p. 134],
where an assumption was made that we show below is not necessary. Furthermore,
the results below are more specific.

Theorem 3.1. Suppose that ∆ = 4(4m + 3) = 4D, for D > 3, where D is not
prime. Then the following are equivalent.

1. |F∆,2(x)| = |2x2 + 2x− 2m− 1| is prime for all integers x ∈ [0, (
√

D− 1)/2].
2. D = p2 + 2p = (p + 1)2 − 1 where p and p + 2 are primes, h∆ = 2, and

`(
√

D) = 2.
3. D ∈ {15, 35, 143}.

Proof. Assume that 1 holds. Clearly, D is not a square since D ≡ 3 (mod 4).
Moreover, we now show that D is square-free. If D = r2D0 where D0 > 1 is
square-free, then it follows that

∣∣∣∣F∆,2

(
r − 1

2

)∣∣∣∣ = r2

∣∣∣∣
1−D0

2

∣∣∣∣ ,

so since (r−1)/2 < (
√

D−1)/2, then by hypothesis r = 1, so D has no non-trivial
square factor.

Observe that by (2.16), ` = `(
√

D) must be even since D ≡ 3 (mod 4), so if
` were odd, then −1 would be a square modulo D which is impossible. Suppose
that D = ps where p is a prime such that 2 < p < s, then

|F∆,2((p− 1)/2)| = p

(
s− p

2

)
.

Therefore, since 0 < (p−1)/2 6 (
√

D−1)/2, then s = p+2, but the period length
of
√

D for D = p2 + 2p is well known to be `(
√

D) = 2—see [6, Theorem 3.2.1,
p.78]. By tabulating the values for p +

√
D, corresponding to the reduced ideal

[1, p +
√

D], from Theorem 2.5, we get:

i 0 1 2
Pi p p p
Qi 1 2p 1
qi 2p 1 2p

and tabulating for (p+
√

D)/2, corresponding to the reduced ideal [2, p+
√

D], we
get:

i 0 1 2
Pi p p p
Qi 2 p 2
qi p 2 p
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The first table corresponds to the principal cycle and the second to a non-
principal cycle for the non-principal reduced ideal Q = [2, p +

√
D] above the

ramified prime 2, hence of order 2 in C∆. If there is a non-inert prime r < p = b√Dc
with r 6= 2 then, by Lemmas 3.2 and 3.4, A ∼ Q = [2, p +

√
D], the ideal over 2,

and where A is an O∆-ideal of norm r. Hence, there are no more non-principal
ideals, so we have shown that h∆ = 2 via Theorem 2.7. Now if p + 2 is not prime,
then via Remark 2.2, there is a divisor of p + 2 that has to appear as a Qj in one
of the above two cycles, but the only Qjs are 1, 2, p, 2p, so this is not possible and
p + 2 must be prime. We have shown that 1 implies 2.

Furthermore, by [4], the only values, unconditionally, are given in the list in 3
under the assumption in 2, so 2 implies 3. Also, 3 implies 1 is an easy check. ¥

Theorem 3.2. Suppose that ∆ = 4(4m + 3) = 4D where 4m + 3 is prime. Then
the following are equivalent.

(a) |F∆,2(x)| = |2x2 + 2x− 2m− 1| is 1 or prime for all x ∈ [0, (
√

D − 1)/2].
(b) One of the following holds:

(i) D = b√Dc2 + 2, l(
√

D) = 2, h∆ = 1, and there are no split primes
p <

√
D. Moreover, the only values, with one possible exception, for

which this holds are
D ∈ {3, 11, 83, 227}. (3.1)

(ii) D = (b√Dc + 1)2 − 2, l(
√

D) = 4, h∆ = 1, and p = 2b√Dc − 1 is the
only split prime less than

√
∆. Moreover, the only values, with one

possible exception, for which this holds are

D ∈ {7, 23, 47, 167}. (3.2)

Proof. Assume that part (a) holds. We have that `(
√

D) must be even by the
same reasoning as in the proof of Theorem 3.1. Since Q`/2|2D by Theorem 2.6,
then for any odd prime r|Q`/2, r|D. However, D is prime so D = r, a contradiction
since Q`/2 < 2

√
D by (2.10) and Theorem 2.6. This forces Q`/2 = 2. We first show

that h∆ = 1. Suppose that there is a split prime q <
√

D. Then by Lemma 3.2,
there exists a non-negative integer x < (

√
D − 1)/2 such that q

∣∣F∆,2(x). By
hypothesis (a), this forces |F∆,2(x)| = q. Thus, by Lemma 3.4, Q ∼ P where Q is
the O∆-prime over q and P is an O∆-prime over 2. However, since Q`/2 = 2, then
by Corollaries 2.1–2.2, P ∼ 1. Hence, h∆ = 1, by Corollaries 2.1–2.2, Remark 2.2,
and Theorem 2.7.

Now by (2.5),
D = P 2

1 + Q1. (3.3)

(Note that, in the following, we may invoke Lemma 3.3 since if D = 2p2 + 1 for
any prime p, then 2m + 1 = p2, so |F∆,2(0)| = p2, contradicting (a).)

Let p be a prime dividing Q1. By Lemma 3.3, there cannot be any odd split
primes less than

√
D/2, so p must be larger than

√
D/2, given that any prime
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dividing Qj for any j must be non-inert by (2.5). However, by Lemma 3.2, if
p > 2, then p|F∆,2(x) for some x < (

√
D − 1)/2. Thus, by hypothesis,

|F∆,2(x)| = D − (2x + 1)2

2
= Q1 = p,

so,
D = (2x + 1)2 + 2p. (3.4)

However
D = P 2

1 + Q1 = P 2
1 + p, (3.5)

by (2.5). Equating (3.4) and (3.5), we get,

p = P 2
1 − (2x + 1)2 = (P1 − 2x− 1)(P1 + 2x + 1).

Thus, P1 = 2x + 2 = b√Dc and p = 4x + 3, from which we get D = (2x + 3)2− 2.
Now we demonstrate that ` = 4 by simply tabulating the values from Theorem 2.2:

i 0 1 2 3 4
Pi 0 2x + 2 2x + 1 2x + 1 2x + 2
Qi 1 4x + 3 2 4x + 3 1
qi 2x + 2 1 2x + 1 1 4x + 4

Now, by Corollary 2.2, a prime r <
√

∆ is principal and reduced if and only
if r = Qj for some positive j < `(

√
D). Thus, the only possibility is that

p = 2b√Dc − 1 = 4x + 3, so it is the only split prime less than
√

∆. This is
(b)(ii).

Now assume that p = 2. Then by (3.3), P1 = 2x1 + 1 for some x1 > 0. We
have,

|F∆,2(x1)| = |2x2
1 + 2x1 − 2m− 1| =

∣∣∣∣
P 2

1 −D

2

∣∣∣∣ =
Q1

2
,

so by the hypothesis in (a), Q1 ∈ {2, 2q} for a prime q > 2. However, Q1 6= 2q,
since we have shown in the above that when an odd prime divides Q1, then Q1 is
prime. Therefore, Q1 = 2, so, by Theorem 2.6, ` = 2, and

D = P 2
1 + Q1Q0 = b

√
Dc2 + 2.

Since h∆ = 1, then by Corollaries 2.1–2.2, if there were a split prime q <
√

D, we
would have Qj = q for some positive integer j < `. However, this is impossible as
` = 2 = Q1 = Q`/2. This is (b)(i).

Moreover, from [12] the only values satisfying b(ii), with one GRH-ruled-out
exception, are given in the list (3.2) and those satisfying b(i) are those in the list
(3.1).

Lastly to show that (b) implies (a), we invoke Lemma 3.3 since there are no
split prime less than

√
D/2, observing that D 6= 2p2 + 1 for any prime p since

`(
√

2p2 + 1) = 1 by [6, Theorem 3.2.1, p. 78]. ¥
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The following is proved in an entirely analgous fashion to the above so we state
the result without proof.

Theorem 3.3. Suppose that ∆ = 4D ≡ 0 (mod 8) for D a non-negative integer.
Then the following are equivalent.

1. |F∆,2(x)| = |2x2 −D/2| is prime for all x ∈ [0, (
√

D − 1)/2].
2. One of the following holds.

(a) D = p2 + 1 = 2q, where p = 1 or p is prime and q ≡ 1 (mod 4) is prime.
Moreover, `(

√
D) = 1, h∆ = 2, and p is the only split prime less than√

D. The only values, with one possible exception, for which this holds
are

D ∈ {2, 10, 26, 122, 362}. (3.6)

(b) D = (b√Dc)2 + 2 = 2q, where q ≡ 3 (mod 4) is prime, l(
√

D) = 2,
h∆ = 1, and there are no split primes less than

√
D. The only values,

with one possible exception, for which this holds are

D ∈ {6, 38}. (3.7)

(c) D = [p+3
2 ]2 − 2 = 2q where q = 2[(p + 3)/2]2 − 1 is prime, p >

√
D is

prime, h∆ = 1, and `(
√

D) = 4. Also, there are no split primes less than√
D and the only values, with one possible exception, for which this holds

are
D ∈ {14, 62, 398}. (3.8)

If we extend q in F∆,q(x) to values bigger than 2, we can achieve all the values
of Extended Richaud-Degert (ERD) type with class group of exponent 2, rather
than just of order 2 as above, as observed in [6]. (Recall that an ERD type is one
of the form D = a2 +r where r

∣∣4a.) Herein, we have displayed the techniques that
extract the specific information about the values of ∆ using the continued fraction
approach. In the next section, we switch gears for the proof of a conjecture left in
[11]. Since we coined the latter therein, we deemed it appropriate to title the next
section with attribution to that fact.

4. The Mollin-Srinivasan Conjecture

Let ∆ = 1 + 4m and t = b√mc. If |F∆,1(x)| is prime or equal to 1 for x ∈ I =
[x0, x0 + t− 1], for some integer x0 and t ∈ N, we call I a Rabinowitsch interval.
Also F∆,1(x) is called a Rabinowitsch polynomial.

We will need the following

Lemma 4.1. Suppose that ∆ = 4m+1, and F∆,1(x) is a Rabinowitsch polynomial
with Rabinowitsch interval I = [x0, x0+t−1] where t = b√mc. Then if t > a > 1 is
an integer such that |F∆,1(x)| ≡ 0 (mod a) for some non-negative integer x, then a
is prime and there is an integer y ∈ I such that x ≡ y (mod a), and |F∆,1(y)| = a.
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Proof. As a 6 t we can find an integer y ∈ I such that x ≡ y (mod a). Then
F∆,1(y) ≡ F∆,1(x) ≡ 0 (mod a), so |F∆,1(y)| = a and a is prime since I is a Rabi-
nowitsch interval. ¥

Also, in [3] the following theorem is proved.

Theorem 4.1. There are finitely many Rabinowitsch polynomials. Also if F∆,1(x)
is a Rabinowitsch polynomial, then ∆ = 9 or ∆ = 1 + 4t2 where t is either prime
or 1, or ∆ = n2 ± 4 or ∆ = 9p2 ± 4p, where p is an odd prime.

In [3], their list of “all possible Rabinowitsch polynomials with one-possible
exception” was incomplete, which the following, proved in [11, Theorem 3.3], cor-
rected. Also, all Rabinowitsch polynomials with [1, t] as a Rabinowitsch interval
were given unconditionally.

Theorem 4.2 (Rabinowitsch-Mollin-Williams Updated). If ∆ = 4m + 1,
m 6= 2, then the following are equivalent.

1. |F∆,1(x)| = |x2 + x−m| is 1 or prime for all x ∈ [1, t].
2. h∆ = 1 and ∆ is one of the following forms.

(a) n2 − 4 for some n ∈ N.
(b) p2 + 4 for a prime p > 2.
(c) 4p2 + 1 where either p = 1 or p is prime.

3. ∆ ∈ {5, 13, 17, 21, 29, 37, 53, 77, 101, 173, 197, 293, 437, 677}.
Now under the GRH we have the list of all Rabinowisch intervals for a given ∆

because we have a list, with one GRH-ruled-out exception, of all the values of ∆
from which this may be deduced upon inspection. On examination of this list
it is seen that in each case either [1, t] or [ t+2

3 , 4t−1
3 ] is a Rabinowitsh interval.

Here in Theorem 4.2 we present an equivalence for the remaining Rabinowitsch
polynomials that have [ t+2

3 , 4t−1
3 ] as a Rabinowitsch interval. This completes the

classification of Rabinowitsch polynomials in terms of their Rabinowitsch intervals
and also solves the following conjecture posed in [11].

Conjecture 4.1. If 1 + 4m = ∆ = pq with p < q primes and |F∆,1(x)| =
|x2 + x−m| is prime for all x ∈ [(p + 1)/2, (p− 1)/2 + b√mc], then

h∆ = 1 and ∆ = 9p2 ± 4p. (4.1)

Moreover, the only values for which (4.1) holds are

∆ ∈ {69, 93, 413, 1133}. (4.2)

Theorem 4.3. If ∆ = 1 + 4m, then the following are equivalent.
1. ∆ = pq with p < q primes and

|F∆,1(x)| = |x2 + x−m| is prime for all x ∈ I =
[
p + 1

2
,
√

m +
p− 1

2

]
.

(4.3)
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2. (a) h∆ = 1.

(b) `(α) = ` ∈ {2, 4} where α = (1 +
√

∆)/2.

(c) ∆ = 9p2 ± 4p, where t = b√mc, and p = (2t + 1)/3 is prime and is the
only non-inert prime less than

√
∆/2.

Proof. Assume statement 1 holds. Then F∆,1(x) is a Rabinowitsch polynomial
with Rabinowitsch interval I. Therefore, by Lemmas 3.2 and 4.1, for every split
prime p <

√
∆/2, there is an integer x ∈ [(p + 1)/2, (p − 1)/2 +

√
m] such that

|F∆,1(x)| = p. By Corollary 3.1 and Theorem 2.7, we must have that h∆ =
1, which is statement 2(a). It is well known that h∆ = 1 cannot happen for
p ≡ q ≡ 1(mod 4) – see [8, Theorem 3.70, p. 162], for instance. Hence, p ≡
q ≡ 3 (mod 4). It follows from (2.16) that if ` is odd, then

−1 ≡ A2
`−1 (mod ∆),

which is impossible for ∆ divisible by a prime congruent to 3 modulo 4. We have
shown that ` is even.

If m is even, then ∆ ≡ 1(mod 8), and
∣∣∣∣F∆,1

(
p + 1

2

)∣∣∣∣ =
∣∣∣∣
(p + 2)2 − pq

4

∣∣∣∣ ≡ 0 (mod 2),

so (p+2)2−pq = ±8. Thus, either p(p+4−q) = p2 +4p−pq = 4 or p(p+4−q) =
−12. In the first instance, p = 2 is forced, which is impossible since ∆ is odd. In
the second case p = 3 and q = 11 is forced. However F∆,1((p+3)/2) = F∆,1(3) = 4,
which is a contradiction since (p + 3)/2 = b√mc+ (p− 1)/2 = 3 ∈ I, with m = 8.
We have shown that m is odd.

By Theorem 2.6, Q`/2

∣∣4∆ = 4pq. Thus, given the facts:

Q`/2 < 2q by (2.10),

Qj is even for all j > 0, given that σ = 2 in (2.17),

and
Q`/2 ≡ 2 (mod 4) by (2.5) since ∆ 6≡ 1 (mod 8),

then Q`/2 = 2p is forced. By (2.5), since ∆ is odd, we may set P`/2 = 2x`/2 + 1,
then by (2.5) again,

|F∆,1(x`/2)| =
∣∣∣∣
(2x`/2 + 1)2 −∆

4

∣∣∣∣ =
Q`/2Q`/2−1

4
. (4.4)

By Theorem 2.6, 2p = Q`/2

∣∣2P`/2, so P`/2 = px for some x ∈ N. If x > 1, then
b√mc + (p − 1)/2 > x`/2 > (p + 1)/2 so x`/2 ∈ I, which forces Q`/2−1 = 2 by
hypothesis, namely ` = 2 by (2.18). We have

(P`/2 − 1)/2 = x`/2 = (px− 1)/2. (4.5)
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Now since P`/2 = px <
√

∆ and x > 1 with P`/2 odd, then by (2.11),

3p 6 Pl/2 <
√

∆ < 2
√

m + 1,

which implies p <
√

m. Therefore (3p − 1)/2 ∈ I = [(p + 1)/2,
√

m + (p − 1)/2].
Suppose (5p− 1)/2 ∈ I. Then

∣∣∣∣F∆,1

(
3p− 1

2

)∣∣∣∣ = p =
∣∣∣∣F∆,1

(
5p− 1

2

)∣∣∣∣ .

From the left-hand equality, we get

9p2 + 4p = ∆, (4.6)

and from the right-hand equality we get,

25p2 + 4p = ∆. (4.7)

Equating (4.6)–(4.7) yields an impossibility. We have shown that x = 3 and hence

p = (2x`/2 + 1)/3 (4.8)

from (4.5). From (2.5),

∆ = P 2
`/2 + Q`/2Q`/2−1 = (2x`/2 + 1)2 + 4p = 9p2 + 4p.

Now we show that x`/2 = t, which will give us statement 2(c) with the plus sign
via (4.8). We have

3p + 1
2

=

√
(3p + 1)2

4
>

√
∆− 1

4
>

√
(3p− 1)2

4
=

3p− 1
2

,

so since t = b√mc = b
√

(∆− 1)/4c, then the only possibility is that t =
(3p− 1)/2 = x`/2.

Now assume that x = 1. If ` = 2, then by (2.5), ∆ = p2 + 4p and hence
∣∣∣∣F∆,1

(
p + 1

2

)∣∣∣∣ = 1,

which contradicts the hypothesis. Now we are left with the case that ` > 2 and
x = 1. We now proceed to show that ` = 4. We first establish some salient features
that will lead to period length four.

Claim 4.1. q`/2−1 = 1.

From (4.4), |F∆,1(x`/2)| = pQ where Q = Q`/2−1/2.
We first show that p 6 √

m by way of contradiction. Suppose that p >
√

m.
Then it follows that Q <

√
m. Thus, if Q 6= 1, by Lemma 4.1, there is a y =

x`/2 + zQ = (p− 1)/2 + zQ ∈ I, with z ∈ N, since x`/2 = (P`/2 − 1)/2. Therefore,

|F∆,1(y)| =
∣∣∣∣
∆− (2y + 1)2

4

∣∣∣∣ =
∣∣∣∣
∆− (p + 2zQ)2

4

∣∣∣∣ = Q(z2Q + pz − p).
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By assumption |F∆,1(y)| is prime and since Q > 1, the only possibility is that
z2Q+pz−p = 1. Thus, z2Q+pz = p+1 which, for z > 1, means that p+1 > p+Q,
a contradiction, so z = 1 which forces |F∆,1(y)| = Q2, a contradiction. We have
shown that Q = 1. Hence, ` = 2, which is a contradiction to the assumption
above. Hence, p 6 √

m.
By (2.6), p = P`/2 = P`/2+1, by (2.15), q`/2−1 = q`/2+1, and by (2.7), Q`/2−1 =

Q`/2+1 . Thus,

q`/2−1 = q`/2+1 =

⌊
Pl/2+1 +

√
∆

Ql/2+1

⌋
=

⌊
p +

√
4m + 1

Ql/2+1

⌋
. (4.9)

However, by (2.5),

∆ = 4m + 1 = P 2
`/2 + Q`/2Q`/2−1 = p2 + 2pQ`/2−1

= p2 + 2pQ`/2+1 6 m + 2
√

mQ`/2+1,

then
Q`/2+1 > 3m + 1

2
√

m
. (4.10)

Thus if, q`/2−1 > 2, then from (4.9),

p +
√

4m + 1 > 2Q`/2+1.

Hence, from (4.10),
√

m +
√

4m + 1 > p +
√

4m + 1 > 2Q`/2+1 > 3m + 1√
m

,

and by squaring the left- and right-hand inequalities we get,

5m + 1 + 2
√

4m2 + m > 9m + 6 + 1/m > 9m + 6,

which implies √
4m2 + m > 2m + 5/2 > 2m + 2,

so squaring again yields the contradiction,

4m2 + m > 4m2 + 8m + 4,

which secures Claim 4.1.

Claim 4.2. p = (r + s)/2, where r = Q`/2−1/2 and s = Q`/2−2/2.

By (2.5), ∆ = P 2
`/2−1 + Q`/2−1Q`/2−2 and by Claim 4.1 and (2.3), p = P`/2 =

Q`/2−1 − P`/2−1. Thus,

∆ = (Q`/2−1 − p)2 + 4rs = (2r − p)2 + 4rs = p2 − 4pr + 4r2 + 4rs. (4.11)

Also, by (2.5),

∆ = P 2
`/2 + Q`/2Q`/2−1 = p2 + 2pQ`/2−1 = p2 + 4pr, (4.12)

then via (4.11)–(4.12), we get p = (r + s)/2, which is Claim 4.2.
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Claim 4.3. P 2
`/2−1 = (3r − s)2/4.

By (2.5) and (2.6), ∆ = P 2
`/2+1 + 2pQ`/2+1 = p2 + 2pQ`/2+1 = p2 + 4pr.

Therefore, by Claim 4.2,

P 2
`/2−1 = ∆−Q`/2−1Q`/2−2 = p2 + 4pr − 4rs =

(
3r − s

2

)2

,

which secures Claim 4.3.
Now we are ready to establish period length four, namely s = 1 by (2.18). We

have, from Claims 4.1–4.3,

∆ = P 2
`/2−1 + Q`/2−1Q`/2−2 =

(
3r − s

2

)2

+ 4rs

=
9r2 + 10rs + s2

4
= 9p2 − 4ps. (4.13)

However from (4.13),

F∆,1

(
3p− 1

2

)
=

(
3p− 1

2

)2

+
(

3p− 1
2

)
+

1−∆
4

= ps.

Now, since p <
√

m, then (3p − 1)/2 < (p − 1)/2 +
√

m, so (3p − 1)/2 ∈ I. We
have shown that s = 1, namely ` = 4.

We have shown that ∆ = 9p2− 4p with p = (r +1)/2 and ` = 4. Now we show
that p = (2t + 1)/3 which amounts to showing that r = (4t − 1)/3 by Claim 4.2.
We have,

√
m +

1
2

<

√
4m + 1 + 1

2
<
√

m + 1.

However,

q0 =
⌊

P0 +
√

4m + 1
2

⌋
=

⌊
1 +

√
4m + 1
2

⌋
,

so q0 = b√mc = t.
Therefore, by (2.3), P1 = 2q0 − 1, so by Claim 4.3 and (2.3),

P1 = 2q0 − 1 = 2t− 1 = P`/2−1 =
3r − 1

2
,

from which we get r = (4t − 1)/3, which is statement 2(c) with the minus sign.
To conclude the proof that statement 1 implies statement 2, we know, by Corol-
laries 2.1–2.2, that there cannot exist any primes other than p that are non-inert
and less than

√
∆/2 since otherwise they would have to appear as a Qj/2 in

the simple continued fraction expansion of α. To see why this holds explicitly,
consider the following. We have shown that ` ∈ {2, 4}. If ` = 2, then by
[6, Theorem 3.2.1, p. 78], Q1 = 2p = Q`/2. Similarly, if ` = 4, then Q2 =
Q`/2 = 2p and Q1 = Q3 = 4p− 2 >

√
∆/2. Since Q0 = Q2 = 2 in either case, we

are done with this part of the proof.
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Next assume statement 2 holds. Suppose that a prime q
∣∣|F∆,1(x)| for some

x ∈ I. If q <
√

∆/2, then since h∆ = 1, by Corollaries 2.1–2.2, Qj/2 = q for some
j. But as argued above for the discriminants of the form ∆ = 9p2 ± 4p, the only
possibility for Qj/2 to be a prime less than

√
∆/2 is q = p. Also, since

|F∆,1(x)| =
∣∣∣∣
(2x + 1)2 −∆

4

∣∣∣∣ ≡ 0 (mod p),

then 2x+1 ≡ 0(mod p), namely x = (kp−1)/2 for some odd integer k. Therefore,

p + 1
2

< x =
kp− 1

2
<
√

m +
p− 1

2
<

3p + 1 + p− 1
2

= 2p,

given that 4m + 1 = 9p2 ± 4p. Hence, k = 3 and
∣∣∣∣F∆,1

(
3p− 1

2

)∣∣∣∣ = p,

so now we may assume there is a prime q
∣∣|F∆,1(x)| where x ∈ I and q >

√
∆/2. If

there exists another prime r
∣∣|F∆,1(x)|, then it too must be larger than

√
∆/2 since

by the above argument, the only other possibility is that r = p and |F∆,1(x)| = p.
Also, since p = (2b√mc + 1)/3 and x 6 b√mc + (p − 1)/3, then (2x + 1)2 6
(8b√mc+ 1)/3)2 < 8m + 1, so

|F∆,1(x)| = |((2x + 1)2 −∆)/4| < (8m + 1− 4m− 1)/4 = m.

Hence,

m > |F∆,1(x)| > rq > ∆/4 = m +
1
4
,

a contradiction. We have shown that |F∆,1(x)| is prime for all x ∈ I if
|F∆,1(x)| > 1. If |F∆,1(x)| = 1, then ∆ = (2x + 1)2 ± 4. However, if ∆ =
(2x+1)2+4, then ` = 1 by [6, Theorem 3.2.1, p. 78], contradicting that ` ∈ {2, 4}.
Thus, ∆ = (2x + 1)2 − 4, for which ` = 2 and Q1 = 4x − 2. Yet by hypothesis
(c), employing [6, Theorem 3.2.1, p. 78], ∆ = 9p2 + 4p with ` = 2 and Q1 = 2p.
Hence, p = 2x− 1, from which we get

4x2 + 4x− 3 = ∆ = 9(2x− 1)2 + 4(2x− 1) = 36x2 − 28x + 5,

for which the only solution is x = 1/2, a contradiction. The fact that 9p ± 4
is prime follows from the hypothesis that h∆ = 1 via the well-known fact from
Gauss—[8, Theorem 3.70, p. 162]—as used at the outset of the proof. Thus,
statement 1 follows. ¥

Corollary 4.1. With one GRH-ruled-out exception Theorem 4.3 holds only for
the values

∆ ∈ {69, 93, 413, 1133}. (4.14)

Proof. The list in (4.14) follows with one GRH-rules-out exception by using a re-
sult of Tatuzawa–see [6, Theorem 5.4.1, p. 174] – that gives a lower bound for the



288 Richard A. Mollin, Anitha Srinivasan

L-function appearing in the analytic class number formula – see [6, (5.4.1), p. 173],
and this bound holds with one possible exceptional value. This exceptional value
disappears under the assumption of the GRH – see [6, Chapter 5] for details. ¥

Remark 4.1. Note that if |F∆,1(x)| is allowed to equal 1 in Theorem 4.2, then
∆ = p2 + 4p with p = 2t + 1 and that unconditionally, via [1], these are ex-
actly the composite values that appear in part 2(a) of Theorem 4.2, namely
∆ ∈ {21, 77, 437}.
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