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CONSTRUCTION OF NORMAL NUMBERS BY CLASSIFIED
PRIME DIVISORS OF INTEGERS

Jean-Marie De Koninck, Imre Kátai

Abstract: Given an integer d > 2, a d-normal number, or simply a normal number, is a real
number whose d-ary expansion is such that any preassigned sequence, of length k > 1, of base d
digits from this expansion, occurs at the expected frequency, namely 1/dk. We construct large
families of normal numbers using classified prime divisors of integers.
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1. Introduction

Given an integer d > 2, a d-normal number, or simply a normal number, is a real
number whose d-ary expansion is such that any preassigned sequence, of length
k > 1, of base d digits from this expansion, occurs at the expected frequency,
namely 1/dk. Equivalently, given a positive real number η < 1 whose expansion

is η = 0, a1a2 . . . , where ai ∈ {0, 1, . . . , d − 1}, that is, η =
∞∑

j=1

aj

dj
, we say that η

is a normal number if the sequence {dmη}, m = 1, 2, . . . (here {y} stands for the
fractional part of y), is uniformly distributed in the interval [0, 1[. Clearly, both
definitions are equivalent, because the fact that the sequence {dmη}, m = 1, 2, . . .,
is uniformly distributed in [0, 1[ occurs if and only if for every integer k > 1 and
b1 . . . bk ∈ {0, 1, . . . , d− 1}k, we have

lim
N→∞

1
N

#{j < N : aj+1 . . . aj+k = b1 . . . bk} =
1
dk

.

Identifying if a given real number is a normal number is not an easy task.
For instance, classical numbers such as π, e and

√
2 have not yet been proven to

be normal numbers. Even constructing specific normal numbers is a no smaller
challenge.

Several authors studied the problem of constructing normal numbers. One of
the first was Champernowne [1] who, in 1933, was able to prove that the number
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made up of the concatenation of the natural numbers, namely the number

0, 123456789101112131415161718192021 . . . ,

is normal in base 10. In 1946, Copeland and Erdős [2] showed that the same is
true if one replaces the sequence of natural numbers by the sequences of primes,
namely for the number

0, 23571113171923293137 . . .

In the same paper, they conjectured that if f(x) is any polynomial whose values
at x = 1, 2, 3, . . . are positive integers, then the decimal 0, f(1)f(2)f(3) . . ., where
f(n) is written in base 10, is a normal number. In 1952, Davenport and Erdős [3]
proved this conjecture. In 1997, Nakai and Shiokawa [9] showed that if f(x) is any
nonconstant polynomial taking only positive integral values for positive integral
arguments, then the number 0, f(2)f(3)f(5)f(7) . . . f(p) . . ., where p runs through
the prime numbers, is normal. In 2008, Madritsch, Thuswaldner and Tichy [8]
extended the results of Nakai and Shiokawa by showing that, if f is an entire
function of logarithmic order, then the numbers

0, [f(1)]q[f(2)]q[f(3)]q . . . and 0, [f(2)]q[f(3)]q[f(5)]q[f(7)]q . . . ,

where [f(n)]q stands for the base q expansion of the integer part of f(n), are
normal.

In this paper, we explore another approach, by constructing large families of
normal numbers using classified prime divisors of integers.

2. Notations

Given an integer n > 2, we let ω(n) stand for the number of distinct prime divisors
of n and set ω(1) = 0. We shall also write p(n) and P (n) for the smallest and
largest prime factor of n > 2, respectively. As usual, ϕ stands for the Euler
Function.

Throughout this paper, p and q, with or without subscripts, will always denote
prime numbers. Given a particular set of primes Q, we let N (Q) stand for the
semi-group generated by the primes belonging to Q. Moreover, at times, we shall
write x1 for log x, and further define xk+1 = log xk for k = 1, 2, . . .

Given a real number x > 2 and coprime integers k, `, we let π(x; k, `) stand for
the number of prime numbers p 6 x such that p ≡ (̀mod k). For each real number

x > 2, we set li(x) :=
∫ x

2

dt

log t
, a function often called the logarithmic integral.

We will also be using the well known function

Ψ(x, y) := #{n 6 x : P (n) 6 y} (2 6 y 6 x).

Let ℘ stand for the set of all primes. Given an integer d > 2, we shall be
interested in disjoint sets of prime numbers ℘0, ℘1, . . . , ℘d−1 such that

℘ = R∪ ℘0 ∪ ℘1 ∪ · · · ∪ ℘d−1, (2.1)
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where R is a given finite (perhaps empty) set of primes. Relation (2.1) is called a
disjoint classification of primes. For instance, the sets ℘0 = {p : p ≡ 1 (mod 4)},
℘1 = {p : p ≡ 3 (mod 4)} and R = {2} provide a disjoint classification of primes.

For each positive integer d, let Ad := {0, 1, . . . , d−1}. Given an interval of real
numbers I and a set of primes S, we write π(I) for the number of prime numbers
located in the interval I, while we write π(I|S) for the number of primes p ∈ S
which belong to I.

Given an integer t > 1, an expression of the form i1i2 . . . it, where each ij is
one of the numbers 0, 1, . . . , d−1, is called a word of length t. We sometimes write
λ(α) = t to indicate that α is a word of length t. At this point we introduce the
symbol Λ to denote the empty word and the function H : ℘ → Ad defined by

H(p) =

{
j if p ∈ ℘j (j = 0, 1, . . . , d− 1),
Λ if p ∈ R,

and further extend the domain of the function H to all prime powers pa by simply
setting H(pa) = H(p).

Letting A∗d be the set of finite words over Ad, we introduce the function R :
N→ A∗d defined as follows. If n = pa1

1 · · · par
r , where p1 < · · · < pr are primes and

each ai ∈ N, we set
R(n) = H(p1) . . . H(pr), (2.2)

where on the right hand side of (2.2), we omit H(pi) = Λ if pi ∈ R. For conve-
nience, we set R(1) = Λ.

In the example already mentioned above, that is, choosing ℘0 = {p : p ≡ 1
(mod 4)}, ℘1 = {p : p ≡ 3 (mod 4)} and R = {2}, we easily get that

{R(1), R(2), . . . , R(15)} = {Λ, Λ, 1, Λ, 0, 1, 1, Λ, 1, 0, 1, 1, 0, 1, 10}.

Now, consider the situation where ℘ = R∪ ℘o ∪ . . . ∪ ℘d−1 is a disjoint classi-
fication of primes, and let R be defined as in (2.2). Consider the number

ξ = 0, R(1)R(2) . . . ,

which represents an infinite sequence over Ad and which in turn, by concatenating
the finite words R(1), R(2), . . . , can be considered as the d-ary expansion of a
real number, namely the real number ξ. In what follows, we shall examine what
further conditions should be required in order to claim that the above number ξ
is indeed a d-normal number.

3. Main results

Theorem 3.1. Let d > 2 be an integer and let ℘ = R ∪ ℘o ∪ . . . ∪ ℘d−1 be a
disjoint classification of primes. Assume that, for a certain constant c > 5,

π([u, u + v]|℘j) =
1
d
π([u, u + v]) + O

(
u

logc u

)
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uniformly for 2 6 v 6 u, j = 0, 1, . . . , d− 1, as u →∞. Further, let R be defined
on N as in (2.2) and consider the number

ξ = 0, R(1)R(2) . . . (3.1)

Consider the right hand side of (3.1) as the d-ary expansion of a real number.
Then ξ is a d-normal number.

Theorem 3.2. Given two positive integers a and D such that gcd(D, a) = 1, let
℘h := {p : p ≡ h (mod D)} for gcd(h, D) = 1. Let h0, h1, . . . , hϕ(D)−1 be those
positive integers < D which are relatively prime with D. Further let R = {p : p|D}
and set

R(pa) = R(p) =

{
j if p ≡ hj (mod D)
Λ if p|D.

Let ξ be the real number whose ϕ(D)-ary expansion is given by

ξ = 0, R(2 + a)R(3 + a)R(5 + a) . . . R(p + a) . . . ,

where p + a is the sequence of shifted primes. Then ξ is a ϕ(D)-normal number.

Given a positive real number Y , then for each integer n > 2, let

A(n|Y ) =
∏

pα‖n
p6Y

pα.

Theorem 3.3. Let a 6= 0 be an integer. Let εx be a function which tends to 0
very slowly as x → ∞, but such that 1/εx = o(log log x). Let Kx := {K ∈ N :
P (K) 6 xεx}. For each K ∈ Kx, define

∆K(x) := #{p 6 x : A(p + a|xεx) = K}
and, for gcd(a,K) = 1,

κ(K) :=
∏

p<xεx

gcd(p,Ka)=1

(
1− 1

p− 1

)
·

∏
p|K

gcd(p,a)=1

(
1− 1

p

)
(3.2)

=
∏

p<xεx

gcd(p,Ka)=1

(
1− 1

p− 1

)
· ϕ(K)

K
.

Let also δx be a function satisfying limx→∞ δx = 0 and limx→∞ δx/εx = +∞.
Then,

∑

K∈Kx, K<xδx

gcd(K,a)=1

∣∣∣∣∆K(x)− κ(K)
ϕ(K)

li(x)
∣∣∣∣ ¿ exp

{
−1

2
δx

εx
log

δx

εx

}
· π(x)

+ O

(
x

logA x

)
+ O(εxπ(x)),

(3.3)

where A is an arbitrary constant.
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Moreover,

lim
x→∞

1
π(x)

∑
K∈Kx

gcd(K,a)=1

∣∣∣∣∆K(x)− κ(K)
ϕ(K)

li(x)
∣∣∣∣ = 0. (3.4)

Let k > 1 be a fixed integer and set E(n) := n(n+1) · · · (n+k−1). Moreover,
for each positive integer n, define

e(n) =
∏

qβ‖E(n)
q6k−1

qβ .

We shall now define the sequence hn on the prime powers qa of E(n) as follows:

hn(qa) = hn(q) =

{
Λ if q|e(n)
` if q|n + `, gcd(q, e(n)) = 1.

If E(n) = qa1
1 qa2

2 · · · qar
r where q1 < q2 < · · · < qr are primes an each ai ∈ N,

then we set
S(E(n)) = hn(q1)hn(q2) · · ·hn(qr).

Theorem 3.4. Let k, E and S be as above. Let ξ be the real number whose k-ary
expansion is given by

ξ = 0, S(E(1))S(E(2)) . . . S(E(n)) . . . (3.5)

Then, ξ is a k-normal number.

Theorem 3.5. Let p1 < p2 < · · · be the sequence of primes, and let k, E and S
be as above. Let ξ be the real number whose k-ary expansion is given by

ξ = 0, S(E(p1 + 1))S(E(p2 + 1)) . . .

Then, ξ is a k-normal number.

4. Preliminary lemmas

Let wx be a nondecreasing function which tends to +∞ as x → ∞. Let x be a
large number.

Lemma 4.1. Let α = i1 . . . ik ∈ Ak
d be an arbitrary word and let R be as in (2.2),

and define

Nk(Y |wx) := #{pa1
1 · · · pak

k 6 Y : wx < p1 < · · · < pk},
Nk(Y |wx; α) := #{pa1

1 · · · pak

k 6 Y : wx < p1 < · · · < pk, R(pa1
1 · · · pak

k ) = α}.
Assume that, uniformly 2 6 v 6 u, j = 0, . . . , d− 1,

π([u, u + v]|℘j) =
1
d
π([u, u + v]) + O

(
u

logc u

)
(u →∞)
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holds for some constant c > 5. Assume that wx ¿ x3,
√

x 6 Y 6 x and that
1 6 k 6 c2x2 for some fixed positive constant c2. Then, as x →∞,

Nk(Y |wx;α) = (1 + o(1))
1
dk

Nk(Y |wx).

Proof. This is a special case of Theorem 1.1 of De Koninck and Kátai [4]. ¥

For each n ∈ N, define

e(n) :=
∏

pα‖n
p6wx

pα and M(n) :=
∏

pα‖n
p>wx

pα.

Lemma 4.2. Assume that the conditions of Lemma 4.1 are met. Set

Sk(Y |wx) := #{n = e(n)M(n) 6 Y : ω(M(n)) = k},
Sk(Y |wx; α) := #{n = e(n)M(n) 6 Y : ω(M(n)) = k, R(M(n)) = α}.

Then, as x →∞,

Sk(Y |wx;α) = (1 + o(1))
1
dk

Sk(Y |wx).

Proof. To prove Lemma 4.2, it is sufficient to observe that

Sk(Y |Wx;α) =
∑
ν6x

p(ν)6wx

Nk(
Y

ν
|wx;α),

Sk(Y |Wx) =
∑
ν6x

p(ν)6wx

Nk(
Y

ν
|wx),

and thereafter to apply Lemma 4.1 and sum over all ν 6 ewx , say, and then show
that the sum over those ν > ewx is negligible. ¥

Lemma 4.3. Let f(n) be a real valued non negative arithmetic function. Let an,
n = 1, . . . , N , be a sequence of integers. Let r be a positive real number, and let
p1 < p2 < · · · < ps 6 r be prime numbers. Set Q = p1 · · · ps. If d|Q, then let

N∑
n=1

an≡0 (mod d)

f(n) = η(d)X + R(N, d),

where X and R are real numbers, X > 0, and η(d1d2) = η(d1)η(d2) whenever d1

and d2 are co-prime divisors of Q.
Assume that for each prime p, 0 6 η(p) < 1. Setting

I(N, Q) :=
N∑

n=1
(an,Q)=1

f(n),
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then the estimate

I(N, Q) = {1 + 2θ1H}X
∏

p|Q
(1 + η(p)) + 2θ2

∑
d|Q

d6z3

3ω(d)|R(N, d)|

holds uniformly for r > 2, max(log r, S) 6 1
8 log z, where |θ1| 6 1, |θ2| 6 1, and

H = exp
(
− log z

log r

{
log

(
log z

S

)
− log log

(
log z

S

)
− 2S

log z

})

and

S =
∑

p|Q

η(p)
1− η(p)

log p.

When these conditions are satisfied, there exists an absolute positive constant c
such that 2H 6 c < 1.

Proof. For a proof, see Lemma 2.1, page 79, in the book of Elliott [5]. ¥

Lemma 4.4. Let πr(x) := #{n 6 x : ω(n) = r}. There exist positive absolute
constants c3, c4 such that

πr(x) 6 c3
x

log x

(log log x + c4)r−1

(r − 1)!
(x > 3).

Proof. For a proof, see Hardy and Ramanujan [7]. ¥

Lemma 4.5. There exists an absolute constant c5 > 0 such that, uniformly for
2 6 y 6 x,

Ψ(x, y) 6 c5 exp
{
−1

2
log x

log y

}
.

Proof. For a proof, see the book of Tenenbaum [10]. ¥

5. Proof of Theorems 3.1 and 3.2

Let λ(α) stand for the length of the word α over Ad. Let β = b1 . . . bk ∈ Ak
d and

ω∗(n) :=
∑
p|n

p 6∈R

1, so that ω∗(n) = λ(R(n)).

Since R is a finite set, it is clear that

TN :=
∑

n6N

ω∗(n) = N log log N + O(N) (N →∞). (5.1)

Now, for each positive integer j, let Yj = 2j and ηj := R(2j) . . . R(2j+1 − 1), so
that ξ = 0, η1η2 . . .
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We shall say that β is a subword in the word α if there exist γ1, γ2 ∈ A∗d such
that α = γ1βγ2. Moreover, let uβ(α) stand for the number of occurrences of β as
a subword in α.

It is clear that, for each positive integer j such that Yj < N , we have

Yj+1−1∑

n=Yj

uβ(R(n)) 6 uβ(ηj) 6
Yj+1−1∑

n=Yj

uβ(R(n)) + (k + 1)Yj (5.2)

and

N∑

n=Yj

uβ(R(n)) 6 uβ(R(Yj) . . . R(N)) 6
N∑

n=Yj

uβ(R(n))+(k+1)(N−Yj +1). (5.3)

Assume that wx ¿ x6, let j be fixed and set x = Yj . Then, for any integer
n ∈ [Yj , Yj+1], we clearly have

uβ(R(M(n))) 6 uβ(R(n)) 6 ω(en) + k + uβ(R(M(n))).

Observe that
N∑

n=Yj

(ω(en) + k) 6 (N − Yj)(2k + ω(2x)).

We shall now provide asymptotic estimates for

Kj :=
Yj+1−1∑

n=Yj

uβ(R(M(n))) and KN,Yj :=
N∑

n=Yj

uβ(R(M(n))). (5.4)

To do so, we shall first find an upper bound for the number of those integers
n ∈ [Yj , Yj+1 − 1] for which ω(M(n)) > 2x2. In fact, we will prove that

Σ0 :=
∑

Yj6n<Yj+1
ω(M(n))>2x2

ω(M(n)) = O(Yj). (5.5)

Indeed, it follows from Lemma 4.4 that

πr(Yj) 6 c3Yj

log Yj

(log log Yj + c4)r−1

(r − 1)!
,

so that

Σ0 =
∞∑

r=b2x2c
rπr(Yj) 6 c3

∑

r>2x2

rYj

log Yj

(log log Yj + c4)r−1

(r − 1)!
¿ Yj ,

thereby establishing our claim (5.5).
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With this result in mind, we now only need to consider those integers n for
which r = ω(M(n)) 6 2x2.

So let α = e1 . . . er ∈ Ar
d, with r 6 2x2.

From Lemma 4.2, we have

Sr(Y |wx, α) = #{n 6 Y : ω(M(n)) = r, R(M(n)) = α}
= (1 + o(1))

1
dr

Sr(Y |wx),

so that

Sr(Yj+1 − 1|wx, α)− Sr(Yj − 1|wx, α)

= (1 + o(1))
1
dr

(Sr(Yj+1 − 1|wx)− Sr(Yj − 1|wx)) .

Now,

Sr(N |wx, α)− Sr(Yj − 1|wx, 1)

= (1 + o(1))
1
dr

(Sr(N |wx)− Sr(Yj |wx)) + o(1)
1
dr

Sr(N |wx).

From these observations and in light of (5.5), it follows that, as x →∞,

Kj = (1+ o(1))
∑

r62x2

1
dr


 ∑

α∈Ar
d

uβ(α)


 (Sr(2Yj |wx)− Sr(Yj |wx))+O(Yj). (5.6)

On the other hand, we clearly have that

∑

α∈Ar
d

uβ(α) =

{
0 if r < k,

(r − k + 1)dr−k if r > k.

Substituting this in (5.6), it follows that, as x →∞,

Kj = (1 + o(1))
b2x2c∑

r=k

r − k + 1
dk

(Sr(2Yj |wx)− Sr(Yj |wx)) + O(Yj). (5.7)

Since the contribution to Kj of those numbers r for which |r−x2| > x
3/4
2 is clearly

o(x2Yj), estimate (5.7) becomes

Kj = (1 + o(1))
x2

dk

∑

|r−x2|<x
3/4
2

(Sr(2Yj |wx)− Sr(Yj |wx)) + o(x2Yj) (x →∞).

(5.8)
On the other hand, one can easily establish that

∑

|r−x2|<x
3/4
2

(Sr(2Yj |wx)− Sr(Yj |wx)) = (1 + o(1))(2Yj − Yj)

= (1 + o(1))Yj (x →∞).

(5.9)



240 Jean-Marie De Koninck, Imre Kátai

Substituting (5.9) in (5.8), we obtain

Kj = (1 + o(1))
x2

dk
Yj (x →∞). (5.10)

We also need to estimate KN,Yj
(defined in (5.4)) in the case Yj < N < Yj+1.

Let δ1, δ2, . . . be a sequence of positive numbers which tends to 0 very slowly.
If NYj > δjYj , then, in light of Lemma 4.1 and proceeding as above, one can

prove that
KN,Yj

= (1 + o(1))
x2

dk
(N − Yj) (x →∞),

while if NYj
< δjYj , then

KN,Yj
= O(δjYj log log N) (Yj →∞).

Hence, in light of these observations and of (5.10), it follows from inequalities (5.2)
and (5.3) that

uβ(ηj) = (1 + o(1))(Yj+1 − Yj)
log log Yj

dk
(Yj →∞) (5.11)

and that

uβ(R(Yj) . . . R(N)) = (1+o(1))(N−Yj)
log log Yj

dk
+O(δjYj log log Yj) (Yj →∞).

(5.12)
Now, consider the d-ary expansion of the number ξ, that is ξ = 0, R(1)R(2) . . ..

Let ξ(M) be the rational approximation of ξ up to the M -th digit, that is ξ(M) =
0, R(1)R(2) . . . R(M). We would like to approximate uβ(ξ(M)). Given a fixed
positive integer M , let N be defined implicitly by

λ(R(1) . . . R(N)) 6 M < λ(R(1) . . . R(N + 1)).

Hence, in light of (5.1), we have that

M = TN + O(N) = N log log N + O(N) (N →∞).

We therefore have that, for Yj 6 N < Yj+1,

uβ(ξ(M)) = uβ(R(1) . . . R(Yj − 1)) + uβ(R(Yj) . . . R(N)) + O(δjN log log N),

so that

uβ(ξ(M))
M

=
uβ(R(1) . . . R(Yj − 1))

M
+

uβ(R(Yj) . . . R(N))
M

+ O

(
δjN log log N

M

)
.

(5.13)
Taking into account estimates (5.11) and (5.12), it follows from (5.13) that

uβ(ξ(M))
M

= (1 + o(1))
1
dk

TYj

M
+ (1 + o(1))

TN − TYj

dkM

+ O

(
δjN log log N

M

)
(N →∞),
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which implies, since δj → 0 as j →∞, that

lim
M→∞

uβ(ξ(M))
M

=
1
dk

,

thus completing the proof of Theorem 3.1.
The proof of Theorem 3.2 is very similar to that of Theorem 3.1 and, in fact,

follows essentially from Theorem 3.3, which we shall now prove.

6. The proof of Theorem 3.3

Fix the integers K and a, and set Γ := gcd(K, a). If Γ > 1, then p + a = Kµ
implies that p|Γ, so that ∆K(x) 6 ω(a).

Hence, let us assume that Γ = 1. Let q1 < · · · < qM 6 x be those prime
numbers for which qj + a ≡ 0 (mod K).

Let x be a large number and set M = π(x;K,−a). Further define

Q(y) :=
∏
p<y

p and Q := Q(xεx).

Choosing r = xεx and applying Lemma 4.3, we obtain that

I(M, Q) = #
{

qj 6 x : gcd
(

qj + a

K
,Q

)
= 1, j = 1, . . . ,M

}
.

For each squarefree number d, we have
∑
qj6x

qj+a

K
≡0 (mod d)

1 = π(x;Kd,−a) = η(d)π(x; K,−a) + R(x, d),

so that
R(x, d) = π(x; Kd,−a)− η(d)π(x; K,−a),

where η is a multiplicative function (whose domain is the squarefree numbers)
defined on primes p by

η(p) =





1/p if p|K, gcd(a, p) = 1,

1/(p− 1) if gcd(Ka, p) = 1,

0 if p|a.

Setting

E(x; d, `) := π(x; d, `)− li(x)
ϕ(d)

,

it follows that
R(x, d) = E(x; d, `)− η(d)E(x; K,−a),
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so that
|R(x, d)| 6 |E(x; d, `)|+ η(d)|E(x;K,−a)|. (6.1)

Observe that, if a is odd, then K is odd only when p = 2, while if a is even,
then ∆2+a(x) = 1 for all x > 2, and ∆K(x) = 0 for all other even K.

Let κ(K) be defined as in (3.2).
Choose z = xδx , where δx is a function of x satisfying δx → 0 and δx/εx →∞

as x →∞.
We have

S =
∑

p|Q

η(p)
1− η(p)

log p =
∑

p|Q
η(p) log p + O


∑

p|Q
η2(p) log p


 .

It follows from this that there exists an absolute constant c6 such that

S = εx log x + c6 + C(K) + o(1) (x →∞),

where C(K) is a constant depending on K and satisfying

C(K) = O(1)
∑

p|K

log p

p2
.

Then, using Lemma 4.3, with H satisfying

H 6 exp
{
−1

2
δx

εx
log

δx

εx

}
,

we get

∆K(x) = I(N, Q) = κ(K)π(x; K,−a)(1 + 2θ1H) + 2θ2

∑

d6z3
d|Q

3ω(d)|R(x, d)|,

from which it follows, using the Prime Number Theorem for primes in arithmetic
progressions, that

∣∣∣∣∆K(x)− κ(K)
li(x)
ϕ(K)

∣∣∣∣ 6 κ(K)|E(x; K,−a)|

+ 2θ1κ(K)π(x;K,−a) · exp
{
−1

2
δx

εx
log

δx

εx

}
(6.2)

+ 2θ2

∑

d6z3
d|Q

3ω(d) {|E(x; Kd,−a)|+ η(d)|E(x; k,−a)|} .

Let us write κ(K) in the form

κ(K) =
∏
p|Q
p6=2

(
1− 1

p− 1

)
ρ(K),
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where
ρ(K) =

∏
p|K
p 6=2

1− 1/p

1− 1/(p− 1)
.

On the other hand, observe that by Mertens’ Theorem, we have that, as x →∞,

∏
p|Q
p 6=2

(
1− 1

p− 1

)
= exp {− log log xεx + c7 + o(1)} (6.3)

= (1 + o(1))ec7(log xεx)−1.

Summing the left hand side of (6.2) over K 6 xδx , K ∈ Kx, we get

∑

K6xδx
K∈Kx

∣∣∣∣∆K(x)− κ(K)
li(x)
ϕ(K)

∣∣∣∣ 6 Σ1 + Σ2 + Σ3,

where

Σ1 6
∑

K6xδx

c li(x)
ϕ(K)

· 1
εx log x

exp
{
−1

2
δx

εx
log

δx

εx

}
, (6.4)

Σ2 6 2θ2

∑

K6xδx

|E(x; K,−a)|
∑

d|Q
η(d), (6.5)

Σ3 6 θ3

∑

M6x4δx

P (M)<xεx

|E(x;M,−a)|
∑

d6z3
d|Q, d|M

3ω(d), (6.6)

where we used (6.3) and (6.1).
On the other hand, one can prove that

∑

K6xδx

1
ϕ(K)

6
∏

p<xεx

(
1 +

1
p− 1

+
1

p(p− 1)
+ . . .

)
¿ log xεx , (6.7)

∑

d|Q
η(d) 6

∏

p|Q

(
1 +

1
p− 1

)
¿ log xεx , (6.8)

∑

K6xδx

|E(x; K,−a)| ¿ x

logA x
, (6.9)

where A is an arbitrary large constant. Note that estimate (6.9) is a weak version
of a theorem of Barban which is much weaker than the Bombieri-Vinogradov
Theorem.

Using (6.7) in (6.4) as well as (6.8) and (6.9) in (6.5) yields the first two terms on
the right hand side of (3.3). Hence, in order to complete the proof of Theorem 3.3,
it will be sufficient to show that

Σ3 ¿ x

logA x
+ εxπ(x). (6.10)
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First observe that ∑

d6z3
d|Q, d|M

3ω(d) 6 4ω(M).

Using this and (6.6), we may write

Σ3 ¿
∑

M6x4δx

P (M)<xεx

ω(M)630x2

|E(x; M,−a)|4ω(M) +
∑

M6x4δx

P (M)<xεx

ω(M)>30x2

|E(x; M,−a)|4ω(M) (6.11)

= Σ3A + Σ3B ,

say. Since it is clear that |E(x;M,−a)| 6 c li(x)
ϕ(M)

, it follows that

Σ3B ¿ li(x)
∑

M6x4δx

P (M)<xεx

ω(M)>30x2

4ω(M)

ϕ(M)
(6.12)

¿ li(x)4−30x2
∑

P (M)<xεx

42ω(M)

ϕ(M)

¿ li(x)4−30x2
∏

p<xεx

(
1 +

16
p− 1

+
16

p(p− 1)
+ . . .

)

= li(x)4−30x2
∏

p<xεx

(
1 +

16p

(p− 1)2

)

= li(x)4−30x2 exp

{ ∑
p<xεx

log
(

1 +
16p

(p− 1)2

)}

¿ li(x)4−30x2 exp {16 log log xεx} = li(x)4−30x2(εx log x)16

= li(x)(log x)−30 log 4+16ε16
x ¿ x

log2 x
,

since −30 log 4 + 16 < −1.
On the other hand,

Σ3A 6 430x2
∑

M<x4δx

|E(x; M,−a)| ¿ x

logA x
. (6.13)

Using (6.12) and (6.13) in (6.11) proves (6.10), thereby completing the proof
of (3.3).

It remains to prove (3.4). Let us choose δx = ελ
x, where 0 < λ < 1. We first

establish that
T (x) :=

∑

xδx <K6x
K∈Kx

κ(K)
ϕ(K)

= o(1) (x →∞). (6.14)
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It follows from (3.2) that

κ(K) 6 ϕ(K)
K

∏
2<p<xεx

(
1− 1

p− 1

)
g(K), (6.15)

where g is a multiplicative function defined on prime powers pa by

g(pa) = g(p) =
1

1− 1/(p− 1)
=

p− 1
p− 2

.

Therefore, letting g(n) =
∑

δ|n h(δ), the function δ is a multiplicative function
itself defined on prime powers pa by

h(pa) =





1/(p− 2) if a = 1 and p > 2,

0 if a = 1 and p = 2,

0 if a > 2,

and since ∏
2<p<xεx

(
1− 1

p− 1

)
<

c8

εx log x
,

it follows from (6.15) that

T (x) 6 c8

εx log x

∑

xδx <K6x
K∈Kx

g(K)
K

=
c8

εx log x
T1(x), (6.16)

say. We certainly have that

T1(x) 6
∑

δ6xδx/2

P (δ)<xεx

h(δ)
δ

∑

L>xεx/2
L∈Kx

1
L

+
∑

δ>xδx/2

h(δ)
δ

∑

P (L)<xεx

1
L

= T2(x)+T3(x), (6.17)

say. In order to estimate Z(x) :=
∑

L>xεx/2
L∈Kx

1
L
, we proceed as follows.

Setting U0 = xδx/2 and Uj = 2jU0 for j = 1, 2, . . ., it follows from Lemma 4.5
that

Z(x) 6
∑
j>0

Uj6x

Ψ(2Uj , x
εx)

Uj
(6.18)

6 c5

∑

06j6 log x−log U0
log 2

exp
{
−1

2
log xδx/2 + j log 2

εx log x

}

6 c5 exp
{
−1

4
δx

εx

} ∑

06j6 log x−log U0
log 2

exp
{
−1

2
j log 2
εx log x

}

6 c5 exp
{
−1

4
δx

εx

}
· c9 · 1

εx log x
.
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Using this estimate of Z(x), we obtain that

T2(x) 6 Z(x)
∏

p<xδx/2

(
1 +

h(p)
p

)
6 c10

εx log x
exp

{
−1

4
δx

εx

}
. (6.19)

On the other hand, since one can easily prove that

∑

δ>xδx/2

h(δ)
δ

<
1

xδx/3
,

say, we have that

T3(x) 6 1
xδx/3

∑

P (L)<xεx

1
L

6 1
xδx/3

∏
p<xεx

(
1− 1

p

)−1

¿ 1
xδx/3εx log x

. (6.20)

Using (6.19) and (6.20) in (6.17), and bringing this into (6.16), then (6.14)
follows, as required.

In light of (6.14), in order to complete the proof of (3.4), we only need to prove
that, given any fixed positive number β < 1,

lim
x→∞

1
π(x)

∑

xδx <K<xβ

P (K)<xεx

∆K(x) = 0. (6.21)

Indeed, assuming that (6.21) holds and observing that K|p + a with p 6 x and
K > xβ implies that P (p + a) 6 x1−β , then since

1
π(x)

∑

xδx <K<x

∆K(x) 6 1
π(x)

∑

xδx <K<xβ

P (K)<xεx

∆K(x)+
1

π(x)
#{p 6 x : P (p+a) 6 x1−β},

it follows that

lim sup
x→∞

1
π(x)

∑

xδx<K<x

∆K(x) 6 lim sup
x→∞

1
π(x)

∑

xδx <K<xβ

P (K)<xεx

∆K(x)

+ lim sup
x→∞

1
π(x)

#{p 6 x : P (p + a) 6 x1−β},

6 0 + c(β),

where limβ→1 c(β) = 0, thus completing the proof of (3.4).
Hence, it remains to prove (6.21).
So, letting 0 < β < 1, we shall prove that

Σ(a)
β :=

∑

xδx <K<xβ

P (K)<xεx

∆K(x) = o(π(x)). (6.22)
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For K < xβ , we have

∆K(x) 6 cx

ϕ(K) log(x/K)

∏
2<p<xεx

gcd(p,K)=1

(
1− 1

p− 1

)

6 cx

ϕ(K)(1− β) log x
· (εx log x)−1g(K).

This implies that

Σ(a)
β 6 c li(x)

(1− β)εx
· 1
log x

∑

xδx <K<xβ

g(K)
ϕ(K)

=
c li(x)

(1− β)εx
· 1
log x

D(x), (6.23)

say. Set t(K) :=
Kg(K)
ϕ(K)

and observe that both K/ϕ(K) and g(K) are strongly

multiplicative functions, and that, for each p > 2, t(p) = pg(p)/(p − 1), g(p) =
(p− 1)/(p− 2), so that t(p) = p/(p− 2), while t(2) = g(2) = 0.

Now, write t(K) =
∑

d|K `(d), where ` is a multiplicative function with `(pa) =
0 if a > 2, p > 2, and `(p) = 1− 2/(p− 2).

With these notations in mind, we get that

D(x) =
∑

xδx <K<xβ

K∈Kx

t(K)
K

=
∑

xδx <dL<xβ

dL∈Kx

`(d)|µ(d)|
dL

(6.24)

=
∑

xδx <dL<xβ

dL∈Kx, d6xδx/2

`(d)|µ(d)|
dL

+
∑

xδx <dL<xβ

dL∈Kx, d>xδx/2

`(d)|µ(d)|
dL

= D1(x) + D2(x),

say.
Now, one easily obtains that

D1(x) 6 Z(x)
∑

P (d)6xεx

`(d)|µ(d)|
d

6 Z(x)
∏

2<p<xεx

(
1 +

1
p− 2

)
,

D2(x) 6 Z(x)
∑

L<xβ

1
L

6 Z(x)
∏

p<xεx

(
1− 1

p

)−1

.

Substituting these two last estimates in (6.24) and using the estimate of Z(x)
obtained in (6.18), it follows that

D(x) 6 Z(x)(log x)εx ¿ exp
{
−1

4
δx

εx

}
.

Substituting this last estimate in (6.23) immediately yields (6.22), thus com-
pleting the proof of Theorem 3.3.
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7. The proof of Theorems 3.4 and 3.5

Let Ak = {0, 1, . . . , k − 1}, Ar
k = Ak × . . .×Ak︸ ︷︷ ︸

r times

, A∗k = ∪∞r=0A
r
k and A0

k = {Λ}.

Let ηM ∈ AM
k be the sequence of the first M digits in the expansion (3.5). Let

α = b1 . . . bd be an arbitrary word. Let ν(θ) be the number of occurrences of
α in the word θ, i.e. the number of those β1, β2 ∈ A∗k for which θ = β1αβ2.

We shall prove that lim
M→∞

ν(ηM )
M

=
1
kd

, thus allowing us to complete the proof of
Theorem 3.4.

Again, letting λ(α) stand for the length of the word α, we then have

k−1∑

j=0

ω(n + j)− k2 6 λ(S(E(n))) 6
k−1∑

j=0

ω(n + j).

Let N = N(M) be defined as the largest integer for which

λ(S(E(1)) . . . S(E(N))) 6 M < λ(S(E(1)) . . . S(E(N))S(E(N + 1))).

With such a choice N , we clearly have

N log log N + O(N) = M.

Moreover,

0 6 M − λ(S(E(1)) . . . S(E(N))) 6
k−1∑

`=0

ω(N + ` + 1) = O(k log N),

so that
(0 6)νM (α)− νM1(α) = o(M) (M →∞).

Let N = N(M) be fixed and consider the number

η(M1) = S(E(1)) . . . S(E(N)).

Moreover, let

℘1 = {p : p 6 k − 1},
℘2 = {p : k 6 p 6 N1/

√
log log N},

℘3 = {p : p > N1/
√

log log N},

and write each integer n as

n = A(n)B(n)C(n),

where A(n) ∈ N (℘1), B(n) ∈ N (℘2) and C(n) ∈ N (℘3).
We now proceed to estimate η(M1).
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First observe that

N∑

j=1

ν(S(E(j))) 6 ν(ηM ) 6
N∑

j=1

ν(S(E(j))) + (k + 1)N. (7.1)

On the other hand,

ν(S(A(E(n))B(E(n)))) 6 ν(S(E(n))) 6 ν(S(A(E(n))B(E(n))))
+ k + ν(S(C(E(n))))︸ ︷︷ ︸

6k
√

log log N

. (7.2)

In light of (7.1) and (7.2), we have

ν(ηM ) =
∑

n6N

ν(S(A(E(n))B(E(n)))) + o(M) (M →∞). (7.3)

We shall now see that we can ignore all those positive integers n 6 N for which
one of the following conditions hold:

(a) max
06j6k−1

A(n + j) > AN ,

(b) B(E(n)) > NAN /
√

log log N ,

(c) |ω(E(n))− k log log N | > 1
AN

log log N ,

where AN is a function which tends to +∞ slowly as N → ∞, but with AN =
o(
√

log log N).
Let TN be the set of those integers n 6 N which do not satisfy any of the above

conditions. Then, one can show that
∑
n6N

n 6∈TN

ν(S(A(E(n))B(E(n)))) = o(M) (M →∞). (7.4)

Hence, it follows from (7.3) and (7.4) that

ν(ηM ) =
∑

n∈TN

ν(S(A(E(n))B(E(n)))) + o(M) (7.5)

=
∑

n∈TN

ν(S(B(E(n)))) + o(M).

Let R run over the integers belonging to N (℘2) and not exceeding
NAN /

√
log log N . Assume that m0, . . . , mk−1 ∈ N (℘2) are co-prime integers such

that R = m0 . . . mk−1, and consider the set

U(m0, . . . , mk−1) := #{n ∈ TN :
n + `

m`
∈ N (℘1 ∪ ℘3), ` = 0, . . . , k − 1} (7.6)
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and assume that there exist integers ξ0, . . . , ξk−1 ∈ N (℘1) which satisfy the prop-
erty that ξj‖n + j (j = 0, . . . , k− 1). Then, define ξ∗ = LCM[ξ0, . . . , ξk−1] and set
ξ∗∗ = ξ∗

∏
q∈℘1

q.
Let r0, . . . , rk−1 be representatives of all the k residue classes mod ξ∗∗ which

satisfy
n ≡ rj (mod ξ∗∗) =⇒ ξj‖n + j (j = 0, . . . , k − 1).

Let Ur,ξ∗∗(m0, . . . , mk−1) be the subset of those integers n ∈ U(m0, . . . ,mk−1)
which satisfy the additional condition n ≡ r(mod ξ∗∗). Then, further define

V (R) :=
⋃

m0...mk−1=R

gcd(mi,mj)=1

U(m0, . . . ,mk−1),

Vr mod ξ∗∗(R) :=
⋃

m0...mk−1=R

gcd(mi,mj)=1

Ur mod ξ∗∗(m0, . . . ,mk−1).

Let us now evaluate the size of the set Ur mod ξ∗∗(m0, . . . , mk−1).
Clearly, n ≡ r mod ξ∗∗ means that there exists an integer s such that n =

r + sξ∗∗. Now, the condition n + ` ≡ 0 mod m`, for ` = 0, . . . , k − 1, determines
exactly one s0 mod R for which both the congruence ` + r + s0ξ

∗∗ ≡ 0 mod m`

and the condition ξ`‖`+ r + s0ξ
∗∗ hold. Now, let n = r + s0ξ

∗∗+ tξ∗∗R and define

G`(t) :=
r + s0ξ

∗∗

ξ`m`
+

ξ∗∗R
ξ`m`

t,

G(t) := G0(t) · · ·Gk−1(t).

Clearly, gcd(G`(t), ℘1) = 1. We will count the number of positive integers t 6
N/(ξ∗∗R) for which G(t) ∈ N (℘3), that is for which p(G(t)) > N1/

√
log log N . In

order to estimate the number of these t’s, one can use the Fundamental Lemma
(see Theorem 2.6 in Halberstam and Richert [6]), so that, assuming ξ∗∗ is not too
large, say ξ∗∗ 6 log log N , then we obtain

#Ur mod ξ∗∗(m0, . . . , mk−1) = (1 + o(1))
N

ξ∗∗R

∏

k6p6N1/
√

log log N

(
1− k

p

)
(7.7)

= (1 + o(1))
N

ξ∗∗R
ρN (N →∞),

say. Clearly, we have that

log ρN = −k log log N1/
√

log log N + c + o(1) (N →∞).

Substituting this estimate in (7.7), we see that the resulting asymptotic estimate
depends only on R = m0 · · ·mk−1.

Now, the number of possible factorizations of R as m0 · · ·mk−1, with
gcd(mi, mj) = 1 when 0 6 i < j 6 k − 1, is kω(R). So, write R as R = qe1

1 · · · qev
v ,

where q1 < · · · < qv and each ei ∈ N. Then, let ε1 . . . εv ∈ Av
k be an arbitrary

word, and further define m` =
∏

εα=`
α=1,...,v

qeα
α .
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To complete the proof of Theorem 3.4, we shall need the following proposition.

Proposition 7.1. Let d and k be fixed positive integers. For each integer v > d,
consider the words ε1 . . . εv ∈ Av

k. Given a subword β = b1 . . . bd, let σβ(ε1 . . . εv)
stand for the number of occurrences of the subword β in the word ε1 . . . εv. Then,
there exists a constant c9 > 0 such that

1
kv

∑

ε1...εv∈Av
k

(
σβ(ε1 . . . εv)− v

kd

)2

6 c9v.

Proof. First observe that, since the word β = b1 . . . bd occupies d positions, it
leaves out v − d free positions, implying that

∑

ε1...εv∈Av
k

σβ(ε1 . . . εv) = kv−d(v − d + 1). (7.8)

On the other hand,
∑

ε1...εv∈Av
k

σ2
β(ε1 . . . εv) = 2

∑

v16v2−d

#{εj ∈ Ak : εv1 . . . εv1+d−1 = β (7.9)

and εv2 . . . εv2+d−1 = β}+ O(vkv−d)

= 2
∑

v16v2−d

kv−2d + O(vkv−d)

= kv−2d

(
2
(v − d)2

2
+ O(v)

)

= v2kv−2d + O(vkv−2d).

Calling upon (7.8) and (7.9), we obtain that
∑

ε1...εv∈Av
k

(
σβ(ε1 . . . εv)− v

kd

)2

=
∑

ε1...εv∈Av
k

σ2
β(ε1 . . . εv)

− 2
v

kd

∑

ε1...εv∈Av
k

σβ(ε1 . . . εv) + kv v2

k2d

= v2kv−2d + O(vkv−2d)− 2
v

kd
kv−d(v − d + 1)

+ v2kv−2d

= kv−2d · (2v(d− 1) + O(v)).

Dividing both sides of the above relation by kv yields the desired estimate. ¥

We are now ready to complete the proof of Theorem 3.4.
With the definition of Urj(mod ξ∗∗)(m0, . . . ,mk−1) given in (7.6), one can write

relation (7.5) as

ν(ηM ) =
∑

R∈N (℘2)

∑

ξ∗∗<log log N

∑
r0,...,rk−1

∑

R=m0...mk−1

Fj(α) + o(M), (7.10)



252 Jean-Marie De Koninck, Imre Kátai

where Fj(α) stands for the number of occurrences of α in the set Urj(mod ξ∗∗)
(m0, . . . ,mk−1).

Now, for every partition of R = m0 . . .mk−1 with gcd(mi,mj) = 1 for 0 6 i <
j 6 k−1, there is a unique word ε1 . . . εv ∈ Av

k such that the number of occurrences
of α in ε1 . . . εv is equal to να(S(B(E(n)))) for n ∈ Urj(mod ξ∗∗)(m0, . . . , mk−1).

But it follows from Proposition 1 that

να(S(B(E(n)))) =
ω(R)
kd

+ o(1)ω(R)

if n ∈ Urj(mod ξ∗∗)(m0, . . . ,mk−1) with the exception of no more than o(kv) choices
of m0, . . . , mk−1 satisfying R = m0 . . . mk−1. Hence, it follows from (7.10) that

ν(ηM ) =
∑

R∈N (℘2)

∑

ξ∗∗<log log N

∑
r0,...,rk−1

ω(R)
qd

#Urj (mod ξ∗∗)(R) + o(M). (7.11)

Replacing ω(R) in the above by log log N , then (7.11) becomes

ν(ηM ) = (1 + o(1))
log log N

kd

∑

R∈N (℘2)

∑

ξ∗∗<log log N

∑
r0,...,rk−1

#Urj (mod ξ∗∗)(R) + o(M)

= (1 + o(1))
log log N

kd
(N + o(N)) + o(M) (N →∞).

Dividing both sides of the above formula by M yields the result

lim
M→∞

ν(ηM )
M

=
1
kd

,

which completes the proof of Theorem 3.4.
The proof of Theorem 3.5 can be obtained along the same lines.
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