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BORNOLOGICAL PROJECTIVE LIMITS OF INDUCTIVE LIMITS
OF NORMED SPACES
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Dedicated to the memory of Susanne Dierolf

Abstract: We establish a criterion to decide when a countable projective limit of countable
inductive limits of normed spaces is bornological. We compare the conditions occurring within
our criterion with well-known abstract conditions from the context of homological algebra and
with conditions arising within the investigation of weighted PLB-spaces of continuous functions.
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1. Introduction

Many areas of the modern theory of locally convex spaces which has been suc-
cessful in the recent solution of analytic problems gained great insight with new
techniques related to homological algebra. In particular, the derived projective
limit functor, introduced first by Palamodov [19, 18], and studied since the mid
1980’s by Vogt [21] and others, played a very important role and became a very
useful tool. An excellent presentation of the homological tools can be found in the
book by Wengenroth [27]. Vogt [21, 23] was the first one to notice that the vanish-
ing of the derived projective limit functor for a countable spectrum of LB-spaces
is related to the locally convex properties of the projective limit of the spectrum
(for example being barrelled or bornological); see Theorems 3.3.4 and 3.3.6 in [27].
He also gave complete characterizations in the case of sequence spaces in [23,
Section 4].

For projective spectra of LB-spaces the vanishing of the functor Proj! is a suffi-
cient condition for the corresponding projective limit to be ultrabornological (and
thus also barrelled). A countable projective limit of countable inductive limits
of Banach spaces is called a PLB-space. PLB-spaces constitute a class which is
strictly larger than the class of PLS-spaces. A locally convex space is a PLS-space
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if it is a countable projective limit of DFS-spaces (i.e. of countable inductive limits
of Banach spaces with compact linking maps). The class of PLS-spaces contains
many natural examples from analysis like the space of distributions, the space
of real analytic functions and several spaces of ultradifferentiable functions and
ultradistributions. In recent years, this class has played a relevant role in the
applications of abstract functional analysis to linear problems in analysis. These
problems include the solvability, existence of solution operators and parameter
dependence of linear partial differential operators and convolution operators, the
linear extension of infinitely differentiable, holomorphic or real analytic functions,
and the study of composition operators on spaces of real analytic functions, among
other topics. See the survey article of Domanski [11]. As can be observed in chap-
ter 5 of Wengenroth’s lecture notes [27], the study of the splitting of short exact
sequences of Fréchet or more general spaces requires the consideration of PLB-
spaces which are not PLS-spaces. There are several possibilities to conclude that
Proj 1'— 0 holds for projective spectra of LB-spaces. For a concrete projective
limit, it firstly depends on abstract properties of the spectrum (like being reduced
or having compact linking maps) whether a stronger or a weaker condition can be
used.

The main result of this article Theorem 2.1 is a criterion to decide when a count-
able projective limit of countable inductive limits of normed spaces is bornologi-
cal, that constitutes an extension of the methods for LB-spaces mentioned above.
It can be used as a criterion for (quasi-)barrelledness of projective limits of LB-
spaces which have a dense topological subspace which is the projective limit of
inductive limits of normed spaces. In fact, our main motivation to prove The-
orem 2.1 was to treat weighted spaces of polynomials and weighted spaces of
continuous functions with compact support. The study of projective limits of
weighted inductive limits of spaces of polynomials was necessary to investigate
when a weighted PLB-space of holomorphic functions is barrelled in cases when
the projective limit functor cannot be directly applied. Results on this subject will
be contained in a forthcoming paper by S.-A. Wegner. See also the last named
author’s doctoral thesis [26]. In Section 3 of this paper we present applications
to weighted PLB-spaces of continuous functions. These spaces were investigated
in [2] and they contain not only the sequence spaces defined with sup-norms, but
also permit one to treat spaces of continuous linear operators from a Kéthe echelon
space into another or tensor products of Fréchet and LB-spaces of null sequences.
In the case of weighted PLB-spaces of continuous functions, the dense subspace and
its representation as a projective limit of inductive limits of normed spaces arise
very naturally. Using this representation we give an alternative (non-homological)
proof of a result of Agethen, Bierstedt, Bonet [2] in the case of functions vanish-
ing at infinity. The situation in the case of bounded functions is the following:
Agethen, Bierstedt, Bonet [2] proved with the help of Proj ! that a certain con-
dition on the weights is sufficient for ultrabornologicity. But it follows from their
results that this condition cannot be necessary and that a necessary condition
cannot be found using Proj!, c¢f. Theorem B in Section 3. We explain why our
criterion does not yield a solution to this problem, either. The latter follows from
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a comparison of the condition appearing in Theorem 2.1 with “classical” Proj -
conditions which we perform in Section 2. At the end of Section 3 we extend this
comparison including weight conditions used by Agethen, Bierstedt, Bonet [2].

We refer the reader to [9] for weighted spaces of continuous functions and to
[14, 15, 16, 17, 20] for the general theory of locally convex spaces.

2. A criterion for the bornologicity of projective limits of inductive
limits of normed spaces

In the sequel we let X = (X, p}}) denote a projective spectrum of inductive limits
of normed spaces Xy = ind, Xy, where we use the notation of Wengenroth
[27, Definition 3.1.1] and assume in addition that the p%; are inclusions of linear
subspaces. Denote by X = projy ind,, X, the limit of the spectrum X and by
Bp,, the closed unit ball of the normed space Xy . For all N we assume that for
each bounded set B C Xy there exists n such that B C By ,. This assumption is
equivalent to the fact that the spaces Xy are regular inductive limits of normed
spaces. We keep this notation in the rest of the section.

Lemma 2.1. Let X = projy ind,, Xy, be a projective limit of regular inductive
limits of normed spaces. Assume that

VNIMYm3n: Bym C ﬂkEN(BN_,nmXJr 1BN.n) (B1)
holds for the spectrum X. Let T C X be an absolutely convex set. Then
ANVYVn3dS5S>0:By,NX CST (B2)

holds if and only if T is a 0-neighborhood in X .

Proof. “=” Fix T' C X absolutely convex and select N as in (B2). For this N
select M as in (B1). Fix n and put T, := (\yen(T+ 1 Bn,»)- Since T and By, are
absolutely convex the same is true for 7;,. Clearly T;, € Xx. Since By, € By n+t1
we get T, € Ty, 41. Accordingly, the set Tp := (U, cnTn) N X is an absolutely
convex subset of X .

We claim that Ty absorbs Bjs ., for each m. In order to see this, fix m and
select n as in (B1). Applying (B2) w.r.t. the latter n we obtain S > 0 such that
Bn,,NX C ST. For an arbitrary k we get BNynﬂX—i—%BN’n - ST—i—%BN’n = ST+
BNy =S(T + 2 Bn,n). This yields Nyen (B N X + +Bnn) € SNpen (T +
ﬁBN)n) C ST,. By (Bl) Bym € ST,. Therefore By = Baym N Xu C
ST, N Xy CS(T, N Xpr) C STy, and the claim is established.

Since X is bornological as it is an inductive limit of normed spaces and the
sets Bps,m form a fundamental system of bounded sets for X s, we conclude that
Ty is a 0-neighborhood in X, hence Ty N X is a 0-neighborhood in X. To prove
that T is a O-neighborhood, it is enough to show To N X C 27T. Let t € To N X
be given. Then there exists n such that ¢ € T, N X. For this n we apply (B2) to
get S > 0 with By, N X C ST. For k > S, t € T+ By, Le. t =t + £by,
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witht € X, t, € T C X and by, € Bn,y,. Thus, by = k(t —tx) € X N By, C ST.
Therefore %bk € T. Finally we have x = t; + %bk eT+TC2T.

“«<” Let T be a 0-neighborhood in X. By definition there exist N and
a 0O-neighborhood V in Xy such that that V N X C T. Let n be arbitrary.
Since By, is bounded in Xy, there exists S > 0 such that By, C SV, thus
Byn,NX CST. |

Our main result is a direct consequence of Lemma 2.1 and the definition of
bornological locally convex spaces.

Theorem 2.1. Let X = (Xn, pl;) be a projective spectrum of regular inductive
limits of normed spaces Xy = ind,, Xy, with inclusions as linking maps and
projective limit X satisfying (B1). The space X is bornological if and only if
condition (B2) holds for each absolutely convex and bornivorous set T C X.

The definition of condition (B1) and the proof of Lemma 2.1 were inspired by
results of Vogt [21, 23|, see Wengenroth [27, 3.3.4], on the connection of the van-
ishing of Proj! for a projective spectrum of LB-spaces and the ultrabornologicity
of the corresponding limit. In view of Theorem 2.1 and the next proposition, (B1)
is in some sense a “weak variant” of condition Proj! = 0.

Proposition 2.1. Let X be a projective spectrum of regular inductive limits of
normed spaces. If all Xy, are Banach spaces and Proj Y X =0 holds, then (B1)
is satisfied.

Proof. We may assume w.l.0.g. that (By »)nen is a fundamental system of Banach
discs in each of the LB-spaces X . In the proof of [27, Theorem 3.3.4] it is shown
that Proj' X = 0 implies

VNIMYDeBD(Xy)IAEBD(Xy): DCANK 7,

where BD(Xy) is the system of all Banach discs in Xy and (Xy) 4 is the Banach
space associated to the Banach disc A. Now we may replace the Banach disc A
by Bar,m for some m, resp. D by By, for some n and thus the above condition

yields

YNIMYm3In: Bum C Bynn X "

Now (B1) follows, since mxl\’,n

C Nien (BN N X 4+ £Brn)- [ ]

It is well-known that there is a connection between the vanishing of Proj' on
a projective spectrum A& of locally convex spaces and reducedness-properties of
the spectrum: If X is reduced in the classical sense (see e.g. Floret, Wloka [12,
p. 143]), i.e. if the limit space X is dense in each step, then X is strongly reduced
in the sense of Wengenroth |27, Definition 3.3.5], that is for each N there exists

M such that X, C X" holds. On the other hand, X being strongly reduced
implies that X is reduced in the sense of Wengenroth [27, Definition 3.2.17], i.e. for
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each N there exists M such that for each K the inclusion X,; C TKXN is valid.
The latter notion coincides with the one used by Braun, Vogt [10, Definition 4].

Wengenroth [27, remarks previous to Proposition 3.3.8] mentioned that for
a spectrum X of LB-spaces Proj' X = 0 implies that X is strongly reduced. As
the next remark shows, for a projective spectrum of inductive limits of normed
spaces condition (B1) implies the same property.

Proposition 2.2. Let X = (Xy, p3}) be a projective spectrum of regular inductive
limits of normed spaces Xy = ind,, Xy, with inclusions as linking maps and
projective limit X. If X satisfies (B1), then X is strongly reduced, that is for each

N there exists M such that X5 C YXN holds.

Proof. For given N we choose M as in (B1) and consider x € Xj;. Then there
are m and p > 0 with pz € Basy,. For this m we apply (B1) to obtain n with

Bym € Byn N XXN’", hence pz € By, N X V™ Thus there exists (xj)jen C
By nNX with z; — px for j — oo w.r.t. ||| nn, thus w.r.t. the inductive topology
of Xn. Therefore x € YXN. | |

Roughly speaking the Propositions 2.1 and 2.2 mean that condition (B1) is
placed “somewhere in between” the vanishing of Proj! and strong reducedness of
the spectrum &'. In order to be more precise we introduce the following variant of
(B1). We say that a spectrum X satisfies condition (B1) if

VNIMVYm3InVe>03B C X bounded: By, € B+eBnp

holds.
Condition (B1) is related to the following two conditions of Braun, Vogt [10,
Definition 4|. We say that X satisfies (P,) if

VNIM, nVK,m' 3k, S>0: By CS(Byn+ Bk
We say that X satisfies (Py) if
VN 3 M/, TIVK, m, e > 03]43/, S/ > 0: BM’,m - EBN’n +S/BK7]€/.

Braun, Vogt [10] proved that for an arbitrary projective spectrum of LB-spaces X,
Proj' X = 0 holds if X satisfies (Py). Moreover they showed that in the case of
a DFS-spectrum X is reduced and satisfies (P,) if and only if Proj' X = 0.

Proposition 2.3. Let X = (Xy)nen be a projective spectrum of reqular LB-spaces
with inclusions as linking maps. If X satisfies (Py) and (B1) then X satisfies (P,).

Proof. (B1) can be written as follows
VM 3IM Vm3Im'Ve>03BC X bounded: By 1, € B + B

We show (Py) in the way it is stated above. Let N be given. We choose M and
n as in (P,) and put M into (B1) to obtain M’. Let K, m and € > 0 be given.
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We put m into (B1) and obtain m/. We put m/, K and ¢ > 0 into (P,) and
obtain k and S > 0. Finally, we put ¢ into (B1) and get a bounded set B C X.
Now we have by (B1) and (P,) the two inclusions Baym € B + $Bm and
Buyrmr € SBnp + SBi k. Since B is bounded in X, it is also bounded in the
LB-space Xk and this space is regular, i.e. there exists k' and A > 0 such that
B C ABg i and we clearly may choose k' > k. From the three inclusions we just
mentioned we get By m € (A + €)Bg i + €Bn,,, and thus it is enough to select
S’ := X\ + ¢ to finish the proof. [ |

For the rest of this section we treat the following special case. We assume
XNn = XNnt1 =t Xy for all n and w.lo.g. By41 € By, X = proj,, Xy. We
further assume that X is a Banach space, thus X is a Fréchet space. In this case
condition (B1) reduces to

VN 3IM: By gﬂkENBNmX+%BN

and (B1) reduces to
VN IMVYe>0dB C X bounded: By; C B + By.
The latter condition implies
VNIAMVYe>03BC X bounded: Byy N X C B+e(ByNX),

that is exactly the definition of quasinormability, which was introduced by Gro-
thendieck [13, Definition 4, p. 106 and Lemma 6, p. 107] (cf. [17, Definition after
Proposition 26.12]) as an extension of Schwartz spaces and Banach spaces. In fact,
a Fréchet space is Schwartz if and only if the above condition holds with a finite
set B, cf. [17, Remark previous to 26.13].

Proposition 2.4. If X = (Xy)nen s a projective spectrum of Banach spaces
with inclusions as linking maps and X = projy Xy is the corresponding Fréchet
space, we have (i)=(ii)< (iii) where:

(i) Condition (B1) holds.

(ii) X s reduced in the sense VN I M: X C X

(iii) Condition (B1) holds.
In particular “(B1) = (B1)” holds in general for projective spectra of Banach
spaces with inclusions as linking maps.

Proof. “(i)=-(ii)” By assumption for each N there is M such that for each ¢ > 0
there is a bounded subset B of X with By; C B+¢eBy. In order to show that X is
reduced, we fix N and choose M as in the condition above. Then By; C X +eBy

holds for each € > 0 that is By, C YXN and thus X, C YXN.
“(ii)=-(ii1)” For given N we choose M > N such that X, C XM Letz e By
We have z € X~ Since By € By we also have 2z € By. Hence x € By AXN,
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- X
We claim 2z € By N X . If  is in the interior of By in X, we choose a sequence
(2j)jen € X with 2; — 2 in X . There exists J such that x; € By for all j > J.

Hence (z;)j>7 € By N X with z; — « in Xy and « € By ﬂXXN. If otherwise

lzlly = 1, take (z;)jen € X with z; — = in Xy. We put y; := ~—. Then
J
—_— X
(yj)jen S BN N X, y; = 7y = 1 = @, hence z € By N X A
“(iii)=-(ii)” This follows from Proposition 2.2.
The last statement is now clear. ]

3. Weighted spaces of continuous functions

In this section we apply the criterion in Theorem 2.1 to weighted PLB-spaces
of continuous functions. The main reference for this section is the article [2] of
Agethen, Bierstedt, Bonet which is an extended and reorganized version of part
of the thesis of Agethen [1]. In order to present the applications and examples we
introduce some notation.

Let X denote a locally compact and o-compact topological space. By C(X) we
denote the space of all continuous functions on X and by C.(X) the space of all
continuous functions on X with compact support. A weight is a strictly positive
and continuous function on X. For a weight a we define the weighted Banach
spaces of continuous functions

Ca(X) = {f € C(X); ||flla == :gga(ﬂi)lf(xﬂ < oo},
Cao(X):={f € C(X); a|f| vanishes at co on X }.

Recall that a function g: X — R is said to vanish at co on X if for each € > 0
there is a compact set K in X such that |g(x)| < € for all z € X\K. The space
Ca(X) is a Banach space for the norm || - ||, and Cag(X) is a closed subspace of
Ca(X). In the first case we speak of O-growth conditions and in the second of
o-growth conditions.

Let now A = ((ann)Nen)nen be a double sequence of weights on X which is
decreasing in n and increasing in N, i.e. ay pt1 < ann < GN41,, holds for all N
and n. We define the norms || - || n,n := || [[ay.,, and get Can n(X) € Canni1(X)
and C(an,n)o(X) C Clann+1)o(X) with continuous inclusion for each N and n.
Therefore we can define for each IV the weighted LB-spaces of continuous functions

AnC(X) :=ind,, Can n(X) and (AN)oC(X) :=ind,, Clan n)o(X).

Since Bierstedt, Bonet [5, Section 1] implies that the spaces AxyC(X) are always
complete we may assume that every bounded set in AxC(X) is contained in By,
for some n where By, denotes the unit ball of Can ,(X). The space (An)oC(X)
needs not be regular. By [9, Theorem 2.6] it is regular if and only if it is complete
and this is equivalent to the fact that the sequence Ay := (an n)nen is regularly
decreasing (see [9, Definition 2.1 and Theorem 2.6]). We set BY, ,, for the unit ball

3

of Clan,n)o(X). Let us denote by AC = (AnC(X))n and AoC = ((An)oC(X)) N
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the projective spectra of LB-spaces where the linking maps are just the inclusions.
To complete our definition, we define the weighted PLB-spaces of continuous func-
tions by taking projective limits, i.e. we put

AC(X) := projy AnC(X) and (AC)o(X) :=projy (An)oC(X).

By Bierstedt, Meise, Summers [9, Corollary 1.4.(a)] (An)oC(X) C AnC(X) is
a topological subspace for each N and hence (AC)o(X) is a topological subspace
of AC(X). Moreover, AgC is reduced in the sense that (AC)q(X) is dense in every
step (cf. [2, Section 2]).

In [24] Vogt introduced the conditions (Q) and (wQ). In the case of weighted
PLB-spaces one can reformulate these conditions in terms of the weights as follows.
We say that the sequence A satisfies condition (Q) if

)
aN,;n’ K,k

YNIM, nVEK, me>03k 8>0: L

we say that it satisfies (wQ) if

VNEIM,nVK,mEk,S>O:#m<max( s_ s )

It is clear that condition (Q) implies condition (wQ). Bierstedt, Bonet gave in [6]
examples of sequences satisfying (wQ) but not (Q).

One of the main tasks in [2] was the investigation of locally convex properties
of the spaces AC(X) and (AC)o(X). For this purpose Agethen, Bierstedt, Bonet
used the above weight conditions in order to characterize the vanishing of the
functor Proj* on the spectra AC and AgC. We state their results.

Theorem A (|2, Theorem 3.7]). The following conditions are equivalent:
(i) Proj* AC

(i1) (AC)o(X) is ultrabornological.
(iii) (AC)o(X) is barrelled.
(iv) A satisfies condition (w@).

Theorem B (|2, Theorems 3.5 and 3.8]). Consider the following conditions:

(i) A satisfies condition (Q),
(ii) Proj'.AC =0,
(iil) AC(X) is ultrabornological,
(iv) AC(X) is barrelled,

(v) A satisfies condition (w@).

Then (i)& (ii)= (i53)= (iv)= (v).
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3.1. A non-homological proof for the barrelledness of (AC),(X)

We give an alternative proof of the implication “(iv)=-(iii)” in Theorem A by
replacing the machinery of Proj ', which was used in the original proof of Agethen,
Bierstedt, Bonet, by a method based on the criterion in Theorem 2.1.

For a given double sequence A we consider the normed spaces C(an n)c(X) :=
(Ce(X), |l - Inn) and (AC)(X) := projy ind, C(ann)c(X). We denote by Cn
the closed unit ball of C(ann)c(X). Since Cn, = By N Ce(X), it follows that
ind,, C(ann)c(X) is a regular inductive limit of normed spaces. For the proof of
Proposition 3.1 we need the following technical lemma.

Lemma 3.1. Let X = projyind, Xy, with normed spaces Xy, and let By,
denote the unit ball of Xn . Let T C X be absolutely conver and bornivorous and

(n(N))nen C N be arbitrary. Then there exists N' € N such that ﬂ%/:lBN,n(N)
s absorbed by T'.

Prgof. Assume that the conclusion does not hold. For each N’ there is zyn/ €
ﬂ%leN’n(N)\N’T. We put B := {zy/; N’ € N} and claim that B is bounded
in X. In order to show this, we fix L and write B = {zn; 1 < N’ < L} U
{zn'; N’ > L}. To show that B C X is bounded it is enough to show the latter
for B" := {zn/; N' > L}. We claim that B’ C X and that B’ is bounded
there. By definition each zy/ € B’ lies in ﬂ%;lBN,n(N) and for L < N’ we
have ﬂ%l:lBN,n(N) C By and the latter set is bounded in X;. Hence the
same holds for B’ and we have established the claim. By our assumptions, 7' is
bornivorous. Hence there exists A > 0 such that B C AT. For N’ > \, we get
xn' € N'T D AT, a contradiction. [ |

Proposition 3.1. The following conditions are equivalent:
(i) A satisfies condition (w@).
(i1) (AC).(X) is bornological.
(i) (AC)o(X) is barrelled.
Proof. “(i)=(ii)” By Bierstedt, Bonet [6], condition (wQ) implies condition (wQ)*
that is

3(n(0))oen € N increasing VN IM VK, m3S5 >0, k:
L gSmax<#, min 1 )
K,k

aM,m a o=1,....N %o,n(e)

Observe that condition (B1) trivially holds for the natural spectrum corresponding
to (AC)(X). To see that (AC).(X) is bornological, we apply Theorem 2.1. It is
then enough to show that condition (B2) is satisfied. To see this, fix an absolutely
convex and bornivorous set T'C (AC).(X). Since (AC).(X) = C(ann)(X) holds
algebraically for all NV, n we may consider T" as a subset of the latter space and
claim that there exists N such that for each n the ball Cy ;, is absorbed by T'. We
proceed by contradiction and hence assume that for each M there exists m(M)
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such that Cps () is not absorbed by T. By Lemma 3.1, there exists N such
that ﬂl]jv:1007m(g) is absorbed by T'. For the sequence (n(o))sen and this N we
choose M as in (wQ)*. Now we put m = m(M) into (wQ)*. Then for each K there
exist Sk > 0 and k(K) such that VR < Sk max (m,mingzl 7777 Nz 1 )
holds. Defining S} := max,—1,.. k S,, the latter yields

1 < SI . 1 . 1 .
max min min
apmony S TK <u:1 _____ K Quk(w) 51N amn(v))

for details we refer to [26]. Now an application of the decomposition lemma
[2, Lemma 3.1] to the above estimate provides that for each K there exists 7 > 0
such that the inclusion Ciy (ar) € T [ﬂ5=1007n(5) Jrﬂf:lka(M)] is valid. Again
we refer to [26] for more details. Applying Lemma 3.1 a second time, we get K’
such that mi{:/lcu,k(u) is absorbed by 7. But now in the inclusion Chy ar) €
TK' [ﬂ(]j:lC’,,’n(g) + ﬂf:/lou,k(u)] the set on the left hand side is not absorbed by T'
unlike the set on the right hand side, a contradiction.

“(ii)=-(iii)” First observe that [4, Lemma 5.1] implies that C.(X) C (AC)o(X)
is a topological subspace, which is dense by [2, Section 2|. Therefore (AC)o(X) is
quasibarrelled. Since the latter space is reduced by [2, Section 2| it follows from
Vogt [23, Lemma 3.1] that it is even barrelled.

“(iii)=-(1)” This is Theorem A (Theorem 3.7 in [2]). |

3.2. Condition (B1) revisited

Proposition 3.2.

(a) If AC satisfies (B1), then A satisfies (Q), that is for each N there ewists
M such that for each m there e:cists n such that for each K and e > 0 there

exist k and S > 0 such that —— < max (aN — k) holds.
(b) If A satisfies (Q) then the spectrum AC satisfies condition (B1) and A
satisfies (Q).

Proof. (a) We apply (B1) to conclude Baz,;n € Npen(Bn,n NAC(X) + 1 Bn,s) C

Npen(AC(X) + %BNJL) AC(X) + ﬂk:eNlchN”l = AC(X) +.50eBNn- Now
we fix ¢ > 0. Since oo € Bam, aMl € AC(X) + §Bn,,. Thus there exist

L = f+ 5g with f € AC(X) and g € By,,. That is,
for each K there exists k and A > 0 with |f| < a>‘ < a;n‘ Then

az;,m —|f +eg <|fl+5lgl < a/\KKk 4 2aN < max (2(53”, ai’\’k» which yields
condition (Q) with S := 2.

(b) By Theorem B, (Q) is equivalent to Proj' AC' = 0. Thus Proposition 2.1
yields that (B1) holds. The implication “(Q) = (Q)” is clear by definition. |

Proposition 3.3. A¢C satisfies condition (B1) in general, but even condition
(w@) need not hold.
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Proof. To prove (B1) it is enough to select M := N and n := m and show

By, € By, N (AC)o(X) (@m0l p o f € By ,,, that is an | f| vanishes at oo
and ay ,|f| < 1 on X. Define S,: AC(X) — (AC)o(X), Sa(f)(x) := a(z) - f(z),
put A :={a € C(X); 0 < a < 1}, define o < = a(z) < B(x) for each
z € X and consider the net (Sqf)aca. We have Sof € C(ann)o(X). Since
ann|Safl < annlf] <1, we have So f € By, N (AC)o(X). It is easy to see that
Sof = fwrt. | ||vn-

There are examples of sequences A which do not satisfy (wQ), cf. [25, Exam-
ple 5.12]. [ |

The following result can be regarded as a concrete version of Proposition 2.3.
For the proof we introduce the following condition which is inspired by work of
Bierstedt, Meise, Summers [8, Proposition 3.2]. The sequence A satisfies condition

(wS) if

VMHM’VmHm’V5>OHEEZ:a <a+

)
a]\/{ m/

where A := {@: X —]0,00[; @€ C(X) and VN Eln: SUpP, e x an,n(2)a(z) < oo}
Proposition 3.4. The following conditions are equivalent:

(i) A satisfies condition (w@Q) and AC satisfies (B1).
(ii) A satisfies condition (Q).

Proof. “(i)=-(ii)” Condition (B1) implies
VM IM ¥m3m' Ye>0: By C AC(X) + eBygm.

We show that A satisfies (wS). For given M select M’ and for given m select m’
as in the condition above. Let e > 0 be given. To show the estimate in (wS),

we consider aMl/ € By . There exist o' € AC(X) and f € By such that

L — ¢ +ef, hence —1— = ’ la'| +e|f] <

ApNr/ M/ m aM’ m

and by selecting @ := |a’|. We write (wQ) in the followmg Wéy

1 1 1
ANg ! S S(@N,n + aK,k)’

, since f € Basm/

VNIM,nVKm' 3k S>0:

and prove (Q) in the notation

Apnpl o, ~ aN,n aKYk/ :

YVNIM , nVEK, m,e>03k,S >0: Al < - 4+ 5

Let N be given. We choose M and n as in (wQ). We put M into (wS) and obtain
M. Let K, mand ¢ > 0 be given. We put m into (wS) and obtain m’. We put m/,
K and ¢ > 0 into (wQ) and obtain & and S > 0. Finally, we put § into (WS) and

obtain a@. Now by (wQ) and (WS) we have the two estimates aMl/ <a+ 35 aMl

+ = S . Moreover, @ € AC(X) implies @ € .AKC( ) and hence
there exists k' and A > 0 such that ax ;@ < A holds, we may choose k¥’ > k. Now
it is enough to select S’ := A 4 ¢ in order to get the estimate in (Q).

“(ii)=(1)” Clearly (Q) implies (wQ) and by Proposition 3.2.(b), (Q) implies
also (B1). |

and Y < aN
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Corollary 3.1. If the spectrum AC satisfies (B1), then it also satisfies condi-
tion (BI).

Proof. In the proof of Proposition 3.4 we showed that (B1) implies (wS), which
we may write in the following way

YNIMVm3InVe>03aed: 1 <a+-=

an,m an,n’

To show (B1), let N be given. We select M as in (wS). For given m we select

n as in (wS). Let € > 0 be given. We put £ into (wS) and select @ as in (wS).
Set B := {f € AC(X); |f| < 4a}. To show the inclusion in (B1) we take f €

Bur,m, that is anrm|f| < 1. Then |f|<ﬁga+ 5 ngax(EL —

2aN,n ’ 4aN,n

max (2& L) According to [2, Lemma 3.5] there exist fi, fo € C(X) with

’QG.NJL
f=fitfoand |f1] <2-2a, |fo] <2- 2@;". That is f; € B and f; € eBy p, thus
fGB-‘r&BN,n. ||

In view of Theorem B, which provides a characterization of Proj* AC = 0 via
(Q) but no characterization of (ultra-)bornological spaces AC(X), it is a natural
question if A satisfying (wQ) is sufficient for AC(X) being (ultra-)bornological or
barrelled. Since this cannot be achieved by the use of Proj'-methods one could
hope that the bornologicity criterion (which leaded to a non-homological proof
for the implication “(wQ) = (AC)(X) barrelled”) would yield an improvement of
this type. Unfortunately this is not the case: Theorem 2.1 cannot help us to find
any sufficient condition for bornological AC(X) spaces which is strictly weaker
than (Q). In fact, if AC(X) is bornological or barrelled, then condition (wQ)
follows by Theorem B. On the other hand, if we wanted to apply Theorem 2.1 we
would have to assume (B1) and by Proposition 3.4 the sequence A must satisfy (Q).

3.3. The case of Fréchet spaces

We study the case that the spaces AC(X) and (AC)o(X) are Fréchet spaces. That
is, we put an,, = 2"an for some increasing sequence (an)nen. Alternatively, we
may simply define AC(X) = projy Can(X) and (AC)o(X) = projy C(an)o(X).

Before we present results on the above spaces for a general locally compact
and o-compact space X let us study the case X = N. In this situation, the spaces
under consideration turn out to be the well-known Kothe echelon spaces A*°(A)
and \°(A) where the Kéthe matrix A is given by A = (an)nen (in the notation
of [8, Definition 1.2]).

The following observations are easy; they all refer to the case that the spaces
AC(X) and (AC)o(X) are Fréchet spaces and that X = N.

(a) The system A introduced in the proof of Proposition 3.4 is just the Kéthe

set

V={a:N— ]0,00[; VN: s_gga,N(i)E(i) < oo}

of Bierstedt, Meise, Summers [8, Definition 1.4].
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(b) Condition (wS) of the proofs of Proposition 3.4 and Corollary 3.1 reduces
to

VNHMV€>OHEEZ:$<E+ 2

an’

which is equivalent to condition (wS)

VNIMVe>0dac AVie N: L. = whenever (i) < —1-

am (i) = an(i) an (i)

of Bierstedt, Meise, Summers [8, Proposition 3.2].
(¢) The conditions (Q) and (Q) both are equivalent to

YNIMVEK, e>035>0: 1 <2 +%.

an

They are also equivalent to the regularly decreasing condition of [9].
Let us now review some well-known results on the spaces A*°(A) and \°(A),
which should be compared with Propositions 3.6 and 3.7 below.

Proposition 3.5.! Let A be a Kithe matriz and denote by AL and AL the
natural projective spectra corresponding to \°(A) and \°(A), respectively.
(a) The following conditions are equivalent:
(i) AL is reduced.
(il) A>°(A) is quasinormable.
(iil) A satisfies condition (wS).
(iv) A satisfies condition (Q).
(v) A satisfies condition (Q).
(b) AoL is always reduced. Moreover, the following conditions are equivalent:
(i) A°(A) is quasinormable.
(ii) A satisfies condition (wS).
(iii) A satisfies condition (Q).
(iv) A satisfies condition (Q).
(¢) There exists a Kothe matriz A which does not satisfy condition (wS), that

is the space \°(A) is reduced but not quasinormable.

As a consequence the implication “(ii)=-(i)” in Proposition 2.4 and the impli-
cation “(B1)= (B1)” do not hold in general.

To conclude, we consider Fréchet spaces AC(X) and (AC)o(X) for an arbitrary
locally compact and o-compact topological space X.

1see Bierstedt, Meise, Summers [8, Proposition on p. 48, Proposition 3.2, Corollary 3.5 and
Example 3.11], Vogt [22, last Remark on page 167] and Meise, Vogt [17, 27.20]
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Proposition 3.6. In the Fréchet case, the following conditions are equivalent:

(i) AC(X) is quasinormable.
(ii) AC is reduced.

(iii) AC satisfies (B1).

(iv) AC satisfies (B1).

(v) A satisfies (Q).

(vi) A satisfies (Q).

(vii) A satisfies condition (wS).

Proof. “(iv)=-(ii)” This is Proposition 2.4.

“(ii)=-(iii)” This is Proposition 2.4.

“(iii)=-(iv)” This is Corollary 3.1.

“(iv)=-(i)” As we noted before Proposition 2.4, for projective spectra of Banach
spaces (B1) implies the definition of quasinormability.

“(i)<(vii)” This follows from Bierstedt, Meise [7, Proof of Proposition 5.8].

“(vii)<(v)” This is known; see Proposition 3.5.

“(v)e(vi)” As we noted before Proposition 3.5, in the Fréchet case (Q) and
(Q) coincide.
~ “(v)=(iii)” This is Proposition 3.2.(b).

“(iii)=>(v)” In the Fréchet case condition (wQ) reduces to

VNIMVYK IS >0: b < Smax (L, )
N’ K
and is always satisfied: Let N be given. We choose M := N. For given K we put
S := 1. Then the estimate ﬁ < max(ﬁ, i) is trivial. Hence, Proposition 3.4
yields the desired implication. |

Proposition 3.7. In the Fréchet case, the following statements hold:

(i) AoC is always reduced.

(i) (wQ) is always satisfied.

(iii) For AgC condition (B1) is always satisfied.
)

(iv) (AC)o(X) fails to be quasinormable in general. Thus conditions (B1) and
(B1) are not equivalent for AqC

Proof. (i) This follows from Agethen, Bierstedt, Bonet [2, Section 2].

(ii) See the proof of “(iii)=-(v)* in Proposition 3.6.

(iii) By Proposition 2.4, (B1) is equivalent to the reducedness of (AC)q(X).
Hence the assertion follows from statement (i).

(iv) This follows from Proposition 3.5.(c). Now, it is enough to recall that for

projective spectra of Banach spaces (B1) implies the definition of quasinormability.
|

Acknowledgement. The authors are indebted to P. Domaiiski who pointed out
an error in the former statement of Proposition 2.4.
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