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ON ARITHMETICAL NATURE OF TICHY-UITZ’S FUNCTION
ELENA ZHABITSKAYA

Abstract: In [10] R.F. Tichy and J. Uitz introduced a one parameter family g, A € (0,1) of
singular functions. When A\ = 1/2 function g, coincides with the famous Minkowski’s question

mark function. In this paper we describe the arithmetical nature of function gy when A = %
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1. Stern-Brocot sequences

Let us remind the definition of Stern-Brocot sequences F,,, n =0,1,2,....
Consider two-point set Fy = {%, %} Let n > 0 and

Fn = {0:$0,n <ZTin<... <$N(n),n:1},
where ¥ n = pjn/qjn, (Pjnsqin) =1,5=0,...,N(n) and N(n) = 2" + 1. Then

fnJrl:-FnUQnJrl

with
Qn+1:{$j71,n@$j,n, j=1...,N(n)}.
Here b
a ¢ a
P A

is the mediant of fractions 7 and 3.
Elements of @,, can be characterized in the following way. Rational number
¢ € 10,1] belongs to @, if and only if in continued fraction expansion of &

1
&=1[0;a1,a2,...,a,m) =0+ , a; €N, am =22, (1)
a1 + I
as+ ...+ —
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sum of partial quotients is exactly n + 1:
S¢)=a1+..+an=n+1.

So F, consists of all rational £ € [0, 1] such that S(§) <n+ 1.

2. Tichy-Uitz’s singular functions

In [10] R.F.Tichy and J. Uitz considered a one parameter family gy, A € (0, 1),
of singular functions. In this section we describe the construction of gy from [10].
This construction is an inductive one.

Given A € (0,1) put

gr(0) = ga(0/1) =0,  ga(1) =ga(1/1) =1

Suppose that g(x) is defined for all elements © € F,,. Then we define gx(z) for
T € Qnt1. Bach € Qpqq is of the form x = 21, ® z;, where z;_1,, and z;,
are consecutive elements from F,,. Then

INTj—10 D Tjn) = ga(Ti—1n) + (92 (Tjn) — ga(Tj—1.0)) A

So we have defined g, for all rational numbers from [0, 1]. One can see that the
function gy(z) is a continuous function from Q N [0,1] to [0,1]. So it can be
extended to a continuous function from the whole segment [0, 1] to [0, 1].

Similar functions k(z,a), ¢ € [0,00), o € (0,1) were introduced in [2] by
A.Denjoy. Definition of k(z, «) is the following:

k(0/1,a) =1, k(1/0,a) =0,
and for p/q, p’/q’ such that pg’ — qp’ =1
k(p/q®P'/d ) = ar(p'/q ) + (1 - a)k(p/q, ).
For x € [0,1] functions k(z,a) and gx(z) are related in the following way:
klz,a) =1—=(1 — a)gi—q(x).

For every A function gj(z) increases in = € [0,1]. By Lebesgue’s theorem
gx(z) is a differentiable function almost everywhere. Moreover, it is easy to see
that g} () = 0 almost everywhere (in the sense of Lebesgue measure). Certain
properties of functions gy (x) were investigated in [10]. Some related topics can be
found in [1] and [5]. Here we should note that in case A = 1/2 function g, o(x)
coincides with the famous Minkowski’s question mark function ?(z). This function
may be considered as the limit distribution function for Stern-Brocot sequences F,.
The purpose of the present paper is to explain the arithmetical nature of function

gx(z) when A\ = %
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3. Minkowski’s function ?(x)

Let’s consider function g, o(x) =7(x). This function was introduced by Minkowski.
As it follows from the definition of gy for A = 1/2:

?(0) =7(0/1) =0, (1) =?(1/1) =1.
and for x;_1 n,zjn € Fpn

(xj—1,0)+7(x)jn)
. .

NTj—1,n ® Tjn) =

The definition of ?(z) for irrational x follows by continuity.
R.Salem in [9] found a new presentation for ?(x). If z € (0,1) is represented
in the form of regular continued fraction

1
x=1[0;a1,a2,...,0pm,...] = N , (2)
aj +
! 1
ag+...+—
then . . .
2 — _ _
(.T/‘) - 20,171 2a1+a271 + 2a1+a2+a371 e (3)

For rational x representation (2) and consequently (3) is finite.
Minkowski’s question mark function may be treated as limit distribution func-
tion for Stern-Brocot sequences in the following sense:

oo e Fal<ar L t{E e Fn <}
Y@) = lim_ ¢ Fn = Jn 11 '

(4)

A finite formula for the right side of (4) was given by T. Rivoal in the preprint [8].
Various properties of Minkowski’s question mark function were investigated in
papers [2] by A.Denjoy, [11] by P.Viader, J.Paradis, L.Bibiloni and in [3] by
A. A. Dushistova, I. D. Kan and N. G. Moshchevitin.

4. General form of formula (3)

Formula (3) can be generalized on the whole family of functions gy in the following
way.

Proposition. Let z, A € (0,1) and x = [0;a1,...,am,...] be reqular continued
fraction expansion of x, then

g)\(l‘) — )\alfl _ Aa171(1 _ A)az + Aa171(1 _ /\)0,2)\(13 _

_ , 5
_1\ym+1 (1<1‘,<m,£1(m,od2))m ! _ (1<1‘,<m,£o(m,od2))m ( )
+ (=)™ A (1-2X) +....
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Proof. By definition of g

9x(0) =0, (1) =1
and
INTj—10 @ Tjn) = gr(Tj-1,n) + (GA(T5:0) — g2 (Tj-1,0)) A, (6)

where x;_1, and x;, are consecutive elements from F,,. We can also rewrite
formula (6) in the following form

INTj—1,0 D Tjn) = gA(Tjn) = (90 (T5,n) — 92 (Tj-1,0)) (1 = N). (7)
We prove the proposition by induction on S(x). The equality

g)\(l/al) = )\al_l

follows from formula (6) immediately since 1/a; = 0® ... ®0d® 1. Suppose that
—_———
(a1 —1) times
formula (5) is proved for x = [0;aq,...,a,], then it is enough to prove it for
y=1[0;a1,...,am + 1] and for z = [0;aq,...,am — 1,2].
Let m be odd, then by applying formula (6) we get
@) = gx([0;a1,. .., am—1]®[0;a1,...,am])
=g ([0sa1,. .., am—1]) + Agr([0s a1, ..., am]) — ga([0s a1, ..., am—1])) (8)

Z a;—1 Z a;
— g)\([o; ai,... 7am71]) 4 \(<i<m, i=1(mod2)) (1 _ )\)(lgigm,izo(modZ)) )\7

and by applying formula (7) we get
9 (2) =g ([0;a1,...,an] & [0;a1,...,an — 1])

=g\ ([0;a1,...,am — 1)) — (L = M) (gx([0; a1, . . ., am — 1])

—ax([0;a1,...,am]) (9)
> ait(am—1)—1
_ g)\([o; a1, Uy — 1]) — \(1Si<m—1,i=1(mod2))

> a;
% (1 _ A)(lgigvn,izo(xnud2)) (1 _ /\)2.
For even m the proof is similar. |

Similar formula for k(z, «) was proved by A.Denjoy in [2].

5. Regular reduced continued fractions and the main result

Any real number x can be expressed uniquely in the form

1
T = [[bo;bl,bg,...,bl,,,,]] =bg —

b1 —



On arithmetical nature of Tichy-Uitz’s function

19
which is known as regular reduced continued fraction (ein reduziert-regalmaessiger
Kettenbruch [4], [7]).

For a rational number z € (0, 1) representation (10) takes the form:

For such = we denote L(xz) =b; + ...+ b;.

Similarly to the sequence F,, we define the sequence =,,:

E.c={0,13u| |J e,

1<kLn
where Op ={z € Q: L(x)=k+1}, k> 1.
We arrange elements of =, in the increasing order:

= = {0 = an < fg}n <...< fﬁEn,n

= 1).

The Theorem 1 stated below is the main result of present paper. It generalizes
formula (4) on regular reduced continued fractions.

Theorem 1. Function gy, where A = 7

V5—1
distributional function of the sequence =,,, that is

T 5— coincides with the

2 35
2 )

= €L
gr2(x) = lim He e = ¢ x}, x € (0,1).

= ; z € (0,1).

Our purpose is to prove that M(z) = g,2. Function M(z) is increasing as a

distribution function, so it is enough to prove that M(x) coincides with g,2(z) for
rational z, that is

Mz @ y) = M(2) + (M(y) — M(2)) 7°. (12)
for any two consecutive elements of =,, for any n.
We would like to note that in special case A = 72 formula (5) gives:

Gr2 ((E) —_ ,7_2a1—2 _ ,7_2a1+a2—2 4 7_2a1+a2+2a3—2 _

+ (—1)m Xt
where

1, if m is even,
O, =

2, if m is odd.
For rational x representation (13) is finite.

(13)
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6. Auxiliary results

Lemma 1. Let x be represented in the form (1) and in the form (11). To get the
set (b1,...,b;) from (ay,...,a,,) we should replace a; by
1. 2...2if i is odd (empty string if a; = 1).
a;—1
2. a; + 2 if ¢ is even and i # m.
3. a; +11if i is even and i = m.

Lemma 1 can be found in [7].

Lemma 2. For a number of elements in ©,, one has
ﬁ@1 =1, 10, =1, ﬁ@n+1 =10, + 160,_1.

It follows immediately from Lemma 2 that §0,, is the nth Fibonacci number
F,,, that is the nth member of the sequence

{Fobo,=1{1,1,2,3,528, ...}

in which the first two terms are equal 1, and each following term is the sum of the
two preceding ones. The Fibonacci numbers have a closed-form solution

() (=)

F, = NG

Proof of this fact can be found in [6].

Proof. We prove the lemma by induction. Since ©1 = {1/2}, O = {2/3}, then
the base of induction is true. Let us suppose that the lemma is true for £ < n and
x=[[1;b1,...,b1]] € Ony1, then by + ...+ b = n+ 2. There are two cases: either
by =2 or by > 2. In the first case by + ...+ b1 = n, so [[1;b1,...,b1—1]] € Opn_1,
in the second case by + ...+ b —1=n+1,s0 [[1;b1,...,b0, — 1]] € O,,. Thus we
have one-to-one correspondence between ©,,_1 U ©,, and 0,11, and so 0,11 =

40, + 1On_1. N

Definition 1. Let z,y, z be consecutive elements of =,,, y € ©,,. We denote the
mediant = ® y by 3 and the mediant y @ z by y".

Lemma 3. Let z,y, z be consecutive elements of Z,, y € O, then y' € 0,42,
y’“ S ®n+1-

Proof. Let y = [[1;b1,...,bs]]. Then y' = [[1;b1,...,bs,2]], v" = [[1;b1,...,
bs + 1]]. [ ]

Now let us construct an infinite tree D whose nodes are labeled by rationals
from (0,1). We identify nodes with rationals they are labeled by. The root is
labeled by 1/2. From the node 2 come two arrows: left arrow goes to z! and right
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Figure 1.

arrow goes to z”. Nodes of the tree D are partitioned into levels. 1/2 belongs to
the level 1. If 2 belongs to the level n, then 2" belongs to the level n + 1, and 2!
belongs to the level n + 2 (figure 1).
It follows from the construction of the tree that nodes from level n of D are
marked by numbers from ©,,. So x belongs to the level n if and only if x € ©,,.
We denote the subtree of D with root in the node # by D*) and the set of
nodes of D from level 1 to level n by D,,. Moreover, we denote the set of nodes of

D®) N D, by Dﬁlx). Note that there exist levels preserving isomorphism between
D and D®). If  belongs to the level n, then

4D5) = 4Dy 1.
Besides
D, =401 + 402+ ... +80, = F1 + Fo+ ...+ F, = Fj,40 — 1.
7. Proof of Theorem 1
We remind that it is enough to prove (12) for any consecutive elements of E,, =
and y.
To prove the equality (12) we consider the subtree D*®¥) of D. Note that

{geDr™ Uy =fceQ:z<e<y).

Consequently

HEES <<y} . tDW®Y
= = lim .

ﬁ*—*m m—0o0 ﬁDm

M(y) — M(z) = lim

m— 00
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On the other hand

HE€Sm z<é<azoy) . DR

Mz @y) = M) = lim = A
Let 2 © y € O, then (z ©y)! € O442. Therefore
_ (zdy)"
M(z ®y) - M(@) = lim iDm = lim D k-1 = lim Fnks1 =72 n

M(y) = M(z) m—oeo ijﬁff@y) m—00 §Dp_jp1 m—00 Fy_pys
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