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COMPARING L(s,x) WITH ITS TRUNCATED EULER PRODUCT
AND GENERALIZATION

OLIVIER RAMARE

Abstract: We show that any L-function attached to a non-exceptionnal Hecke Grossencharak-
ter Z may be approximated by a truncated Euler product when s lies near the line 8s = 1. This
leads to some refined bounds on L(s, E).
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1. Introduction and results

We first need to fix some terminology. We select a number field K/Q be a number
field of degree d and discriminant A. We denote its norm by N, as a shortcut to
Ng/q. We shall consider Hecke Grossencharakters = to (finite) ideal f, of norm g,
and associated with some finite set of infinite places. The conductor § being fixed,
the main Theorem of [5] tells us there exists an absolute constant C' > 0 such that
no L-function L(s,E) has a zero p in the region

C

Rp>1-— 1
P Log max(gA, gA|Ss]) S

except at most one such L-function; this potential exception is associated to a real
valued character and may have at most one real zero 3 in this region. We refer to
this hypothetical character as the exceptional character and term the remaining
ones as being non-exceptional. See also [11]. In the case of Dirichlet characters,
ie. K= Q, we know from [13] that we may take C = 1/6.3958.

Theorem 1. Let Z be a non-exceptional Hecke Grossencharacter with (finite)
conductor § of norm q¢ > 1. We have

- - s\ —1
L(s,2)= ] (1-Z(k)/Np°)
Np<qAls|
when 1 > (Rs—1) Log(qA(2+]s|)) = —C/2, the constant C being the one from (1).
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The restriction to non-exceptional characters can be dispensed with if we
assume |Ss| > 1/Log(¢A). Under the Riemann hypothesis for the implied
L-function, we can restrict the above product to p < LogLog(gA|s|). As trivial
consequences, we find via (a generalization of) Mertens theorems (see (9) below)
that, under these conditions

q/9(q) — 9(q)

Tog(gAls]) < |L(s,B)| < . Log(qAls]). (2)
The upper bound is classical in the case of Dirichlet characters but improves
considerably in the general case on the one given in Theorem 5 of [17], albeit
being less explicit. The factor ¢/¢(q) in the lower one appears to be novel, even in
the case of Dirichlet characters. For instance, it supersedes the one of Corollary 2
of [11] by the factor ¢/¢(q) and by the fact that it is valid for any non-exceptional
character. From a historical viewpoint, [14] shows that |L(1,x)| > 1/ Log® ¢ for
non-real characters, and improves this in |L(1, x)| > 1/ Logg in [15]. The proof
is somewhat more delicate than expected.

Note also (by again invoking Mertens’ theorems) that we can restrict the prod-
uct to p < (¢|s|)® for any positive a.

Granville & Soundararajan investigated in [6] (see also [7]) the distribution
of values of L(1,x) (x being a Dirichlet character) via an approximation by an
Euler product and in particular,they show in their Proposition 1 that the Euler
product may be truncated to p < Loggq for all but O(q'~2/T°elogd) characters.
Note however that they aim at an exact approximation of L(1,Z) while we only
seek to recover its order of magnitude. For L(1, x), see also [8], [16] and [1].

Our main ingredient is the following Lemma of independent interest.

Lemma 1. Under the conditions above, |L'/L(s,Z)| < Log(gA(2+ |s])).

In this Lemma also, the restriction to non-exceptional characters can be dis-
pensed with if we assume |Ss| > 1/Log(gA). The inequality —RL'/L(s,=) <
cLog(gA(2 + |s])) when Rs > 1 is a classical element of the proof of the zero-free
region for L(-,=) (see [4, chapter 14] for instance); by using his local method,
Landau shows in [15, page 30| that RL'/L(s,E) < ¢Log(qA(2 4+ |s|)). The above
Lemma shows that much more is true and that only invoking a one-sided bound
for the real part does not lead to any improvement.

Under the Riemann hypothesis for L(-,Z), the upper bound becomes
Log Log(qA(2 + |s])).

Generalization

Like many properties of Dirichlet L-functions, this one generalizes to a wide class
of L-functions. We shall not describe such a general context but refer the reader to
chapter 5 of [12]. We work under the conditions of their Theorem 5.10: L(f, s) is
an L-function fo degree d such that the Rankin-Selberg convolutions L(f® f, s) and
L(f® f,s) exist, the latter having a simple pole at s = 1 while the former is entire
when f # f. We further suppose that |a;(p)[? < p/2 at the ramified primes.
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The notion of exceptional character is more complicated to define in a general
context, since it requires a way of defining families of L-functions. Assuming that
our candidate has no real zero in the classical zero-free region, we find that

Lifs)= J[ Q=ealpp™) " (1 —aalp)p™)" (3)
p<a(f.s)

where the analytical conductor is defined there in equation (5.7).

Notations

We need some names for our variables, and the easiest path is to keep a fixed point
so = 0g +1tg, which will be s in the Theorem, and a running s = o +it. We define

L = Log(qA(|so| +2))- (4)

The point s1 = 01 + ity with 07 = 1 + 1/L will be of special interest.

2. Some material on primes in number fields

We can use the prime number Theorem for K/Q, but we prefer to sketch an ele-
mentary approach to the classical results we need. Such material is also contained
in [18]. Assume we have an asymptotic estimate:

> 1=cX + O(X/Log(2X)) (5)
Na<X

where a ranges the integral ideals of K. Such an estimate is linked with the fact
that the Dedekind zeta function (x of K has a simple pole at s = 1. In particular
co is the residue of this function at s = 1. The results we seek also hold with the
error term being simply o(X), but our proof would require a modification. From
this we deduce that

Y LogNa=coXLog X + O(X). (6)
Na<X

Writing (i /Ck(s) = >-, Ax(a)/Na® we find that 3, Ax(b) = LogNa and plug-
ging this into (6), we get

coX Log X + O(X) = Z Ax(b) Z 1—x Z Ak (b)

Nb<X Nc¢<X/Nb Nb<X

by appealing to (5), from which we infer

3 Alﬂ\j(:) — Log X + O(1). (1)
Nb<X
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Using the expression of (x as an Euler product, we find that Ag(b) is zero except
when b is a power of a prime p, at which point it takes the value Log Np. This
finally leads us to the estimate

3 L°§Np — Log X + O(1). (8)
Np<X

We infer 3\, x 1/Np = LogLog X + O(1) and thus

I[ @=1/Np)=<1/LogX (9)

Np<X

which is enough for our purpose. This is not what is referred to as Mertens’
Theorem, since we do not have a proper asymptotic, but these estimates are enough
for our purpose. We refer the reader to [3] for related material on explicit Mertens’
Theorem in abelian number fields.

3. Proof of Lemma 1

We start from Linnik’s density lemma which the reader may find in [5, Lemma 7]
or in [2, chapter 6] in case of Dirichlet characters. We define n(1 +it,r) to be the
number of zeros p of L(s, x) in the disc |p — i — it| < r. We have

LI
L

(3,5):_5E+ > LJFO(,C) (]s —1—ito| < 1/4), (10)

s—1 - s—p
|p—1—ito|<1/3

where 0= is 1 if = is principal, and 0 otherwise. This is for instance Lemma 6
of [5]; In case of Dirichlet characters, this is (4) of chapter 16 of [4], and in a general
context (5.28) of [12]. These two last proofs relie on a global representation of L' /L,
while Fogel’s one follows the local method of Landau. The latest refinements of
this method may be found in [10] and [9].

One of the consequences of (10) is Linnik’s density lemma:
n(l+idt,r) <rlL+1. (11)

Apply (10) to s = o + ity with o > 1 — C/2L and to s; and substract. For any
zero p in the summation above, we have |s — p| > |1 + ity — p|/2 and thus, with
Ty = 2k/£



Comparing L(s, x) with its truncated Euler product and generalization 149

r, _. L, 6 _
f(sv:) - f(shi)

4|lo — o1
< - -
<X 1+ itg — p|? TOW

[p—1—ito|<1/3

<lo-al Y > o

r
0<k<Log £ 26 |p—1—ito|L<2k+1 K

<lo-oi| Y M+@(£)

D)
0<k<Log L "k
L o1 ,
< |o — 1] Z —+ = | +0L) <o —o1|L7+ L.
o<k<togc Nk Tk

Notice furthermore that |L'/L(s1,Z)| < —('/{(01) < L, so that, when ¢ < 1+ L,
the above inequality reduces to

L/

—(55)| < L. (12)

This ends the proof in case of non-exceptional characters. In case of an excep-
tional character, we simply consider separately in (10) its contribution, namely
1/(s — B) which is again O(L). Under the Riemann hypothesis, we simply invoke
Theorem 5.17 of [12].

4. Proof of the Theorem

Define R = gA|sg|. We check that, on using (8),

L Z(p) LogNp
—(8,2) + ———— | <K L+LogR<K L 13
D+ 3 ST : (13)

when s = o +itg and 1 > (0 — 1)L > —C/2. We integrate (12) between s; and sg
and find that

|Log Lr(so,Z) — Log Lr(s1,E)| < 1 (14)
with Lr(s,Z) = [[xpsr(1 —E(p)/Np®)~". Next we note that

|Lr(s1,5)| H (1-Np™)"'<exp )  Np~*
p>R

Np>R

< /OO dt /OC dv
ex —— =ex —_—
b r torLogt b po1—1 V2 Logwv

by setting v = 171, and where we have again invoked (8). The last quantity
is bounded since so is R°*~!. Considering only real parts in (14), the Theorem
readily follows.



150

Olivier Ramaré

References

(1]
2]
3]
4]
5]
[6]

17l

18]

19]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

P. Barrucand, S. Louboutin, Minoration au point 1 des fonctions L attachées
a des caractéres de Dirichlet, Colloq. Math., 65(2) (1993), 301-306.

E. Bombieri, Le grand crible dans la théorie analytique des mombres,
Astérisque, 18 (1987), 103pp.

O. Bordellés, An explicit Mertens’ type inequality for arithmetic progressions,
J. Inequal. Pure Appl. Math., 6(3) (2005), paper no 67 (10p).

H. Davenport, Multiplicative Number Theory, Graduate texts in Mathemat-
ics, Springer-Verlag, third edition edition, 2000.

E. Fogels, On the zeros of Hecke’s L-functions, I, Acta Arith., 7 (1962),
87-106.

A. Granville, K. Soundararajan, The distribution of values of L(1,x), Geom.
Func. Anal., 13(5) (2003), 992-1028. http://www.math.uga.edu/and-
rew/Postscript /L1chi.ps.

A. Granville, K. Soundararajan, Errata to: The distribution of values of
L(1,x), in GAFA 13:5 (2003). Geom. Func. Anal., 14(1) (2004), 245-246.
K. Hardy, R.H. Hudson, D. Richman, K.S. Williams, Determination of all
imaginary cyclic quartic fields with class number 2, Trans. Amer. Math.
Soc., 311(1) (1989), 1-55.

D.R. Heath-Brown. Zero-free regions for Dirichlet L-functions and the least
prime in an arithmetic progression, Proc. London Math. Soc., IIT Ser., 64(2)
(1992), 265-338.

D.R. Heath-Brown, Zero-free regions of ((s) and L(s,x), In E. (ed.) et al.
Bombieri, editor, Proceedings of the Amalfi conference on analytic number
theory, pages 195-200, Maiori, Amalfi, Italy, from 25 to 29 September, 1989.
Salerno: Universita di Salerno,, 1992.

J. Hinz, M. Lodemann, On Siegel Zeros of Hecke-Landau Zeta-Functions.
Monat. Math. 118 (1994), 231-248.

H. Iwaniec, E. Kowalski, Analytic number theory, American Mathematical So-
ciety Colloquium Publications, American Mathematical Society, Providence,
RI, 2004. xii+615 pp.

H. Kadiri, An explicit zero-free region for the Dirichlet L-functions, To appear
in J. Number Theory, 2009.

E. Landau, Uber das Nichtverschwinden der Dirichletschen Reihen, welche
komplexen Charakteren entsprechen, Math. Ann., 70(1) (1910), 69-78.

E. Landau, Uber Dirichletsche Reihen mit komplexzen Charakteren
entsprechen, J. f. M., 157 (1926), 26-32.

S. Louboutin, Minoration au point 1 des fonctions L et détermination des
corps sextiques abéliens totalement imaginaires principaux, Acta Arith.,
62(2) (1992), 109-124.

H. Rademacher, On the Phragmén-Lindeldf theorem and some applications,
Math. Z., 72 (1959), 192-204.

M. Rosen, A generalization of Mertens’ theorem, J. Ramanujan Math. Soc.,
14(1 (1999), 1-19.



Comparing L(s, x) with its truncated Euler product and generalization 151

Address: Laboratoire CNRS Paul Painlevé, 56 655 Villeneuve d’ascq, France.
E-mail: ramare@math.univ-lillel.fr
Received: 17 April 2009






