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ON SOME DIOPHANTINE RESULTS RELATED TO HERMITE
POLYNOMIALS

Csaba Rakaczki

Abstract: In this paper we prove that the shifted Hermite polynomial Hn(x) + b has at least
three simple zeros for each complex number b, provided that n > 7.
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1. Introduction

There are several mathematicians who investigated the classical diophantine equa-
tion

P (x) = G(y) in unknowns x, y ∈ Z, (1)

with given polynomials P (x), G(x) ∈ Q[x].
Bilu and Tichy in [2] completely characterized those polynomials P (x), G(x) ∈

Q[x] for which the equation (1) has infinitely many integer solutions. Their result
is ineffective so it does not give an algorithm to find all the solutions. Using the
criterion of Bilu and Tichy [2] Stoll [9] as well as Stoll and Tichy [10] studied
equation (1) in the special case when the polynomial P (x) and Q(x) are different
shifted Hermite polynomials. More precisely, they proved the following theorems.

Let A, B, C denote arbitrary rational numbers with AB 6= 0. Stoll and Tichy
[10] proved that

Theorem A (Stoll and Tichy). Let m > n > 4 arbitrary rational integers.
Then the number of integral (x, y) satisfying

AHm(x) + BHn(y) = C, (2)

is finite, where Hn(x) denotes the nth Hermite polynomial which is defined below.
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For "small cases" Stoll [9] showed that

Theorem B (Stoll). The diophantine equation

AHm(x) + BH2(y) = C (3)

with m > 3 only admit finitely many integral solutions (x, y) with exception of

m = 4,
C

A
− B

2A
∈

{
−3

2
,
2
3

}
.

Moreover, the solutions satisfy max (|x|, |y|) < C = C(A,B, C,m).

The Hermite polynomials Hn(x) are defined by the identity

e2tx−t2 =
∞∑

n=0

Hn(x)
n!

tn.

The Hermite polynomials play important role in numerical analysis, analytic num-
ber theory and physics (see [1], [4]). For example, the Hermite function of order n

Ψn(x) = e−
1
2 x2

Hn(x)

occurs in the wave mechanical treatment of the harmonic oscillator [6]. However,
this is a very simple mechanical system of which the analysis of its properties is of
great importance because of its application to the quantum theory of radiation.

In the present paper we investigate the multiplicities of the zeros of shifted
Hermite polynomials Hn(x) + b, where b is a complex number. We prove among
other things that for given n > 7, the shifted Hermite polynomial Hn(x) + b has
at least three simple zeros for arbitrary complex number b. As an application we
will give an effective finiteness theorem related to the diophantine equation

F (Hn(x)) = H2(y), (4)

where F (x) is a polynomial with algebraic integer coefficients.

2. Results

A polynomial F (x) with complex coefficients will be called non-degenerate if it has
at least three zeros of odd multiplicities and degenerate otherwise.

For n > 1, Ln denotes the cardinality of the set of nonzero complex numbers
b for which the nth shifted Hermite polynomial Hn(x) + b is degenerate.

Theorem 1. We have L3 = L4 = L6 = 2. Further, if n > 7 then Ln = 0.

The next result is a generalization of Theorem B. This is an application of our
first theorem and Lemma 5 of Brindza [3].
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Theorem 2. Let K be an algebraic number field with ring of integers OK, and let
F (x) + 2 ∈ OK[x] be a non-square polynomial. Then the equation

F (Hn(x)) = H2(y) (5)

has only finitely many solutions x, y ∈ OK which can be effectively determined,
provided that n > 7.

3. Auxiliary results

The following are well-known identities of Hermite polynomials (see [7], Chap-
ter 11):

Lemma 1. For a positive integer n, Hn(x) denotes the nth Hermite polynomial.
Then we have

(i) H ′
n(x) = 2nHn−1(x).

(ii) H2n+1(0) = 0, H ′
2n(0) = 0.

(iii) Hn(x) = 2nxn + πn−2(x), where πn−2(x) is a polynomial with degree n− 2.
(iv) H ′′

n(x)− 2xH ′
n(x) + 2nHn(x) = 0.

(v) Hn(x) = 2xHn−1(x)−H ′
n−1(x).

(vi) Hn(−x) = (−1)nHn(x).
(vii) H0(x) = 1,H1(x) = 2x,H2(x) = 4x2 − 2.
(viii) Hn(x) has only simple zeros.

To prove our theorems we need some lemmas.

Lemma 2 (Stoll). Let n > 7. Then Hn(x) + δ has at least three simple roots for
δ ∈ Q.

We remark that one can deduce from the proof of the Lemma 3.5 of Stoll [9]
that the assertion of his result is also true if δ ∈ R. In fact, our first theorem is an
extension of Lemma 2 to the case when δ is a complex number.

Lemma 3. If n is a rational integer with n > 5 and a, b are complex numbers
with b 6= 0 then the polynomial (Hn(x) + a)2 + b is non-degenerate.

Proof. On supposing the contrary we have

(Hn(x) + a)2 + b = f2(x) (6)

or
(Hn(x) + a)2 + b = g(x)f2(x), (7)

for some f(x), g(x) ∈ C[x], where g(x) is a quadratic polynomial with nonzero
discriminant. From (6) we obtain that

2(Hn(x) + a)H ′
n(x) = 2f(x)f ′(x). (8)
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However, since (f(x), Hn(x) + a) = 1 we obtain that f(x)|H ′
n(x), but then n =

deg f(x) 6 deg H ′
n(x) = n− 1 which is impossible.

If we differentiate (7), we have

2(Hn(x)+a)H ′
n(x) = 2g(x)f(x)f ′(x)+g′(x)f2(x) = f(x)(2g(x)f ′(x)+g′(x)f(x)).

Since b 6= 0, we obtain from (7) that (f(x)g(x), Hn(x) + a) = 1, so

f(x)|H ′
n(x) and Hn(x) + a|2g(x)f ′(x) + g′(x)f(x).

It is easy to see that deg f(x) = n− 1, therefore

H ′
n(x) = c1f(x) and g′(x)f(x) + 2g(x)f ′(x) = c2(Hn(x) + a), (9)

where c1, c2 are nonzero complex numbers. From (9) we can infer by induction
that

c2H
(i)
n (x) = i2g′′(x)f (i−1)(x) + (2i + 1)g′(x)f (i)(x) + 2g(x)f (i+1)(x) (10)

and
f (i)(x) =

1
c1

H(i+1)
n (x), i = 1, 2, . . . . (11)

We can assume that the polynomial g(x) is monic. Let a0 denote the leading
coefficient of polynomial f(x). If we compare the leading coefficients in (9) we get
that

2nn = c1a0 and c22n = 2na0.

It is easy to see from the above that

c1c2 = 2n2. (12)

It is not to hard to obtain from (i) by induction that

H(i)
n (x) = 2in(n− 1) · · · (n− (i− 1))Hn−i(x), i = 1, 2, . . . , n. (13)

Substituting i = n − 1 and x = 0 into (10) and applying (vii), (13) and (11) we
have that

0 = (2n− 1)g′(0)
1
c1

2nn!

hence
g′(0) = 0. (14)

After this, if we substitute i = n− 2 and x = 0 into the equation (10) and use the
expressions (vii), (11), (13) and (12) we can infer that g(0) = 1− n and so

g(x) = x2 + 1− n. (15)

Thus we get from (9) that

1
c1

2xH ′
n(x) +

2
c1

(x2 + 1− n)H ′′
n(x) = c2(Hn(x) + a).
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Using that c1c2 = 2n2 and H ′′
n(x) = 2xH ′

n(x) − 2nHn(x) we obtain after some
computation that

(
2nx2 + 2n− n2

)
Hn(x) + an2 =

(
2x3 + 3x− 2nx

)
H ′

n(x). (16)

If we differentiate (16) we can deduce by (i) that

4nxHn(x) + 2n
(
(2n− 6)x2 + 4n− n2 − 3

)
Hn−1(x)

= 4n(n− 1)
(
2x3 + 3x− 2nx

)
Hn−2(x). (17)

For odd values of n we substitute x = 0 into (17) and we obtain, by (ii), that

2n
(
4n− n2 − 3

)
Hn−1(0) = 0.

Since now Hn−1(0) 6= 0 we can see that 4n − n2 − 3 = 0, that is n = 1 or n = 3.
Hence our assertion is true for odd n > 5. In case when n is even, differentiating
(17) and using (v) we have

4nxH ′
n(x) + 4n

[
2xHn−1(x)−H ′

n−1(x)
]

+ 4n(2n− 6)xHn−1(x) + 2n
(
(2n− 6)x2 + 4n− n2 − 3

)
H ′

n−1(x) (18)

= 4n(n− 1)(6x2 + 3− 2n)Hn−2(x) + 4n(n− 1)
(
2x3 + 3x− 2nx

)
H ′

n−2(x).

From Lemma 1 we know that H ′
2n(0) = H2n+1(0) = 0. Whence, if we substitute

x = 0 into (18) we have

(−2n3 + 8n2 − 10n)H ′
n−1(0) = 4n(n− 1)(3− 2n)Hn−2(0). (19)

Using that H ′
n−1(x) = 2(n− 1)Hn−2(x) and Hn−2(0) 6= 0 we get

n(n− 2)(n− 4) = 0. (20)
¥

In an earlier paper [8] we proved the following lemma.

Lemma 4. Let f(x) be a polynomial with complex coefficients. If deg f(x) > 5
then there are at most two complex numbers b for which the polynomial f(x) + b
is degenerate.

A superelliptic equation is of the form f(x) = ym, where f(x) is a polynomial
of degree > 3 with integer or algebraic integer coefficients and m ∈ N. LeVeque
[5] gave a criterion for superelliptic equations to have only finitely many integer
solutions. LeVeque’s theorem is ineffective in the sense that the proof does not
provide any algorithm to compute the solutions. Later, Brindza generalized this
result and gave an effective upper bound for the size of solutions of the equation
f(x) = bym.

Let K be an algebraic number field with ring of integers OK.
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Lemma 5 (Brindza, [3]). Let

f(x) = a0x
N + · · ·+ aN = a0

n∏

i=1

(x− αi)ri

be a polynomial in OK[x] with a0 6= 0 and αi 6= αj for i 6= j. Further, let b ∈ OK,
m > 1 and qi = m/(m, ri), i = 1, 2, · · · , n. Suppose that (q1, q2, · · · , qn) is not a
permutation of (q, 1, · · · , 1) or (2, 2, 1, · · · , 1), where q > 1. Then the equation

f(x) = bym in x, y ∈ OK

has only finitely many solutions and all these can be effectively determined.

An easy consequence of this result is that the hyperelliptic equation

f(x) = y2 in x, y ∈ OK

has only finitely many solutions x, y provided that the polynomial f(x) is non-
degenerated.

4. Proofs

Proof of Theorem 1. First of all, we remark that the discriminant of the poly-
nomial Hn(x) + b is a polynomial in b of degree n− 1. Hence Hn(x) + b has only
simple zeros apart from at most n− 1 distinct values of b.

For values of n < 7 we can use the above observation. First assume that n > 7
is an odd integer and there is a nonzero value b for which the polynomial Hn(x)+b
is degenerate. Then the polynomial Hn(−x) + b = −Hn(x) + b is also degenerate
by (vi). It is easy to see that the polynomial

(Hn(x) + b)(Hn(x)− b) = (Hn(x))2 − b2 (21)

is also degenerate. However, from Lemma 3 we obtain that it is possible only if
b = 0. But this is a contradiction.

Now suppose that n is even. From Lemma 4 we know that there are at most
two complex numbers for which the shifted Hermite polynomials are degenerate.
Suppose that b1 and b2 are two distinct complex numbers for which Hn(x) + bi

are degenerate i = 1, 2. In this case there are the following four possibilities:

(a) Hn(x) + b1 = f1(x)2 and Hn(x) + b2 = f2(x)2,
(b) Hn(x) + b1 = f1(x)2 and Hn(x) + b2 = g2(x)f2(x)2,
(c) Hn(x) + b1 = g1(x)f1(x)2 and Hn(x) + b2 = f2(x)2,
(d) Hn(x) + b1 = g1(x)f1(x)2 and Hn(x) + b2 = g2(x)f2(x)2,

where f1(x), f2(x) ∈ C[x] and the polynomials g1(x), g2(x) ∈ C[x] are quadratic
polynomials with nonzero discriminant. Further, g1(x), g2(x), f1(x), f2(x) are
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pairwise coprime polynomials in C[x]. Study the cases (a), (b) and (c) we can
infer that the polynomial

(Hn(x) + b1)(Hn(x) + b2) =
(

Hn(x) +
b1 + b2

2

)2

−
(

b1 + b2

2

)2

+ b1b2

is degenerate. However, it is possible only if that ((b1 + b2)/2)2 − b1b2 = 0 and so
b1 = b2. Investigate now the last case (d). We can suppose that

g1(x) = (x− α1)(x− α2) and f1(x) = 2n/2

n/2−1∏

i=1

(x− βi) (22)

and

g2(x) = (x− γ1)(x− γ2) and f2(x) = 2n/2

n/2−1∏

i=1

(x− δi), (23)

where αj , γj , βi, δi ∈ C, j = 1, 2, i = 1, . . . , n/2− 1 and α1 6= α2, γ1 6= γ2.
Applying (vi) we get that

(x− α1)(x− α2)
n/2−1∏

i=1

(x− βi)2 = (x + α1)(x + α2)
n/2−1∏

i=1

(x + βi)2. (24)

It follows from (24) that

α1, α2 ∈
{−α1,−α2,−β1, . . . ,−βn/2−1

}
.

If α1 = −βj for some j ∈ {1, 2, . . . , n/2− 1}, then x− α1 = x + βj and

(x− α2)
n/2−1∏

i=1

(x− βi)2 = (x + α1)(x + α2)(x + βj)
n/2−1∏

i=1,i6=j

(x + βi)2. (25)

Hence −βj ∈
{
α2, β1, . . . , βn/2−1

}
. When −βj = α2 then α1 = α2 which contra-

dicts our assumption that g1(x) has non-zero discriminant. Thus α1 = −βj = βk

for some k ∈ {1, . . . , n/2− 1}. But, then (g1(x), f1(x)) 6= 1 and so H ′
n(x) =

2nHn−1(x) has a multiple root, however we know that Hn−1(x) has only simple
zeros. We obtain from the above that

α1, α2 ∈ {−α1,−α2} .

If α1 = −α1 then α2 = −α2 and α1 = α2 = 0 which is impossible. So we get

α1 + α2 = 0 and βj ∈
{−β1, . . . ,−βn/2−1

}
, j = 1, . . . , n/2− 1. (26)

Using the same argument as above we can infer that

γ1 + γ2 = 0 and δj ∈
{−δ1, . . . ,−δn/2−1

}
, j = 1, . . . , n/2− 1. (27)
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If n/2−1 is odd then this implies that 0 ∈ {β1, β2, . . . βn/2−1}
⋂ {

δ1, . . . , δn/2−1

}
.

But it is impossible because then f1(0) = f2(0) = 0 and so b1 = b2.
Suppose that n/2− 1 is even. Then f1(0)f2(0) 6= 0. From (d) we obtain that

(Hn(x) + a)2 + b = g(x)f(x)2, (28)

where

a =
b1 + b2

2
, b = b1b2 −

(
b1 + b2

2

)2

, f(x) = f1(x)f2(x)

and
g(x) = (x2 + c1)(x2 + c2) (29)

where c1 = α1α2, c2 = γ1γ2. It is not too hard to see from (28) that

2 (Hn(x) + a) 2nHn−1(x) = f(x) (g′(x)f(x) + 2g(x)f ′(x)) . (30)

Since (Hn(x) + a, f(x)) = 1, we have f(x)|2Hn−1(x). This fact and property (iii)
yield that

2Hn−1(x) = xf(x). (31)

Substituting this expression into (30) we have

2n (Hn(x) + a)x = g′(x)f(x) + 2g(x)f ′(x). (32)

After the i− 1-th differentiation (i > 4) from (32) we obtain that

(i− 1)2i−1n2(n− 1) · · · (n− (i− 3))Hn−(i−2)(x)

+2in2(n− 1) · · · (n− (i− 2))xHn−(i−1)(x) =
4∑

j=0

aijg
(j)(x)f (i−j)(x), (33)

where

ai0 = 2, ai1 = 2i− 1, ai2 = (i− 1)2, ai3 =
(i− 1)(i− 2)(2i− 3)

6

and

ai4 =
(i− 1)(i− 2)2(i− 3)

12
.

One can obtain from (i) and (31) by induction that

2i+1(n− 1)(n− 2) · · · (n− i)Hn−(i+1)(x)

= if (i−1)(x) + xf (i)(x), i = 1, 2, . . . , n− 2. (34)

If we substitute x = 0 into (34) we can deduce that

f (i) (0) =

{
0, if i is odd,
2i+2

i+1 (n− 1)(n− 2) · · · (n− (i + 1))Hn−(i+2) (0) , if i is even.
(35)
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Substitute i = n, n−2, n−4 and x = 0 into (33). Using (35), (29) and deg f(x) =
n− 2 we obtain that

(n− 1)2n−1n2(n− 1)(n− 2) · · · 3H2(0)

= (n− 1)22(c1 + c2)
2n

n− 1
(n− 1)(n− 2) · · · 2

+ 2(n− 1)(n− 2)2(n− 3)
2n−2

n− 3
(n− 1)(n− 2) · · · 3H2(0),

(36)

(n− 3)2n−3n2(n− 1)(n− 2) · · · 5H4(0)

= 2c1c2
2n

n− 1
(n− 1)(n− 2) · · · 2

+ (n− 3)22(c1 + c2)
2n−2

n− 3
(n− 1)(n− 2) · · · 3H2(0)

+ 2(n− 3)(n− 4)2(n− 5)
2n−4

n− 5
(n− 1)(n− 2) · · · 5H4 (0) ,

(37)

(n− 5)2n−5n2(n− 1)(n− 2) · · · 7H6 (0)

= 2c1c2
2n−2

n− 3
(n− 1)(n− 2) · · · 3H2 (0)

+ (n− 5)22(c1 + c2)
2n−4

n− 5
(n− 1)(n− 2) · · · 5H4 (0)

+ 2(n− 5)(n− 6)2(n− 7)
2n−6

n− 7
(n− 1)(n− 2) · · · 7H6 (0) .

(38)

It is well known that

H2(0) = −2, H4(0) = 12, H6(0) = −120.

We compute from (36) and (37) that

c1 + c2 = 1− n,

c1c2 = − (n− 1)(n− 3)
4

.

Using these expressions, from (38) we can infer the following contradiction:

96 = 0.

Consequently, there is at most one complex number for which the polynomial
Hn(x) + b is degenerate when n is even. However, if b is a non-real complex
number for which Hn(x)+b is degenerate then Hn(x)+b is also degenerate, where
b is the complex conjugate of b. Hence b must be a real number. But from Lemma
2 we know that in this case the polynomial Hn(x) + b has at least three simple
roots. ¥
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Proof of Theorem 2. Let K be an algebraic number field with ring of integers
OK and let F (x) + 2 ∈ OK[x] be a non-square polynomial. Thus we can write the
following

F (x) + 2 =
t∏

i=1

(x− αi)ki , (39)

where some exponent ki is odd. Since Hn(x) + b is non-degenerate for every
complex number b, provided that n > 7, by Theorem 1 the polynomial

F (Hn(x)) + 2 =
t∏

i=1

(Hn(x)− αi)ki

is also non-degenerate. From equation

F (Hn(x)) = H2(y) = 4y2 − 2 (40)

we can deduce that
F (Hn(x)) + 2 = (2y)2.

Now the assertion follows from Lemma 5. ¥
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