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Abstract:We study local boundedness of the local minimizers of functionals with (p, q)-growth
on metric measure spaces equipped with a doubling measure and supporting a weak Poincaré
inequality. The metric space is not required to be complete.
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1. Introduction

Let Ω ⊂ Rn be an open set and let us consider the functional
∫

Ω

F (x,Du(x))dx, (1.1)

where F : Ω×Rn → R is a Carathéodory function satisfying the growth condition

c1|z|p 6 F (x, z) 6 c2(1 + |z|q) (1.2)

for 1 < p 6 q. In the case p = q it is well known that minimizers of the
p–Dirichlet integral are locally Hölder continuous. One of the possible methods to
prove this fact is to use the Moser iteration; see [20, 21]. The iteration shows that
the minimizers satisfy the Harnack inequality, which in turn implies the Hölder
continuity. Another approach, by De Giorgi, leads directly to the Hölder continu-
ity of the minimizers, and the Harnack inequality can be obtained as a corollary;
see, for example, [6].

The study of the case p < q, also called the nonstandard case, was initiated
by Marcellini and his series of papers [16, 17, 18], where he studied regularity of
solutions of elliptic equations and variational problems with (p, q)–growth condi-
tions. For instance, he proved the local Hölder continuity of minimizers under an
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additional assumption on the partial derivatives of minimizers. Furthermore, in
the case n > 2, he proved the local Lipschitz continuity for a weak solution that
belongs to W 1,q(Ω). Local boundedness of the minimizers has been proved, for
example, by Moscariello and Nania in [19].

In most of the papers that deal with non–standard growth conditions is as-
sumed that p and q are close to each other. Indeed, there are counterexamples
which show that minimizers of (1.1) may not be locally bounded if p and q are
far apart; see, for example, [17]. On the other hand, the condition q < p? = np

n−p

ensures that the minimizers are locally bounded; see [19].
In the context of a metric measure space, where the measure is doubling and

the space supports a weak Poincaré inequality, the p–Dirichlet integral has been
widely studied. Kinnunen and Shanmugalingam, [14], adapted De Giorgi’s method
to this context and proved that quasiminimizers of the p–Dirichlet integral satisfy
a weak Harnack inequality, the strong maximum principle, and are locally Hölder
continuous. Björn and Marola, [3], applied the Moser iteration technique to show
that a weak Harnack holds for quasiminimizers of the p–Dirichlet integral.

However, it seems to us that the case with non–standard growth conditions has
not yet been studied in the metric setting. The purpose of this note is to prove
local boundedness of the minimizers of variational integrals of the type (1.1), where
the function F satisfies (1.2). Our approach is based on a De Giorgi type argument
and we follow the ideas of [19].

Finally, we observe that the right–hand side of (1.2) is not needed in the proof of
the existence of local minimizers of (1.1). Indeed, direct methods of the calculus of
variations are also available in the metric space setting. The lower semicontinuity
property of the variational integral can be achieved with the assumption that F
is convex in the gradient variable. On the other hand, the left–hand side of (1.2)
guarantees coercivity.

Acknowledgements The authors are grateful to the anonymous referee for
his/her valuable comments and observations.

2. Preliminaries

2.1. General context

Let (X, d) be a metric space equipped with a Borel regular measure µ. In a metric
measure space the concept of an upper gradient serves as a substitute for the
Sobolev gradient. Suppose that 1 6 p < ∞ and let u be a real–valued function
in X. A nonnegative Borel measurable function g is said to be a p–weak upper
gradient of u if we have

|u(γ(a))− u(γ(b))| 6
∫

γ

g ds (2.1)

for p–almost every rectifiable path γ : [a, b] → X. In other words (2.1) holds for all
paths in X except for a family of paths which is of zero p–modulus. We recall also
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that a path γ is rectifiable if length(γ) < ∞. The reader may see, for example, [5],
[11] and [22] for a discussion of upper gradients and [13] or [22] for the definition
of p–modulus and discussion of paths.

The Sobolev space on a metric measure space, called the Newtonian space
N1,p(X) can now be defined as a collection of equivalence classes of p–integrable
functions with p–weak integrable upper gradients. The precise definition and fur-
ther information can be found in various references, and we mention, for exam-
ple, [22]. If E is a measurable set in X, the Newtonian space with zero boundary
values N1,p

0 (E) can be defined as the collection of functions in N1,p(X) that are
zero outside E. For this and equivalent definitions see, for example, [1] or [22, 23].

For 1 6 p < ∞ every function u that has a p–integrable p–weak upper gradient
has a minimal p–integrable p–weak upper gradient in X, denoted gu, in the sense
that for any other p–integrable p–weak upper gradient g of u we have gu 6 g µ–a.e.
in X. Thus Newtonian functions can be used to study the p–Dirichlet integral

∫

Ω

gu dµ, (2.2)

and moreover functionals of the type (1.1).
A reader not familiar with the metric space setting and Newtonian spaces may

see, for example, [2], [5], [8, 9], [11, 12] or [22, 23] for details. Potential theory
on noncomplete spaces has been studied in [3], and in parts of [4] and [14]. We
present here the main assumptions and properties only briefly.

Our notation is standard. Throughout the paper we assume that the measure
of every nonempty open set is positive and that the measure of every bounded set
is finite. The measure µ is assumed to be doubling, in other words there exists a
constant cd > 1 such that

µ(B(x, 2r)) 6 cdµ(B(x, r))

for every x in X and r > 0. A space that carries a doubling measure is always
doubling as a metric space, that is, each B(x, r) can be covered by a constant
number of balls with radius r/2. Furthermore, a complete doubling space can be
equipped with a doubling measure, but there exists noncomplete doubling spaces
that do not carry doubling measures.

We also assume that the space supports a weak (1, p)–Poincaré inequality, that
is there exist c > 0 and τ > 1 such that

∫

B(x,r)

|u− uB(x,r)| dµ 6 cr

(∫

B(x,τr)

gp dµ

)1/p

for all x in X, r > 0 and all pairs {u, g} where u is a locally integrable function
on X and g is a p–weak upper gradient of u. Here we used the convention

uB =
∫

B

u dµ =
1

µ(B)

∫

B

u dµ.
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A result of [10] shows that in a metric space with a doubling measure a weak
(1, p)–Poincaré inequality implies a weak (t, p)–Poincaré inequality for some t > p
and possibly a new τ i.e. there exist c′ > 0 and τ ′ > 1 such that

(∫

B

|u− uB |t dµ

)1/t

6 c′r
(∫

τ ′B
gp dµ

)1/p

, (2.3)

where {
1 6 t 6 Qp/(Q− p) if p < Q,

1 6 t if p > Q,

for all balls B in X, and Q = log2 cd. The exponent Q serves as a counterpart of
dimension related to the measure.

We also recall the following properties of p–weak upper gradients. If u ∈
N1,p(X) and η is a bounded Lipschitz continuous function, then uv ∈ N1,p(X)
and

guη 6 |u|gη + |η|gu

µ–a.e. For a nonnegative function u ∈ N1,p(Ω) we have

gup 6 pup−1gu

µ–a.e. In addition, for every real number c the minimal p–weak upper gradient
satisfies gu = 0 µ–a.e. on the set {x ∈ X : u(x) = c}.

2.2. Local minimizers

Let Ω be an open subset of X, and consider the functional
∫

Ω

F (x, gu(x))dµ(x), (2.4)

where F satisfies (1.2) for 1 < p 6 q, such that
{

q 6 Qp/(Q− p) if p < Q,

q < ∞ if p > Q,

and F is convex in the second variable.
The potential theory in the metric setting is usually studied in complete metric

spaces that support a doubling measure and a weak Poincaré inequality. However,
it is fairly easy to construct examples of noncomplete metric spaces that satisfy
the other two standard assumptions. Additionally, the minimizition problem of
(2.4) may not be equivalent in X and in its completion, even if the completion
carries the same doubling measure and the weak Poincaré inequality. We invite
the reader to see Björn and Marola [3] for more detailed discussion and motivation
to work in noncomplete spaces.
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In a possibly noncomplete space we have to precise what is meant by "local".
We follow the lines in [3], and write E ḃ Ω if E is bounded and

dist(E, X \ Ω) > 0.

We say that a function u ∈ N1,p
loc (Ω) if u is in N1,p(Ω′) for every open (or, equiv-

alently, measurable) Ω′ ḃ Ω. As Ω′ ḃ Ω should be understood with respect to
X, this means that the local Newtonian space depends on X. Notice, that if X is
complete and equipped with a doubling measure, then it is proper (i.e. closed and
bounded sets are compact). This implies that E ḃ Ω if and only if E b Ω, and,
that N1,p

loc (Ω) is independent of the surrounding space.
In the same sense we say that u is locally bounded in Ω, if u is bounded in all

balls B ḃ Ω.
We are now ready to define the local minimizers. We say that a function

u ∈ N1,p
loc (Ω) is a local minimizer of (2.4) if for all ϕ ∈ N1,p(Ω) with supp ϕ ḃ Ω,

we have ∫

supp ϕ

F (x, gu) dµ 6
∫

supp ϕ

F (x, gu+ϕ) dµ (2.5)

If (2.5) holds true for all nonpositive ϕ ∈ N1,p(Ω) with supp ϕ ḃ Ω, u is called a
local subminimizer of (2.4).

2.3. Preliminary results

The next lemma is a Sobolev type inequality for Newtonian functions with zero
boundary values. For a proof; see [4] or [14].

Lemma 2.1. Let 1 < p < ∞ and (X, d, µ) be a metric measure space, where µ
is doubling and X supports a weak (1, p)–Poincaré inequality. Then there exists
c > 0 such that for every ball B(z,R) with 0 < R 6 1

3 diam X and every u ∈
N1,p

0 (B(z, R)) we have
(∫

B(z,R)

|u|t dµ

)1/t

6 cR

(∫

B(z,R)

gp
u dµ

)1/p

,

where t is as in (2.3).

The proof of Lemma 2.2 can be found, for example, in [15].

Lemma 2.2. Let (yn)∞n=1 be a sequence of nonnegative real numbers satisfying

yn+1 6 cbny1+ε
n

for all n = 0, 1, 2, . . ., where c, ε, b are positive constants and b > 1. Then

yn 6 c
(1+ε)n−1

ε b
(1+ε)n−1

ε2 −n
ε y

(1+ε)n

0 .

In particular, if
y0 6 θ = c−1/εb−1/ε2

,
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then
yn 6 θb−n/ε.

Finally, we recall a well known iteration lemma; see, for example, [7].

Lemma 2.3. Let f : [ρ,R] ⊂ R → [0,∞) be a bounded nonnegative function.
Suppose that for all ρ′, R′ such that ρ 6 ρ′ < R′ 6 R

f(ρ′) 6 θf(R′) +
(
A(R′ − ρ′)−α + C

)
(2.6)

holds true for some constants A,C > 0, α > 0 and 0 6 θ < 1. Then

f(ρ) 6 c(α, θ)
(
A(R− ρ)−α + C

)
. (2.7)

3. The local boundedness result

Throughout this section we assume that (X, d, µ) is a metric measure space that
supports a (1, p)–Poincaré inequality and µ is doubling. We suppose that Ω is an
open subset of X.

If p < Q, we choose t = Qp/(Q− p) in (2.3) and thus t > q. If p > Q, we can
choose t large enough so that t > q. In addition, we point out that all constants
will be denoted by c and they may not be the same everywhere.

We start by proving a Caccioppoli–type inequality for local minimizers. It
remains true for any q > p.

Proposition 3.1. Let u ∈ N1,p
loc (Ω) be a local minimizer of (2.4). Then for any

ball B(z, R) ḃ Ω and 0 < ρ < R we have
∫

Az,k,ρ

gp
u dµ 6 c

(R− ρ)q

∫

Az,k,R

(u− k)q dµ + cµ(Az,k,R), (3.1)

where k > 0 and
Az,k,r = {x ∈ B(z, r) : u(x) > k}

for all r > 0. If z ∈ Ω is fixed, we drop the subscript z.

Obviously, we can equivalently write (3.1) in the form
∫

B(z,ρ)

gp
(u−k)+

dµ 6 c

(R− ρ)q

∫

B(z,R)

(u− k)q
+ dµ + cµ(Az,k,R),

where (u− k)+ = max{u− k, 0}.
Proof. Choose ρ′ and R′ such that ρ 6 ρ′ < R′ 6 R. Let η be a Lipschitz cut–off
function such that 0 6 η 6 1, η = 1 on B(z, ρ′), the support of η is contained in
B(z, R′) and gη 6 c/(R′ − ρ′). Then set

ϕ = −ηq(u− k)+.
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Now Ak,ρ′ ⊂ supp ϕ ⊂ Ak,R′ , and we have suppϕ ḃ Ω (note, that supp ϕ may not
be compact). Furthermore, on Ak,R

u + ϕ = u− ηq(u− k) = (1− ηq)(u− k) + k

and hence µ–a.e. on this set

gu+ϕ 6 (u− k)g(1−ηq) + (1− ηq)g(u−k)

6 q(u− k)(gη/η)ηq + (1− ηq)gu.

Since u is a local minimizer of (2.4), we have
∫

Ak,ρ′
F (x, gu) dµ 6

∫

supp ϕ

F (x, gu) dµ

6
∫

supp ϕ

F (x, gu+ϕ) dµ 6
∫

Ak,R′
F (x, gu+ϕ) dµ

6
∫

Ak,R′
(1− ηq)F (x, gu) dµ +

∫

Ak,R′
ηqF (x, q(u− k)gηη−1) dµ,

where we used the convexity of F . Furthermore, using the properties of η and the
right–hand side of (1.2) we get

∫

Ak,ρ′
F (x, gu) dµ 6

∫

Ak,R′\Ak,ρ′
F (x, gu) dµ

+
∫

Ak,R′
ηq

(
1 + (q(u− k)gηη−1)q

)
dµ

6
∫

Ak,R′\Ak,ρ′
F (x, gu) dµ + µ(Ak,R)

+
c

(R′ − ρ′)q

∫

Ak,R′
(u− k)q dµ.

We use the hole–filling technique of K.–O. Widman, adding c
∫

Ak,ρ′
F (x, gu) dµ on

both sides of the above inequality and dividing by (1 + c) to get

∫

Ak,ρ′
F (x, gu) dµ 6 θ

∫

Ak,R′
F (x, gu) dµ + cµ(Ak,R)

+
c

(R′ − ρ′)q

∫

Ak,R′
(u− k)q dµ,

where 0 < θ < 1. Now the assertion follows from Lemma 2.3 and the left–hand
side of (1.2). ¥

We point out, that the test function constructed in the proof satisfies v 6 u,
which implies that Proposition 3.1 remains true for local subminimizers of (2.4).
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Theorem 3.2. Let u ∈ N1,p(Ω) be a local minimizer of (2.4). Then u is locally
bounded in Ω.

Proof. Fix a ball B(z,R) ḃ Ω and suppose first that 0 < R 6 1
3 diam X (which

is obvious if X is unbounded). Define

ρn =
R

2
+

R

2n+1
, ρ̄n =

ρn + ρn+1

2
,

kn = k
(
1− 1

2n+1

)
, n = 0, 1, 2, . . . ,

where k > 0 is to be chosen later. Observe, that with these definitions we have
ρn > ρ̄n > ρn+1 and kn+1 > kn for all n = 0, 1, 2, . . ..

For each n we choose a Lipschitz function ηn such that 0 6 ηn 6 1, ηn = 1 on
B(z, ρn+1), the support of ηn is contained in B(z, ρ̄n) and gη 6 c/(ρn − ρn+1) 6
c2n+1/R. Moreover, let

Jn =
∫

Akn,ρn

(u− kn)q dµ.

Since ηn = 1 on B(z, ρn+1), by the Hölder inequality and Lemma 2.1 (here we
use the fact that ρn 6 R 6 1

3 diam X for all n) we get

Jn+1 =
∫

Akn+1,ρn+1

(u− kn+1)qηq
n dµ

6 µ(Akn+1,ρn+1)
1−q/t

( ∫

B(z,ρ̄n)

(u− kn+1)t
+ηt

n dµ

)q/t

6 µ(Akn+1,ρn)1−q/t

[
cρ̄nµ(B(z, ρ̄n))1/t

(∫

B(z,ρ̄n)

gp
(u−kn+1)+ηn

dµ

)1/p
]q

= cqρ̄q
nµ(B(z, ρ̄n))q/t−q/pµ(Akn+1,ρn)1−q/t

( ∫

B(z,ρ̄n)

gp
(u−kn+1)+ηn

dµ

)q/p

.

Since R/2 < ρ̄n 6 R,
cqρ̄q

nµ(B(z, ρ̄n))q/t−q/p 6 c

for some c depending on q, t. We also observe that

Jn >
∫

Akn+1,ρn

(u− kn)q dµ >
∫

Akn+1,ρn

(kn+1 − kn)q dµ

= kq2−q(n+2)µ(Akn+1,ρn)

and hence

µ(Akn+1,ρn) 6 k−q2q(n+2)Jn 6 c2qnJn for all k > 1. (3.2)
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Furthermore, (u − kn+1)+ = 0 on B(z, ρ̄n) \ Akn+1,ρ̄n so that g(u−kn+1)+ηn
= 0

µ–a.e. on the same set. This implies

Jn+1 6 c2qn(1−q/t)J1−q/t
n

( ∫

Akn+1,ρ̄n

gp
(u−kn+1)ηn

dµ

)q/p

. (3.3)

On the other hand,

g(u−kn+1)ηn
6 ηng(u−kn+1) + (u− kn+1)gηn 6 gu + (u− kn+1)(c2n+1/R)

6 gu + c2n(u− kn+1)

µ–a.e. on Akn+1,ρ̄n , so that

∫

Akn+1,ρ̄n

gp
(u−kn+1)ηn

dµ 6 c

∫

Akn+1,ρ̄n

gp
u dµ

+ c2np

∫

Akn+1,ρ̄n

(u− kn+1)p dµ. (3.4)

Using Proposition 3.1 (note, that B(z, ρn) ḃ Ω for all n) and (3.2) to the first
integral on the right–hand side we get

∫

Akn+1,ρ̄n

gp
u dµ 6 c

(ρn − ρ̄n)q

∫

Akn+1,ρn

(u− kn+1)q dµ + cµ(Akn+1,ρn)

6 c

(
2n+1

R

)q ∫

Akn,ρn

(u− kn)q dµ + cµ(Akn+1,ρn)

6 c2nqJn.

(3.5)

To the second integral on the right–hand side of (3.4) we use the Hölder inequality
and (3.2), which imply

∫

Akn+1,ρ̄n

(u− kn+1)p dµ 6 µ(Akn+1,ρn)1−p/q

( ∫

Akn+1,ρn

(u− kn+1)q dµ

)p/q

6 (c2nqJn)1−p/qJp/q
n 6 c2nq(1−p/q)Jn.

(3.6)

Finally, by (3.3), (3.4), (3.5) and (3.6) we get

Jn+1 6 c2nq(1−q/t)J1−q/t
n

[(
c2npJn

)q/p +
(
c2np2nq(1−p/q)Jn

)q/p
]

6 c22nq2/pJ1−q/t+q/p
n .

(3.7)

Set ε = q/p − q/t and b = 22q2/p. By the choice of q, p and t we have ε > 0
and b > 1. Moreover, we can write (3.7) in the form

Jn+1 6 cbnJ1+ε
n ,
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and Lemma 2.2 implies
Jn 6 c−1/εb−1/ε2

b−n/ε

provided that we choose k > 1 such that

J0 =
∫

Ak/2,R

(u− k/2)q dµ 6 c1/εb−1/ε2
.

Then Jn → 0 as n →∞, so that
∫

Ak,R/2

(u− k)q dµ = 0

or equivalently
ess sup
B(z,R/2)

u 6 k.

The proof is complete for the case R 6 1
3 diam X.

Assume then that R > 1
3 diam X and let R′ = 1

12 diam X. Then we can find
z′ ∈ B(z, R/2) such that

ess sup
B(z,R/2)

u 6 ess sup
B(z′,R′)

u

Moreover, B(z′, 2R′) ⊂ B(z, R) ḃ Ω, so that by the previous case we get

ess sup
B(z′,R′)

u 6 k′

for some k′ > 1.
Using the same argument for −u we can prove that u is also locally bounded

from below and the theorem follows. ¥

In the proof of Theorem 3.2 the (sub)minimizing property of u is needed only
for Proposition 3.1. Hence, it follows from the proof that the subminimizers of
(2.4) are locally bounded from above.
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