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A SECOND ORDER DIFFERENTIABILITY TECHNIQUE
OF BOJARSKI-IWANIEC IN THE HEISENBERG GROUP

András Domokos, Juan J. Manfredi

Dedicated to Professor Bogdan Bojarski
on the occasion of his 75th birthday

Abstract: We adapt a technique developed by Bojarski and Iwaniec in their celebrated 1983
paper [2] to prove second order differentiability results for p-harmonic functions to the case of
the Heisenberg group. We prove that for 2 6 p < 4 we have Xi(|Xu|(p−2)/p Xju) ∈ L2

loc(Ω) and
Xi(|Xu|p) ∈ L2

loc(Ω), where u is a p-harmonic function in the Heisenberg group Hn.
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1. Introduction

It is a great privilege to present this contribution in honor of Professor Bogdan
Bojarski. As one of the creators of the modern theory of quasiregular mappings, we
are all indebted to his dedication and vision. His seminal higher integrability result
[3] opened a new era in quasiconformal analysis. He is not only a great scientist,
but also a great teacher and expositor. A generation of students of quasiconformal
and quasiregular mappings learned from the classical foundational article [4].

We are also personally indebted to Bojarski through two of this students
Tadeusz Iwaniec and Piotr Hajłasz, whom we are lucky to count among our col-
laborators and colleagues.

There has been various recent advances in the study of the regularity of
p-harmonic mappings in the Grušin plane and the Heisenberg group. Starting
with the second differentiability results of [5], a mixed Moser iteration technique
has been implemented in [6] and [7]. This approach gives the expected Lipschitz
continuity of p-harmonic functions for the range 2 6 p < 4 as well as Hölder con-
tinuity of the horizontal derivatives for solutions of the non-degenerate p-Laplace
equation. To the best of our knowledge the situation for p > 4 remains unsolved.

In [2] Bojarski and Iwaniec presented a proof of second differentiability of
p-harmonic functions for p > 2 based on studying the difference quotients of the
map

F (x) = |Du| p−2
2 Du.
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They proved that F ∈ W 1,2
loc , thereby concluding that

D
(
|Du| p−2

2 Du
)
∈ L2

loc and D(|Du|p) ∈ L2
loc. (1.1)

We caution the reader that, in general, we cannot expand the derivatives in (1.1)
to conclude that D2u is in a weighted Lp-space.

In this note we have adapted this method to the Heisenberg group framework,
where second derivatives do not commute in general so that every time we inter-
change the order of differentiation we pick up commutators. The new terms are
handled with the help of [6, 7]. It is indeed quite plausible that our main result,
Theorem 3.2 can be also obtained by the techniques of [6, 7], but the simplicity
and the elegance of the Bojarski-Iwaniec approach might give new insights on the
regularity of p-harmonic functions in the Heisenberg group.

2. Definitions and Preliminaries

The Heisenberg group Hn can be identified with Rn × Rn × R endowed with the
group multiplication

(x1, ..., x2n, t) · (y1, ..., y2n, u) =

=
(
x1 + y1, ..., x2n + y2n, t + u− 1

2

n∑

i=1

(xn+iyi − xiyn+i)
)

.

A basis of the Lie algebra is given by the horizontal left invariant vector fields

Xi =
∂

∂xi
− xn+i

2
∂

∂t
,

Xn+i =
∂

∂xn+i
+

xi

2
∂

∂t
,

and their only nonzero commutator

[Xi, Xn+i] = T =
∂

∂t
, 1 6 i 6 n .

Let Ω be a domain in Hn. Consider the Sobolev space with respect to the
horizontal vector fields Xi

HW 1,p(Ω) =
{

u ∈ Lp(Ω) : Xiu ∈ Lp(Ω), for all i ∈ {1, ..., 2n}
}

.

HW 1,p(Ω) is a Banach space with respect to the norm

||u||HW 1,p = ||u||Lp +
2n∑

i=1

||Xiu||Lp .
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We denote by HW 1,p
0 (Ω) the closure of C∞0 (Ω) in HW 1,p(Ω). The horizontal

gradient of the function u is given by

Xu = (X1u, . . . , Xnu, Xn+1u . . . , X2nu).

For p > 2 consider the subelliptic p-Laplacian equation
2n∑

i=1

Xi(|Xu|p−2Xiu) = 0 in Ω. (2.1)

A function u ∈ HW 1,p
loc (Ω) is called p-harmonic if it is a weak solution of (2.1);

that is, we have
2n∑

i=1

∫

Ω

|Xu|p−2Xiu Xiϕ dx = 0 (2.2)

for all ϕ ∈ HW 1,p
0 (Ω) with compact support in Ω. The following regularity result

is proved in [7]:

Theorem 2.1. For the range 2 6 p < 4, p-harmonic functions u ∈ HW 1,p
loc (Ω)

satisfy
Xu ∈ L∞loc(Ω) and Tu ∈ Lq

loc(Ω) for all 1 < q < ∞ .

3. Main result

Consider the differences

∆T,su(x) = u
(
xesT

)− u(x) and ∆T,−su(x) = u(x)− u
(
xe−sT

)
.

Let η ∈ C∞0 (Ω) be a cut-off function and let us use the test function

ϕ = ∆T,−s(η2∆T,su)

in equation (2.2). Standard estimates based on the inequalities
〈
|a|p−2a− |b|p−2b, a− b

〉
> 22−p|a− b|p , (3.1)

∣∣∣ |a|p−2a− |b|p−2b
∣∣∣ 6 C(p, n)

(
|a|p + |b|p

) p−2
p |a− b| (3.2)

and on Theorem 2.1 lead to∫
|∆T,sXu(x)|p ηp(x) dx 6 c

∫
|∆T,sXu(x)| |∆T,su(x)| |η(x)| |Xη(x)| dx .

Young’s inequality with the fact that p > q if 1
p + 1

q = 1 gives that
∫
|∆T,sXu|p ηp dx 6 c

∫
|∆T,su|p|Xη|p dx .

Dividing by |s|p and using the fact that Tu ∈ Lp
loc(Ω) we obtain the following

result:
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Theorem 3.1. For 2 6 p < 4 and any p-harmonic function u ∈ HW 1,p
loc (Ω) we

have that
XTu = TXu ∈ Lp

loc(Ω) .

Next, we implement the Bojarski-Iwaniec approach from [2]. Consider the
mapping

F (x) = |Xu(x)| p−2
2 Xu(x) .

Clearly, F ∈ L2
loc(Ω,R2n). Consider x0 ∈ Ω and r > 0 such that B(x0, 3r) ⊂ Ω.

Also, let η be a cut-off function between B(x0, r) and B(x0, 2r). Fix an arbitrary
k ∈ {1, .., 2n}. We do the computations for k ∈ {1, .., n} and leave the case
k ∈ {n + 1, .., 2n} to the reader. In equation (2.2) use the test function

ϕ = ∆Xk,−s(η2∆Xk,su)

to get
2n∑

i=1

∫

Ω

|Xu|p−2Xiu Xi

(
∆Xk,−s(η2∆Xk,su)

)
dx = 0.

By the identities

Xk+n

(
v
(
x · esXk

))
= Xk+nv

(
x · esXk

)− sTv
(
x · esXk

)

and
Xk+n

(
v
(
x · e−sXk

))
= Xk+nv

(
x · e−sXk

)
+ sTv

(
x · e−sXk

)
,

we get that

2n∑

i=1

∫

Ω

|Xu|p−2Xiu ∆Xk,−s

(
Xi(η2∆Xk,su)

)
dx

= −s

∫

Ω

|Xu|p−2Xk+nu T
(
η2∆Xk,su

)(
xe−sXk

)
dx .

From here, by the fact that the adjoint of ∆Xk,−s is −∆Xk,s, it follows that

2n∑

i=1

∫

Ω

∆Xk,s

(
|Xu|p−2Xiu

) (
Xi(η2∆Xk,su)

)
dx

= s

∫

Ω

|Xu|p−2Xk+nu T
(
η2∆Xk,su

)(
xe−sXk

)
dx ,

and hence
2n∑

i=1

∫

Ω

∆Xk,s

(
|Xu|p−2Xiu

)
η2 Xi∆Xk,su dx

=−
2n∑

i=1

∫

Ω

∆Xk,s

(
|Xu|p−2Xiu

)
2η Xiη ∆Xk,su dx

+ s

∫

Ω

|Xu|p−2Xk+nu T
(
η2∆Xk,su

)(
xe−sXk

)
dx .
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One more switch between Xi and ∆Xk,s gives

2n∑

i=1

∫

Ω

∆Xk,s

(
|Xu|p−2Xiu

)
η2 ∆Xk,sXiu dx

= s

∫

Ω

∆Xk,s

(
|Xu|p−2Xk+nu

)
η2 Tu

(
xesXk

)
dx

−
2n∑

i=1

∫

Ω

∆Xk,s

(
|Xu|p−2Xiu

)
2η Xiη ∆Xk,su dx

+ s

∫

Ω

|Xu|p−2Xk+nu T
(
η2∆Xk,su

)(
xe−sXk

)
dx .

(3.3)

We need the following inequalities that are similar but not identical to (3.1)
and (3.2):

〈
|a|p−2a− |b|p−2b , a− b

〉
> 4

p2

∣∣∣|a| p−2
2 a− |b| p−2

2 b
∣∣∣
2

, (3.4)

and
∣∣∣|a|p−2a− |b|p−2b

∣∣∣ 6 2(p− 1)
p

(
|a|p + |b|p

) p−2
2p

∣∣∣|a| p−2
2 a− |b| p−2

2 b
∣∣∣ . (3.5)

Applying (3.4) we get

left side of (3.3) > 4
p2

∫

Ω

η2(x)
∣∣∣∆Xk,sF (x)

∣∣∣
2

dx .

For the first two lines of the right hand side we have to use (3.5) and Theo-
rem 2.1 and absorb ∆Xk,sF (x) into the left side, while for the third line we reuse
Theorem 2.1 and get

∫

Ω

η2(x)
∣∣∣∆Xk,sF (x)

∣∣∣
2

dx 6 c

∫

B(x0,2r)

s2|Tu|2 + |∆Xk,su|2 + |∆Xk,sTu|2 dx.

Dividing this inequality by s2 and using Theorems 2.1 and 3.1 gives the following
result:

Theorem 3.2. For 2 6 p < 4 and any p-harmonic function u ∈ HW 1,p
loc (Ω) we

have that
Xi(|Xu| p−2

2 Xju) ∈ L2
loc(Ω)

for every i, j ∈ {1, .., 2n}.
Corollary 3.1. For 2 6 p < 4 and any p-harmonic function u ∈ HW 1,p

loc (Ω) we
have that

Xi(|Xu|p) ∈ L2
loc(Ω) .
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Proof. The proof follows from Theorems 2.1 and 3.2 via the equation:

Xi

(
|Xu|p

)
=

2n∑

j=1

Xi

(
|Xu| p−2

2 Xju · |Xu| p−2
2 Xju

)

= 2
2n∑

j=1

Xi

(
|Xu| p−2

2 Xju
)
· |Xu| p−2

2 Xju . ¥

To finish the paper we note that our results apply also to viscosity solutions in
the given range of p’s since Bieske [1] has shown that weak solutions and viscosity
solutions of the p-Laplace equation in the Heisenberg group coincide.
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